THE CLASSIFIGATION OF FACTORS IS NOT SMOOTH

E. J. WOODS

1. Introduction. There is a natural Borel structure on the set F of all factors on a separable Hilbert space [3]. Let \hat{F} denote the algebraic isomorphism classes in F together with the quotient Borel structure. Now that various non-denumerable families of mutually non-isomorphic factors are known to exist $[\mathbf{1 ; ~ 6 ; 8} \mathbf{8} \mathbf{1 0} ; \mathbf{1 1} ; \mathbf{1 2} ; \mathbf{1 3}]$, the most obvious question to be resolved is whether or not \hat{F} is smooth (i.e. is there a countable family of Borel sets which separate points). We answer this question negatively by an explicit construction. To each infinite sequence $\left\{a_{k}\right\}$ of zeroes and ones we associate a factor $M\left\{a_{k}\right\}$ which is given as an infinite tensor product of type I_{2} factors. Using techniques given by Araki and Woods [1], we prove that $M\left\{a_{k}\right\}$ and $M\left\{b_{k}\right\}$ are isomorphic if and only if $a_{k}=b_{k}$ except for at most a finite number of indices k. It then follows from a straightforward Borel argument that \hat{F} is not smooth.

Section 2 contains some definitions and known properties of ITPFI factors (factors constructible as infinite tensor products of type I factors). In Section 3 we prove our main result. Section 4 contains some concluding remarks.

We shall use the following notation. If H is a Hilbert space then $B(H)$ denotes the set of all bounded linear operators on H. The statement " $a_{k}=b_{k}$ (a.a.)" means that the equality holds except for at most a finite number of indices k. If the von Neumann algebras M and N are algebraically isomorphic we write $M \sim N$. We assume that the reader is familiar with the standard notation and terminology for von Neumann algebras.

Acknowledgement. I would like to thank O. A. Nielsen for some useful discussions.
2. ITPFI factors. For the sake of completeness we recall some definitions and results pertaining to ITPFI factors (see [1] for a more complete discussion). Let $H=\otimes_{n=1}^{\infty}\left(H_{n}, \Omega_{n}\right)$ be the infinite tensor product of the Hilbert spaces H_{n} which contains the product vector $\otimes \Omega_{n}, \Omega_{n} \in H_{n}, 0<\Pi\left\|\Omega_{n}\right\|<\infty$. Let π_{n} be the canonical mapping from $B\left(H_{n}\right)$ to $B(H)$ defined by $\pi_{n} S=$ $\left(\otimes_{m \neq n} 1_{m}\right) \otimes S$ where $S \in B\left(H_{n}\right)$ and 1_{m} is the identity operator on H_{m}. Given $\otimes\left(H_{n}, \Omega_{n}\right)$ and type I factors $M_{n} \subset B\left(H_{n}\right)$ we define the factor

$$
\otimes\left(M_{n}, \Omega_{n}\right)=\left\{\pi_{n} M_{n} ; n=1,2, \ldots\right\}^{\prime \prime}
$$

Any factor constructible in this manner is called an ITPFI factor. By the
eigenvalue list of a vector Ω relative to a type I factor M we mean the list $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of eigenvalues of the nonnegative trace class operator ρ in M defined by

$$
\text { Trace } \rho A=(A \Omega, \Omega), A \in M
$$

ordered such that $\lambda_{1} \geqq \lambda_{2} \geqq \ldots \geqq 0$. We denote it by $\operatorname{Sp}(\Omega / M) . \operatorname{Sp}(\Omega / M)$ gives a complete set of unitary invariants for the pair (M, Ω).

In the remainder of this paper $\operatorname{dim} H_{n}=4$ and M_{n} is a type I_{2} factor. Let $0 \leqq x \leqq 1, \quad \lambda=(1+x)^{-1}$. We define factors $R_{x}=\otimes\left(M_{n}, \Omega_{n}\right)$ where $\mathrm{Sp}\left(\Omega_{n} / M_{n}\right)=(\lambda, 1-\lambda)$ independent of n. For any factor M we define the algebraic invariant $\rho(M)$ as the set of all $0 \leqq x \leqq 1$ such that $R_{x} \sim R_{x} \otimes M$. For the examples we shall consider in Section 3 the following notation is convenient.

Definition 2.1. Given $0 \leqq l_{1}<l_{2}<\ldots, l_{j} \rightarrow \infty$, and nonnegative integers N_{1}, N_{2}, \ldots, let

$$
\lambda_{n}=\left(1+e^{-l_{j}}\right)^{-1}, N_{1}+\ldots+N_{j-1}<n \leqq N_{1}+\ldots+N_{j}
$$

We denote the factor $\otimes\left(M_{n}, \Omega_{n}\right)$ where $\operatorname{Sp}\left(\Omega_{n} / M_{n}\right)=\left(\lambda_{n}, 1-\lambda_{n}\right)$ by $M\left[l_{j}, N_{j}\right]$.

The proof of Theorem 3.3 is based on the following result [1, Lemma 11.7].
Lemma 2.2. Let $0<\theta<\infty, M=M\left[l_{j}, N_{j}\right]$. For each j choose an integer p_{j} such that $\left|\delta_{j}\right|$ is a minimum where

$$
\delta_{j}=p_{j} \theta-l_{j} .
$$

Then $e^{-\theta} \in \rho(M)$ if and only if

$$
\sum_{j=1}^{\infty} N_{j} e^{-l j} \delta_{j}^{2}<\infty
$$

3. A family of factors. Let G denote the Borel space of all sequences $a=\left\{a_{k}\right\}, a_{k}=0,1$ with the product Borel structure, Δ the Borel subset of sequences a such that $a_{k}=0$ (a.a.). Using the binary decimal expansion we can identify G with the unit interval on the real line with the usual Borel structure, and Δ with the binary rationals. G is a compact group under addition $\bmod 1$. We define an equivalence relation on G by $a \sim b$ if and only if $a-b \in \Delta$ (i.e., $a_{k}=b_{k}$ (a.a.)). We give $\hat{G}=G / \Delta$ the quotient Borel structure. By Theorem 7.2 of [7], \hat{G} is not countably separated. We will construct a Borel map M from G into F such that $M(a) \sim M(b)$ if and only if $a \sim b$, and which is a Borel isomorphism of G onto $M G$. It will then follow that there is a one-to-one Borel map \hat{M} from \hat{G} into \hat{F}, which implies that \hat{F} is not countably separated.

Definition 3.1. For each $a \in G$ we define a factor $M(a)$ as follows. We define a sequence of integers m_{k}, N_{k}. Let $m_{1}=3$. Given m_{k}, choose N_{k}, m_{k+1} such that

$$
\begin{gather*}
N_{k} \geqq\left(m_{k}+1\right)^{2} \mathrm{e}^{m_{k}!}>N_{k}-1 \tag{3.1}\\
\left(m_{k+1}+1\right)!>\left[\left(m_{k}+1\right)!\right]^{3} \tag{3.2}
\end{gather*}
$$

and m_{k+1} is odd. Let $H=\otimes\left(H_{n}, \Omega_{n}\right)$ where $\operatorname{dim} H_{n}=4$. We define λ_{n}, $n=1,2, \ldots$ as follows:
Let

$$
\begin{equation*}
\sum_{j=1}^{k-1} N_{j}<n \leqslant \sum_{j=1}^{k} N_{j} \tag{3.3}
\end{equation*}
$$

and let

$$
\lambda_{n}= \begin{cases}\left(1+e^{-m_{k}!}\right)^{-1} & \text { if } a_{k}=1 \tag{3.4}\\ 1 & \text { if } a_{k}=0\end{cases}
$$

Choose a type I_{2} factor $M_{n}(a)$ on each H_{n} such that $\operatorname{Sp}\left(\Omega_{n} / M_{n}(a)\right)=$ $\left(\lambda_{n}, 1-\lambda_{n}\right)$. We now define

$$
\begin{equation*}
M(a)=\otimes\left(M_{n}(a), \Omega_{n}\right) \tag{3.5}
\end{equation*}
$$

We remark that $M(a)$ is type I_{∞} if $a \in \Delta$, otherwise $M(a)$ is type III (see [1, Lemma 2.14]).

Lemma 3.2. The map M is Borel.
Proof. By the Corollary to Theorem 2 of [3] it is sufficient to show that there is a sequence of operators $T_{k}(a) \in M(a)$ such that

$$
\left\{T_{k}(a) ; k=1,2, \ldots\right\}^{\prime \prime}=M(a)
$$

for each a, and the maps $a \rightarrow\left(x, T_{k}(a) y\right)$ are Borel for all $k=1,2, \ldots$ and all $x, y \in H$. Note that any type I_{2} factor is generated by 4 partial isometries, and that each $M_{n}(a)$ depends on only one coordinate a_{k} where k is determined by (3.3). Thus each $M_{n}(a)$ is generated by 4 operators $T_{n m}\left(a_{k}\right), m=1,2,3,4$. Clearly the maps

$$
a \rightarrow a_{k} \rightarrow\left(x, T_{n m}\left(a_{k}\right) y\right), m=1,2,3,4
$$

are Borel for all $x, y \in H$. Since $T_{n m}(a)$ for all n, m generate $M(a)$, the map M is Borel.

Theorem 3.3. $M(a) \sim M(b)$ if and only if $a \sim b$.
Proof. If $a_{k}=b_{k}($ a.a. $)$ then $\mathrm{Sp}\left(\Omega_{n} / M_{n}(a)\right)=\mathrm{Sp}\left(\Omega_{n} / M_{n}(b)\right)$ (a.a.) and $M(a) \sim M(b)$ (use Lemma 2.13 of [1]).

If $a \nsim b$ then there is a sequence $k_{1}<k_{2}<\ldots$ such that either $a_{k_{j}}=0$, $b_{k_{j}}=1$ or $a_{k_{j}}=1, b_{k_{j}}=0$ for all j. Without loss of generality we can take
$a_{k j}=0, b_{k_{j}}=1, j=1,2, \ldots$ Let

$$
\begin{equation*}
\theta=n_{1} \prod_{j=1}^{\infty}\left[1-\left(n_{j} / n_{j+1}\right)\right]^{-1} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{j}=\left(m_{k_{j}}+1\right)! \tag{3.7}
\end{equation*}
$$

It follows from (3.2) that the infinite product in (3.6) converges. For any $j=1,2, \ldots$ we have

$$
\begin{equation*}
\theta=n_{j} Q_{j}^{-1}\left(1+\epsilon_{j}\right) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
Q_{1} & =1 \\
Q_{j} & =\prod_{s=1}^{j-1}\left[\left(n_{s+1} / n_{s}\right)-1\right], j=2,3, \ldots \tag{3.9}\\
1+\epsilon_{j} & =\prod_{s=j}^{\infty}\left[1-\left(n_{s} / n_{s+1}\right)\right]^{-1} . \tag{3.10}
\end{align*}
$$

We will use Lemma 2.2 to prove that $e^{-\theta} \in \rho(M(a)), e^{-\theta} \notin \rho(M(b))$. In order to do this we note that by construction we can write

$$
M(a)=M\left[m_{k}!, a_{k} N_{k}\right] \otimes P(a), M(b)=M\left[m_{k}!, b_{k} N_{k}\right] \otimes P(b)
$$

where $P(a), P(b)$ are tensor products of type I_{2} factors where the eigenvalue lists are all $(1,0)$, and hence $P(a), P(b)$ are type I (use Lemma 2.14 of [1]). It follows from Lemmas 11.4 and 11.5 of $[\mathbf{1}]$ that $\rho^{\prime}(M(a))=\rho^{\prime}\left(M\left[m_{k}!, a_{k} N_{k}\right]\right)$, $\rho^{\prime}(M(b))=\rho^{\prime}\left(M\left[m_{k}!, b_{k} N_{k}\right]\right)$ where $\rho^{\prime}(M)=\rho(M) \cap[0,1)$. Thus we need estimates on

$$
\begin{equation*}
\delta_{k}=\inf _{P}\left|p \theta-m_{k}!\right| \tag{3.11}
\end{equation*}
$$

where the infimum is taken over integers p.
Case $1 . k \notin\left(k_{1}, k_{2}, \ldots\right), k>k_{1}$: Such a k need not exist but if it does there is an integer s such that

$$
\begin{equation*}
k_{s}<k<k_{s+1} . \tag{3.12}
\end{equation*}
$$

Let

$$
\begin{equation*}
p=Q_{s} m_{k}!/\left(m_{k_{s}}+1\right)!. \tag{3.13}
\end{equation*}
$$

Note that p is an integer. Equations (3.7), (3.8) with $j=s$ and equations (3.11), (3.13) give

$$
\begin{equation*}
\delta_{k} \leqq\left|p \theta-m_{k}!\right|=m_{k}!\epsilon_{s} . \tag{3.14}
\end{equation*}
$$

We now derive an estimate on ϵ_{s}. It follows from the power series for $\log (1+x)$ that if $0<x \leqq \frac{1}{2}$ we have

$$
\begin{equation*}
-\frac{3}{2} x<\log (1-x)<-x \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3}{4} x<\log (1+x)<x \tag{3.16}
\end{equation*}
$$

Equations (3.10) and (3.15) give

$$
\begin{align*}
\log \left(1+\epsilon_{s}\right) & =-\sum_{j=s}^{\infty} \log \left[1-\left(n_{j} / n_{j+1}\right)\right] \tag{3.17}\\
& <\frac{3}{2} \sum_{j=s}^{\infty} n_{j} / n_{j+1} .
\end{align*}
$$

Equations (3.2), (3.7), (3.12) give

$$
\begin{equation*}
n_{s} / n_{s+1}<\left[\left(m_{k}+1\right)!\right]^{-2} \tag{3.18}
\end{equation*}
$$

and for $t>0$,

$$
\begin{align*}
n_{s+t} / n_{s+t+1} & <\left[\left(m_{k_{s+t}}+1\right)!\right]^{-2} \tag{3.19}\\
& <2^{-t}\left[\left(m_{k}+1\right)!\right]^{-2} .
\end{align*}
$$

From (3.17)- (3.19) we have

$$
\begin{equation*}
\log \left(1+\epsilon_{s}\right)<\frac{3}{2}\left[\left(m_{k}+1\right)!\right]^{-2} \sum_{t=0}^{\infty} 2^{-t}<3\left[m_{k}!\right]^{-2} \tag{3.20}
\end{equation*}
$$

and from (3.16) and (3.20) it follows that

$$
\begin{equation*}
\epsilon_{s}<4\left[m_{k}!\right]^{-2} \tag{3.21}
\end{equation*}
$$

By (3.14), (3.21)

$$
\begin{equation*}
\delta_{k}<4 / m_{k}! \tag{3.22}
\end{equation*}
$$

and from (3.1), (3.22) we obtain

$$
\begin{equation*}
N_{k} e^{-m_{k}!} \delta_{k}{ }^{2}<16\left[\left(m_{k}+1\right)^{2}+e^{-m_{k}!}\right]\left[m_{k}!\right]^{-2} . \tag{3.23}
\end{equation*}
$$

Equations (3.2) and (3.23) yield

It follows that

$$
\sum_{\left.k \notin\left\{k_{1}, k_{2}, \ldots\right\}\right\}} N_{k} e^{-m m_{k}!} \delta_{k}^{2}<\infty .
$$

and thus $e^{-\theta} \in \rho\left(M\left[m_{k}!, a_{k} N_{k}\right]\right)$ by Lemma 2.2.
Case 2 . $k=k_{j}$ for some j : Let

$$
\begin{equation*}
r=Q_{j} /\left(m_{k}+1\right) \tag{3.25}
\end{equation*}
$$

By construction $m_{k}+1$ is even. It follows from (3.2), (3.7) and (3.9) that n_{s+1} / n_{s} is always even and thus Q_{j} is always odd. Hence r is not an integer, and the integer p giving the infimum for δ_{k} satisfies

$$
\begin{equation*}
|p-r| \geqq\left(m_{k}+1\right)^{-1} \tag{3.26}
\end{equation*}
$$

Equations (3.7), (3.8), (3.25) give

$$
\begin{equation*}
\left|r \theta-m_{k}!\right|=m_{k}!\epsilon_{j} . \tag{3.27}
\end{equation*}
$$

The same argument used to derive (3.21) yields that

$$
\begin{equation*}
\epsilon_{j}<4\left[m_{k}!\right]^{-2} . \tag{3.28}
\end{equation*}
$$

Equations (3.11), (3.26-28) give

$$
\begin{align*}
\delta_{k} & =\left|p \theta-m_{k}!\right| \geqq|(p-r) \theta|-\left|r \theta-m_{k}!\right| \tag{3.29}\\
& >\theta\left(m_{k}+1\right)^{-1}-4 / m_{k}!,
\end{align*}
$$

and from (3.1) and (3.29) we obtain

$$
\begin{equation*}
N_{k} e^{-m_{k}!\delta_{k}{ }^{2}>\theta^{2}-8 \theta\left(m_{k}+1\right) / m_{k}!+16\left(m_{k}+1\right)^{2}\left(m_{k}!\right)^{-2} . . . ~} \tag{3.30}
\end{equation*}
$$

Since $m_{k} \rightarrow \infty$ (see (3.2)) it follows that

$$
\begin{equation*}
\sum b_{k} N_{k} e^{-m k!} \delta_{k}^{2} \geqq \sum_{j=1}^{\infty} N_{k j} e^{-m_{k}!} \delta_{k_{j}}{ }^{2}=\infty \tag{3.31}
\end{equation*}
$$

and thus $e^{-\theta} \notin \rho\left(M\left[m_{k}!, b_{k} N_{k}\right]\right)$ by Lemma 2.2. Since ρ is an algebraic invariant we have $M(a) \nsim M(b)$.

Theorem 3.4. \hat{F} is not countably separated.
Proof. Let Π_{G}, Π_{F} be the quotient maps from $G \rightarrow \hat{G}, F \rightarrow \hat{F}$. Since M is a one-to-one Borel function from the standard Borel space G into the standard Borel space F, its range $M G$ is a Borel subset of F and M is a Borel isomorphism of G onto $M G$ [7, Theorem 3.2]. Since M respects the equivalence relations (Theorem 3.3), it defines a map \hat{M} from \hat{G} into \hat{F} such that $\hat{M} \Pi_{G}=\Pi_{F} M$. We now prove that \hat{M} is a Borel map from \hat{G} onto $\hat{M} \hat{G}$ with its relative Borel structure in \hat{F}. A Borel set in $\hat{M} \hat{G}$ is of the form $X \cap \hat{M} \hat{G}$ where X is Borel in \hat{F}. Then $\Pi_{F^{-1}}(X) \cap M G$ is Borel in $M G$, and $M^{-1}\left(\Pi_{F}{ }^{-1}(X) \cap M G\right)$ is Borel in G. But $M^{-1}(X \cap \hat{M} \hat{G})=\Pi_{G}\left(M^{-1}\left(\Pi_{F}^{-1}(X) \cap M G\right)\right)$ which is Borel in \hat{G}. Thus \hat{M} is Borel. Now \hat{F} countably separated would imply that $\hat{M} \hat{G}$ is countably separated which would imply that \hat{G} is countably separated (since \hat{M} is Borel). But since \hat{G} is not countably separated [7, Theorem 7.2], the theorem follows.
4. Concluding remarks. Our result is analogous to the fact, first proved by Glimm [5], that a separable locally compact group is type I if and only if it has a smooth dual. Actually Glimm proved the stronger result that the dual is not metrically smooth (i.e. not metrically countably separated) if the group is not type I. (A Borel space X is called metrically countably separated if, given any finite Borel measure μ, there is a μ-null Borel set N such that $X-N$ is countably separated.) Since our method of proof involves an explicit construction quite similar to that used by Glimm, one might expect that it could be used to show that \hat{F} is not metrically countably separated. In fact,

Nielsen [9] has extended the argument of Theorem 3.4 to yield the existence of a von Neumann algebra which is not "centrally smooth" (see [4]). This implies that \hat{F} is not metrically countably separated.

Of course we have only shown that the classification of ITPFI factors is not smooth. It remains open whether the classification of type II factors, non-hyperfinite type III factors etc. is smooth or not. While present techniques seem inadequate to decide this, it seems likely that the answer is no.

References

1. H. Araki and E. J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968), 51-130.
2. E. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
3. -_ The Borel space of von Neumann algebras on a separable Hilbert space, Pacific J. Math. 15 (1965), 1153-1164.
4. Global structure in von Neumann algebras, Trans. Amer. Math. Soc. 121 (1966), 434-454.
5. J. Glimm, Type I C*-algebras, Ann. of Math. 73 (1961), 572-612.
6. W. Krieger, On a class of hyperfinite factors that arise from null-recurrent Markov chains, J. Functional Analysis 7 (1971), 27-42.
7. G. W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
8. D. McDuff, Uncountably many Π_{1}-factors, Ann. of Math. 90 (1969), 372-377.
9. O. A. Nielsen, An example of a von Neumann algebra of global type II (to appear).
10. R. T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. 86 (1967), 138-171.
11. S. Sakai, An uncountable number of Π_{1} and Π_{∞}-factors, J. Functional Analysis 5 (1970), 236-246.
12. - An uncountable family of non-hyperfinite type III-factors, Functional analysis (edited by C. O. Wilde, Academic Press, New York, 1970).
13. J. Williams, Non-isomorphic tensor products of von Neumann algebras (to appear).

Queen's University, Kingston, Ontario

