THE CLASSIFICATION OF FACTORS IS NOT SMOOTH

E. J. WOODS

1. Introduction. There is a natural Borel structure on the set F of all factors on a separable Hilbert space [3]. Let \hat{F} denote the algebraic isomorphism classes in F together with the quotient Borel structure. Now that various non-denumerable families of mutually non-isomorphic factors are known to exist [1; 6; 8; 10; 11; 12; 13], the most obvious question to be resolved is whether or not \hat{F} is smooth (i.e. is there a countable family of Borel sets which separate points). We answer this question negatively by an explicit construction. To each infinite sequence $\{a_k\}$ of zeroes and ones we associate a factor $M\{a_k\}$ which is given as an infinite tensor product of type I_2 factors. Using techniques given by Araki and Woods [1], we prove that $M\{a_k\}$ and $M\{b_k\}$ are isomorphic if and only if $a_k = b_k$ except for at most a finite number of indices k. It then follows from a straightforward Borel argument that \hat{F} is not smooth.

Section 2 contains some definitions and known properties of ITPFI factors (factors constructible as infinite tensor products of type I factors). In Section 3 we prove our main result. Section 4 contains some concluding remarks.

We shall use the following notation. If H is a Hilbert space then B(H) denotes the set of all bounded linear operators on H. The statement " $a_k = b_k$ (a.a.)" means that the equality holds except for at most a finite number of indices k. If the von Neumann algebras M and N are algebraically isomorphic we write $M \sim N$. We assume that the reader is familiar with the standard notation and terminology for von Neumann algebras.

Acknowledgement. I would like to thank O. A. Nielsen for some useful discussions.

2. ITPFI factors. For the sake of completeness we recall some definitions and results pertaining to ITPFI factors (see [1] for a more complete discussion). Let $H = \bigotimes_{n=1}^{\infty} (H_n, \Omega_n)$ be the infinite tensor product of the Hilbert spaces H_n which contains the product vector $\bigotimes \Omega_n, \Omega_n \in H_n, 0 < \Pi ||\Omega_n|| < \infty$. Let π_n be the canonical mapping from $B(H_n)$ to B(H) defined by $\pi_n S = (\bigotimes_{m \neq n} 1_m) \bigotimes S$ where $S \in B(H_n)$ and 1_m is the identity operator on H_m . Given $\bigotimes(H_n, \Omega_n)$ and type I factors $M_n \subset B(H_n)$ we define the factor

$$\otimes (M_n, \Omega_n) = \{\pi_n M_n; n = 1, 2, \ldots\}^{\prime\prime}$$

Any factor constructible in this manner is called an ITPFI factor. By the

Received November 22, 1971.

eigenvalue list of a vector Ω relative to a type *I* factor *M* we mean the list $(\lambda_1, \lambda_2, \ldots)$ of eigenvalues of the nonnegative trace class operator ρ in *M* defined by

$$\Gamma$$
race $\rho A = (A \Omega, \Omega), A \in M$

ordered such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq 0$. We denote it by $\operatorname{Sp}(\Omega/M)$. $\operatorname{Sp}(\Omega/M)$ gives a complete set of unitary invariants for the pair (M, Ω) .

In the remainder of this paper dim $H_n = 4$ and M_n is a type I_2 factor. Let $0 \leq x \leq 1$, $\lambda = (1 + x)^{-1}$. We define factors $R_x = \bigotimes(M_n, \Omega_n)$ where $\operatorname{Sp}(\Omega_n/M_n) = (\lambda, 1 - \lambda)$ independent of n. For any factor M we define the algebraic invariant $\rho(M)$ as the set of all $0 \leq x \leq 1$ such that $R_x \sim R_x \otimes M$. For the examples we shall consider in Section 3 the following notation is convenient.

Definition 2.1. Given $0 \leq l_1 < l_2 < \ldots, l_j \rightarrow \infty$, and nonnegative integers N_1, N_2, \ldots , let

$$\lambda_n = (1 + e^{-l_j})^{-1}, N_1 + \ldots + N_{j-1} < n \leq N_1 + \ldots + N_j$$

We denote the factor $\otimes(M_n, \Omega_n)$ where $\operatorname{Sp}(\Omega_n/M_n) = (\lambda_n, 1 - \lambda_n)$ by $M[l_j, N_j]$.

The proof of Theorem 3.3 is based on the following result [1, Lemma 11.7].

LEMMA 2.2. Let $0 < \theta < \infty$, $M = M[l_j, N_j]$. For each j choose an integer p_j such that $|\delta_j|$ is a minimum where

$$\delta_j = p_j \theta - l_j.$$

Then $e^{-\theta} \in \rho(M)$ if and only if

$$\sum_{j=1}^{\infty} N_j e^{-l_j} \delta_j^2 < \infty.$$

3. A family of factors. Let G denote the Borel space of all sequences $a = \{a_k\}, a_k = 0, 1$ with the product Borel structure, Δ the Borel subset of sequences a such that $a_k = 0$ (a.a.). Using the binary decimal expansion we can identify G with the unit interval on the real line with the usual Borel structure, and Δ with the binary rationals. G is a compact group under addition mod 1. We define an equivalence relation on G by $a \sim b$ if and only if $a - b \in \Delta$ (i.e., $a_k = b_k$ (a.a.)). We give $\hat{G} = G/\Delta$ the quotient Borel structure. By Theorem 7.2 of [7], \hat{G} is not countably separated. We will construct a Borel map M from G into F such that $M(a) \sim M(b)$ if and only if $a \sim b$, and which is a Borel isomorphism of G onto MG. It will then follow that there is a one-to-one Borel map \hat{M} from \hat{G} into \hat{F} , which implies that \hat{F} is not countably separated.

Definition 3.1. For each $a \in G$ we define a factor M(a) as follows. We define a sequence of integers m_k , N_k . Let $m_1 = 3$. Given m_k , choose N_k , m_{k+1} such that

(3.1)
$$N_k \ge (m_k + 1)^2 e^{m_k l} > N_k - 1$$

(3.2)
$$(m_{k+1}+1)! > [(m_k+1)!]^3$$

and m_{k+1} is odd. Let $H = \bigotimes(H_n, \Omega_n)$ where dim $H_n = 4$. We define λ_n , $n = 1, 2, \ldots$ as follows: Let

(3.3)
$$\sum_{j=1}^{k-1} N_j < n \leqslant \sum_{j=1}^{k} N_j$$

and let

(3.4)
$$\lambda_n = \begin{cases} (1 + e^{-m_k l})^{-1} & \text{if } a_k = 1\\ 1 & \text{if } a_k = 0 \end{cases}$$

Choose a type I_2 factor $M_n(a)$ on each H_n such that $\operatorname{Sp}(\Omega_n/M_n(a)) = (\lambda_n, 1 - \lambda_n)$. We now define

(3.5)
$$M(a) = \otimes (M_n(a), \Omega_n).$$

We remark that M(a) is type I_{∞} if $a \in \Delta$, otherwise M(a) is type III (see [1, Lemma 2.14]).

LEMMA 3.2. The map M is Borel.

Proof. By the Corollary to Theorem 2 of [3] it is sufficient to show that there is a sequence of operators $T_k(a) \in M(a)$ such that

$${T_k(a); k = 1, 2, \ldots}'' = M(a)$$

for each a, and the maps $a \to (x, T_k(a)y)$ are Borel for all k = 1, 2, ... and all $x, y \in H$. Note that any type I_2 factor is generated by 4 partial isometries, and that each $M_n(a)$ depends on only one coordinate a_k where k is determined by (3.3). Thus each $M_n(a)$ is generated by 4 operators $T_{nm}(a_k)$, m = 1, 2, 3, 4. Clearly the maps

$$a \rightarrow a_k \rightarrow (x, T_{nm}(a_k)y), m = 1, 2, 3, 4$$

are Borel for all $x, y \in H$. Since $T_{nm}(a)$ for all n, m generate M(a), the map M is Borel.

THEOREM 3.3. $M(a) \sim M(b)$ if and only if $a \sim b$.

Proof. If $a_k = b_k(a.a.)$ then $\operatorname{Sp}(\Omega_n/M_n(a)) = \operatorname{Sp}(\Omega_n/M_n(b))(a.a.)$ and $M(a) \sim M(b)$ (use Lemma 2.13 of [1]).

If $a \sim b$ then there is a sequence $k_1 < k_2 < \ldots$ such that either $a_{k_j} = 0$, $b_{k_j} = 1$ or $a_{k_j} = 1$, $b_{k_j} = 0$ for all j. Without loss of generality we can take

 $a_{kj} = 0, b_{kj} = 1, j = 1, 2, \ldots$. Let

(3.6)
$$\theta = n_1 \prod_{j=1}^{\infty} \left[1 - (n_j/n_{j+1}) \right]^{-1}$$

where

$$(3.7) n_j = (m_{k_j} + 1)!$$

It follows from (3.2) that the infinite product in (3.6) converges. For any $j = 1, 2, \ldots$ we have

(3.8)
$$\theta = n_j Q_j^{-1} (1 + \epsilon_j)$$

where

$$Q_1 = 1$$

(3.9)
$$Q_j = \prod_{s=1}^{j-1} [(n_{s+1}/n_s) - 1], j = 2, 3, \dots$$

(3.10)
$$1 + \epsilon_j = \prod_{s=j}^{\infty} [1 - (n_s/n_{s+1})]^{-1}.$$

We will use Lemma 2.2 to prove that $e^{-\theta} \in \rho(M(a))$, $e^{-\theta} \notin \rho(M(b))$. In order to do this we note that by construction we can write

$$M(a) = M[m_k!, a_k N_k] \otimes P(a), M(b) = M[m_k!, b_k N_k] \otimes P(b)$$

where P(a), P(b) are tensor products of type I_2 factors where the eigenvalue lists are all (1, 0), and hence P(a), P(b) are type I (use Lemma 2.14 of [1]). It follows from Lemmas 11.4 and 11.5 of [1] that $\rho'(M(a)) = \rho'(M[m_k!, a_kN_k])$, $\rho'(M(b)) = \rho'(M[m_k!, b_kN_k])$ where $\rho'(M) = \rho(M) \cap [0, 1)$. Thus we need estimates on

(3.11)
$$\delta_k = \inf_P |p\theta - m_k!|$$

where the infimum is taken over integers p.

Case 1. $k \notin (k_1, k_2, ...), k > k_1$: Such a k need not exist but if it does there is an integer s such that

$$(3.12) k_s < k < k_{s+1}.$$

Let

(3.13)
$$p = Q_s m_k! / (m_{ks} + 1)!.$$

Note that p is an integer. Equations (3.7), (3.8) with j = s and equations (3.11), (3.13) give

(3.14)
$$\delta_k \leq |p\theta - m_k|| = m_k |\epsilon_s.$$

We now derive an estimate on ϵ_s . It follows from the power series for $\log(1+x)$ that if $0 < x \leq \frac{1}{2}$ we have

$$(3.15) -\frac{3}{2}x < \log(1-x) < -x$$

and

(3.16)
$$\frac{3}{4}x < \log(1+x) < x$$

Equations (3.10) and (3.15) give

(3.17)
$$\log(1 + \epsilon_s) = -\sum_{j=s}^{\infty} \log[1 - (n_j/n_{j+1})] < \frac{3}{2} \sum_{j=s}^{\infty} n_j/n_{j+1}.$$

Equations
$$(3.2)$$
, (3.7) , (3.12) give

$$(3.18) n_s/n_{s+1} < [(m_k+1)!]^{-2}$$

and for t > 0,

(3.19)
$$n_{s+t}/n_{s+t+1} < [(m_{k_{s+t}} + 1)!]^{-2} < 2^{-t}[(m_k + 1)!]^{-2}.$$

From (3.17)-(3.19) we have

(3.20)
$$\log(1+\epsilon_s) < \frac{3}{2}[(m_k+1)!]^{-2} \sum_{t=0}^{\infty} 2^{-t} < 3[m_k!]^{-2},$$

and from (3.16) and (3.20) it follows that

 $(3.21) \qquad \qquad \epsilon_s < 4[m_k!]^{-2}.$

By (3.14), (3.21)

 $(3.22) \qquad \qquad \delta_k < 4/m_k!,$

and from (3.1), (3.22) we obtain

(3.23)
$$N_k e^{-m_k!} \delta_k^2 < 16[(m_k+1)^2 + e^{-m_k!}][m_k!]^{-2}.$$

Equations (3.2) and (3.23) yield

$$\sum_{k\notin\{k_1,k_2,\ldots\}} N_k e^{-m_k!} \delta_k^2 < \infty.$$

It follows that

 $(3.24) \qquad \sum a_k N_k e^{-m_k!} \delta_k^{\ 2} < \infty$

and thus $e^{-\theta} \in \rho(M[m_k!, a_kN_k])$ by Lemma 2.2. Case 2. $k = k_j$ for some j: Let

(3.25)
$$r = Q_j / (m_k + 1).$$

By construction $m_k + 1$ is even. It follows from (3.2), (3.7) and (3.9) that n_{s+1}/n_s is always even and thus Q_j is always odd. Hence r is not an integer, and the integer p giving the infimum for δ_k satisfies

$$(3.26) |p - r| \ge (m_k + 1)^{-1}$$

100

Equations (3.7), (3.8), (3.25) give

 $(3.27) |r\theta - m_k!| = m_k!\epsilon_j.$

The same argument used to derive (3.21) yields that

 $(3.28) \epsilon_j < 4[m_k!]^{-2}.$

Equations (3.11), (3.26-28) give

(3.29)
$$\delta_k = |p\theta - m_k!| \ge |(p - r)\theta| - |r\theta - m_k!| \\> \theta(m_k + 1)^{-1} - 4/m_k!,$$

and from (3.1) and (3.29) we obtain

$$(3.30) N_k e^{-m_k!} \delta_k^2 > \theta^2 - 8\theta(m_k+1)/m_k! + 16(m_k+1)^2(m_k!)^{-2}.$$

Since $m_k \to \infty$ (see (3.2)) it follows that

(3.31)
$$\sum b_k N_k e^{-m_k!} \delta_k^2 \ge \sum_{j=1}^{\infty} N_{kj} e^{-m_k!} \delta_{kj}^2 = \infty$$

and thus $e^{-\theta} \notin \rho(M[m_k!, b_k N_k])$ by Lemma 2.2. Since ρ is an algebraic invariant we have $M(a) \sim M(b)$.

THEOREM 3.4. \hat{F} is not countably separated.

Proof. Let Π_G , Π_F be the quotient maps from $G \to \hat{G}$, $F \to \hat{F}$. Since M is a one-to-one Borel function from the standard Borel space G into the standard Borel space F, its range MG is a Borel subset of F and M is a Borel isomorphism of G onto MG [7, Theorem 3.2]. Since M respects the equivalence relations (Theorem 3.3), it defines a map \hat{M} from \hat{G} into \hat{F} such that $\hat{M}\Pi_G = \Pi_F M$. We now prove that \hat{M} is a Borel map from \hat{G} onto $\hat{M}\hat{G}$ with its relative Borel structure in \hat{F} . A Borel set in $\hat{M}\hat{G}$ is of the form $X \cap \hat{M}\hat{G}$ where X is Borel in \hat{F} . Then $\Pi_F^{-1}(X) \cap MG$ is Borel in MG, and $M^{-1}(\Pi_F^{-1}(X) \cap MG)$ is Borel in \hat{G} . Thus \hat{M} is Borel. Now \hat{F} countably separated would imply that $\hat{M}\hat{G}$ is countably separated which would imply that \hat{G} is countably separated (since \hat{M} is Borel). But since \hat{G} is not countably separated [7, Theorem 7.2], the theorem follows.

4. Concluding remarks. Our result is analogous to the fact, first proved by Glimm [5], that a separable locally compact group is type I if and only if it has a smooth dual. Actually Glimm proved the stronger result that the dual is not metrically smooth (i.e. not metrically countably separated) if the group is not type I. (A Borel space X is called metrically countably separated if, given any finite Borel measure μ , there is a μ -null Borel set N such that X - N is countably separated.) Since our method of proof involves an explicit construction quite similar to that used by Glimm, one might expect that it could be used to show that \hat{F} is not metrically countably separated. In fact,

101

Nielsen [9] has extended the argument of Theorem 3.4 to yield the existence of a von Neumann algebra which is not "centrally smooth" (see [4]). This implies that \hat{F} is not metrically countably separated.

Of course we have only shown that the classification of ITPFI factors is not smooth. It remains open whether the classification of type II factors, non-hyperfinite type III factors etc. is smooth or not. While present techniques seem inadequate to decide this, it seems likely that the answer is no.

References

- H. Araki and E. J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968), 51–130.
- 2. E. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
- 3. ——— The Borel space of von Neumann algebras on a separable Hilbert space, Pacific J. Math. 15 (1965), 1153–1164.
- 4. —— Global structure in von Neumann algebras, Trans. Amer. Math. Soc. 121 (1966), 434–454.
- 5. J. Glimm, Type I C*-algebras, Ann. of Math. 73 (1961), 572-612.
- 6. W. Krieger, On a class of hyperfinite factors that arise from null-recurrent Markov chains, J. Functional Analysis 7 (1971), 27-42.
- 7. G. W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
- 8. D. McDuff, Uncountably many Π_1 -factors, Ann. of Math. 90 (1969), 372–377.
- 9. O. A. Nielsen, An example of a von Neumann algebra of global type II (to appear).
- 10. R. T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. 86 (1967), 138–171.
- 11. S. Sakai, An uncountable number of Π_1 and Π_{∞} -factors, J. Functional Analysis 5 (1970), 236-246.
- An uncountable family of non-hyperfinite type III-factors, Functional analysis (edited by C. O. Wilde, Academic Press, New York, 1970).
- 13. J. Williams, Non-isomorphic tensor products of von Neumann algebras (to appear).

Queen's University, Kingston, Ontario

102