A GENERAL TYCHONOFF THEOREM FOR MULTIFUNCTIONS

BY GEOFFREY FOX AND PEDRO MORALES

1. Introduction. Let $\{X_a\}_{a \in \mathcal{A}}$ be a non-empty family of compact spaces and let F be a subset of the *m*-product $P\{X_a: a \in A\}$. The Tychonoff problem is the determination of the sets F which are pointwise compact. It is known that $P\{X_a: a \in A\}$ is pointwise compact [5, p. 400]. Also the set F of all point-closed multifunctions of $P\{X_a: a \in A\}$ is pointwise compact. The proof for the point-closed case is given by Smithson under the hypothesis that the X_a be T_1 -spaces [10, p. 42]; however, the T_1 -hypothesis is superfluous, as shown in this paper. The point-closed case is important in Ascoli theory for multifunctions ([6], [9]). We may also consider the case where F is the set of all point-compact multifunctions of $P\{X_a: a \in A\}$, the important case in non-Hausdorff multifunction Ascoli theory [2]. This point-compact case motivates the general multifunction Tychonoff theorem of the paper, which contains the three above-mentioned cases.

The undefined terminology of the paper is that of Kelley [4].

2. Multifunctions. We review the established definitions for multifunctions ([1], [6], [10], [11]): Let X, Y be non-empty sets. A multifunction is a point to set correspondence, denoted $f: X \rightarrow Y$, such that, for all $x \in X$, fx is a non-empty subset of Y. For $B \subseteq Y$ it is customary to write $f^-(B) = \{x: x \in X \text{ and } fx \cap B \neq \emptyset\}$, $f^+(B) = \{x: x \in X \text{ and } fx \subseteq B\}$. If Y is a topological space, a multifunction $f: X \rightarrow Y$ is point-closed (point-compact) if fx is closed (compact) for each $x \in X$. If, further, X is a topological space, a multifunction $f: X \rightarrow Y$ is continuous if $f^-(U)$ and $f^+(U)$ are open in X whenever U is open in Y.

Henceforth, if X is a non-empty set, the symbol $\mathscr{F}(X)$ will denote a non-empty set of non-empty subsets of X. Let X be a topological space. The set $\mathscr{F}(X)$ may be topologized as follows: an open subbase for the topology τ_n on $\mathscr{F}(X)$ consists of the subsets of $\mathscr{F}(X)$ having one of the forms $\{A:A \cap U \neq \emptyset\}, \{A:A \subseteq U\}$, where U is open in X. We refer to τ_n as the *neighbourhood topology* on $\mathscr{F}(X)$, because, in the special case where $\mathscr{F}(X)$ is the set of non-empty closed subsets of X, it corresponds to the topology of the same name introduced by Frink [3, p. 576]. As was pointed out by Michael [7, p. 155], the neighbourhood topology is the same as the Vietoris or finite topology.

Received by the editors December 22, 1972 and, in revised form, April 4, 1973.

[December

Let X, Y be non-empty sets. A multifunction $f: X \to Y$ is $\mathscr{F}(Y)$ -valued if $fx \in \mathscr{F}(Y)$ for all $x \in X$. An $\mathscr{F}(Y)$ -valued multifunction $f: X \to Y$ determines the *induced* function $f^*: X \to \mathscr{F}(Y)$ defined by setting $f^*(x) = fx$, for all $x \in X$. The following lemma is known for the point-closed case [10, p. 36]:

2.1 LEMMA. Let $f: X \to Y$ be an $\mathscr{F}(Y)$ -valued multifunction on a topological space X to a topological space Y. Then f is continuous if and only if $f^*: X \to (\mathscr{F}(Y), \tau_n)$ is continuous.

Proof. This follows from the equations:

 $f^{*-1}(\{A:A \subseteq U\}) = f^+(U), \quad f^{*-1}(\{A:A \cap U \neq \phi\}) = f^-(U).$

3. Tychonoff theorem. The following lemma is the dual of Kelley's version of the Alexander theorem [4, p. 139]:

3.1 LEMMA. A topological space is compact if it possesses a closed subbase \mathscr{S} such that every subfamily of \mathscr{S} , with the finite intersection property, has a non-empty intersection.

The following lemma generalizes theorem 15(3) of Frink [3, p. 577]:

3.2 LEMMA. If X is compact and $\mathcal{F}(X)$ contains the non-empty closed subsets of X, then $\mathcal{F}(X)$ is τ_n -compact.

Proof. It is clear that the family \mathscr{S} of all subsets of $\mathscr{F}(X)$ of the form $K(F, F') = \{A: A \cap F \neq \emptyset$ and $A \subseteq F'\}$, where F, F' are closed in X, constitutes a closed subbase for τ_n . Let $\{K(F_i, F'_i)\}_{i \in I}$ be a subfamily of \mathscr{S} with the finite intersection property. Then $\{F'_i\}_{i \in I}$ has the finite intersection property, so that $F' = \bigcap_{i \in I} F'_i \neq \emptyset$, and, by the hypothesis, $F' \in \mathscr{F}(X)$. Because of 3.1, it will suffice to show that $F' \in K(F_i, F'_i)$ for all $i \in I$. Let $i \in I$ be arbitrary. Since $F' \subseteq F'_i$, it remains to show that $F' \cap F_i \neq \emptyset$. This will follow if we show that the family $\{F'_j \cap F_i\}_{j \in I}$ has the finite intersection property. If $\{F'_{j_k} \cap F_i\}_{1 \leq k \leq m}$ is a finite subfamily of $\{F'_j \cap F_i\}_{j \in I}$, there exists $A \in \mathscr{F}(X)$ such that $A \in \bigcap_{k=1}^m K(F_{j_k}, F'_{j_k}) \cap K(F_i, F'_i)$, and therefore $\bigcap_{k=1}^m (F'_{j_k} \cap F_i) \supseteq A \cap F_i \neq \emptyset$.

Let $\{X_a\}_{a \in A}$ be a non-empty family of non-empty sets. The *m*-product of the sets X_a , written $P\{X_a: a \in A\}$, is the set of all multifunctions $f: A \to \bigcup_{a \in A} X_a$ such that $fa \subseteq X_a$ for all $a \in A$. For $a \in A$, the multifunction $pr_a: P\{X_a: a \in A\} \to X_a$, defined by $pr_a(f) = fa$, is the *a*-projection ([5], [8]). Suppose a set $\mathscr{F}(X_a)$ assigned to each $a \in A$. Let $Q_{\mathscr{F}}$ be the set of all $f \in P\{X_a: a \in A\}$ such that $fa \in \mathscr{F}(X_a)$ for all $a \in A$. It is clear that each restriction $pr_a \mid Q_{\mathscr{F}}$ is $\mathscr{F}(X_a)$ -valued. Identifying $f \in Q_{\mathscr{F}}$ with its induced function $f^* \in \prod_{a \in A} \mathscr{F}(X_a)(f^*(a) = fa$ for $a \in A)$, we have $Q_{\mathscr{F}} = \prod_{a \in A} \mathscr{F}(X_a)$.

Now let the X_a be topological spaces. The family of all subsets of $Q_{\mathscr{F}}$ of the forms $(pr_a \mid Q_{\mathscr{F}})^-(U_a)$, $(pr_a \mid Q_{\mathscr{F}})^+(U_a)$, where U_a is open in X_a , $a \in A$, is an open subbase for the *pointwise topology* τ_p on $Q_{\mathscr{F}}$. Thus, τ_p is the smallest topology on $Q_{\mathscr{F}}$.

https://doi.org/10.4153/CMB-1974-091-8 Published online by Cambridge University Press

520

rendering the $pr_a \mid Q_{\mathcal{F}}$ continuous ([5], [8]). Consequently, if τ_n^a is the neighbourhood topology on $\mathscr{F}(X_a)$, it follows from 2.1 that $(Q_{\mathscr{F}}, \tau_y) = \prod_{a \in \mathscr{A}} (\mathscr{F}(X_a), \tau_n^a)$.

3.3 THEOREM. Let $\{X_a\}_{a \in A}$ be a non-empty family of compact-spaces. If, for each $a \in A$, $\mathscr{F}(X_a)$ contains the non-empty closed subsets of X_a , then $Q_{\mathscr{F}}$ is τ_p compact.

Proof. Since $(Q_{\mathcal{F}}, \tau_p) = \prod_{a \in \mathcal{A}} (\mathcal{F}(X_a), \tau_n^a)$, the conclusion follows from 3.2 and the classical Tychonoff theorem.

COROLLARY 1. ([5, p. 400]). The m-product of a non-empty family of compact spaces is τ_p -compact.

COROLLARY 2. (Generalization of [10, proposition 4.2].) Let $\{X_a\}_{a \in A}$ be a nonempty family of compact spaces. The set of all point-closed multifunctions of $P\{X_a:$ $a \in A$ is τ_p -compact.

COROLLARY 3. Let $\{X_a\}_{a \in \mathcal{A}}$ be a non-empty family of compact spaces. The set of all point-compact multifunctions of $P\{X_a: a \in A\}$ is τ_p -compact.

Proof. Let $\mathscr{F}(X_a)$ be the set of all non-empty compact subsets of $X_a(a \in A)$. Since X_a is compact, $\mathcal{F}(X_a)$ contains the non-empty closed subsets of X_a . The corollary now follows from the theorem, because $Q_{\mathcal{F}}$ is the set of all point-compact members of $P\{X_a : a \in A\}$.

References

1. C. Berge, Topological Spaces, The Macmillan Company, New York (1963).

2. G. Fox and P. Morales, A Multifunction Generalization of Gale's Ascoli Theorem, to appear in J. Austral. Math. Soc.

3. O. Frink, Topology in Lattices, Trans. Amer. Math. Soc. 51 (1942), 569-582.

4. J. Kelley, General Topology, D. Van Nostrand, New York (1965).

5. Y. F. Lin, Tychonoff's Theorem for the Space of Multifunctions, Amer. Math. Monthly 74 (1967), 399-400.

6. V. J. Mancuso, An Ascoli Theorem for Multi-Valued Functions, J. Austral. Math. Soc. 12 (1971), 466-472.

7. E. Michael, Topologies on Spaces of Subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.

8. R. E. Smithson, Topologies on Sets of Relations, J. Natur. Sci. and Math. (Lahore) 11 (1971), 43-50.

9. —, Uniform Convergence for Multifunctions, Pacific J. Math. 39 (1971), 253–260. 10. —, Multifunctions, Nieuw Arch Wick 20 (1972) 21 52

11. W. Strother, Multi-homotopy, Duke J. Math. 22 (1955), 281-285.

UNIVERSITÉ DE MONTRÉAL, MONTRÉAL, QUÉBEC

1974]