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Abstract

Let r be an integer greater than 1, and let A be a finite, nonempty set of nonzero integers. We obtain a
lower bound for the number of positive squarefree integers n, up to x, for which the products

∏
p|n(p + a)

(over primes p) are perfect rth powers for all the integers a in A. Also, in the cases where A = {−1} and
A = {+1}, we will obtain a lower bound for the number of such n with exactly r distinct prime factors.
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1. Introduction

If we pick a large integer close to x at random, the probability that it is a perfect
rth power is around x1/r/x. We might expect the shifted primes p + a to behave
more or less like random integers in terms of their multiplicative properties. Thus,
if we take a large squarefree integer n close to x, we might naively expect that
σ(n) =

∏
p|n(p + 1) ≈ n is an rth power with probability close to x1/r/x. However,

as we will see, the probability is much higher than this, indeed more than x0.7038/x, for
any given r. We will even show that the likelihood of φ(n) and σ(n) simultaneously
being (different) rth powers is more than x0.2499/x. (As usual, φ denotes Euler’s totient
function and σ denotes the sum-of-divisors function.) It would seem that rth powers
are ‘popular’ values for products of shifted primes in general.

Counting those n with exactly r prime factors, we will show that the number of such
n up to x for which φ(n) is a perfect rth power is at least of the order of x1/r/(log x)r+2,
and likewise for σ(n). Thus the number of positive integers n such that n ≤ x and
n = pq, where p and q are distinct primes, and (p − 1)(q − 1) is a square, is at least of
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the order of x1/2/(log x)4. This may be seen as an ‘approximation’ to the well-known
conjecture that there are infinitely many primes p for which p − 1 is a square. It is
easily seen that, for any given r ≥ 2, there is at most one prime p such that p + 1 is a
perfect rth power, namely 3 + 1 = 22, 7 + 1 = 23, and so on.

N The expressions F = O(G), F �G, and G� F all mean that |F| ≤ cG,
where c is a positive constant. Further, F �G means that F �G� F. Where the
constant c is not absolute but depends on one or more parameters, this dependence
may be indicated, as in, for example, F �ε G, where the implied constants depend on
ε. If f (x) and g(x) are functions and g(x) is nonzero for all sufficiently large x, we
write f (x) ∼ g(x) to mean that limx→∞ f (x)/g(x) = 1, and f (x) = o(g(x)) to mean that
limx→∞ f (x)/g(x) = 0. Other notation will be introduced as needed.

Given an integer r ≥ 2 and a finite, nonempty set A of nonzero integers, let

B(x; A, r) =

{
n ∈ S ∩ [1, x] :

∏
p|n

(p + a) ∈ Zr ∀a ∈ A
}
,

where S denotes the set of squarefree integers and Zr denotes the set of perfect rth
powers. Banks et al. [4] proved, among other results, that

|B(x; {−1}, 2)| ≥ x0.7039−o(1) and |B(x; {+1}, 2)| ≥ x0.7039−o(1),

and that
|B(x; {−1, +1}, 2)| ≥ x1/4−o(1).

The first theorem generalizes both of these results.

T 1.1. Fix an integer r ≥ 2, and a finite, nonempty set A of nonzero integers.
As x tends to infinity,

|B(x; A, r)| ≥ x1/2|A|−o(1).

Moreover, if |A| = 1, then as x tends to infinity,

|B(x; A, r)| ≥ x0.7039−o(1).

In the cases where A = {−1} or A = {+1}, B(x; A, r) is the set of positive squarefree
integers n up to x for which φ(n) or σ(n) respectively is an rth power. There is no
condition on the number of prime factors of n, but the next theorem concerns the sets

B∗(x; −1, r) = B(x; {−1}, r) ∩ {n : ω(n) = r},

B∗(x; +1, r) = B(x; {+1}, r) ∩ {n : ω(n) = r},

where ω(n) is the number of distinct prime factors of n.

T 1.2. Fix an integer r ≥ 2. For all sufficiently large x,

|B∗(x; −1, r)| �
rx1/r

(log x)r+2
and |B∗(x; +1, r)| �

rx1/r

(log x)r+2
. (1.1)

The implied constants are absolute.
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The proof of Theorem 1.1, in Section 3, is an extension of the proof by Banks et al.
[4] of the aforementioned special cases of Theorem 1.1. It employs some of the
ideas of Erdős [9, 10] upon which Alford et al. [1] based their proof that there are
infinitely many Carmichael numbers. (A Carmichael number is a composite number
n for which an ≡ a mod n for all integers a.) Theorem 1.2 can be proved along the
same lines. Indeed, in [5] it is shown that for all sufficiently large x, the lower
bound |B∗(x; −1, r)| ≥ 4x1/r/(9e(log x)2r) holds for 2 ≤ r ≤ (log x/(12 log log x))1/2.
However, our proof of Theorem 1.2, in Section 4, introduces a new method, which,
as we will explain, is an application of the ideas of Goldston et al. [11].

2. Preliminaries

Theorem 1.1 is a consequence of the first four results of this section, and we use the
fifth in the proof of Theorem 1.2.

An integer n is called y-smooth if p ≤ y for every prime p dividing n. Given a
polynomial F(X) ∈ Z[X] and numbers x ≥ y ≥ 2, let

πF(x, y) = |{p ≤ x : F(p) is y-smooth}|.

In the case where F = X − 1, Erdős [9] proved that there exists a number η ∈ (0, 1)
such that πF(x, xη)�η π(x) (where π(x) is the number of primes up to x), for all large
x depending on the choice of η. Several authors have improved upon this, the next two
results being the best so far obtained.

T 2.1. Fix a nonzero integer a and let F(X) = X + a. There exists an absolute
constant c such that

πF(x, y) >
x

(log x)c

for all sufficiently large x, provided that y ≥ x0.2961.

P. See [2, Theorem 1]. �

T 2.2. Let F ∈ Z[X]. Let g be the largest of the degrees of the irreducible
factors of F in Z[X], and let k be the number of distinct irreducible factors of F in
Z[X] of degree g. Suppose that F(0) , 0 if g = k = 1, and let ε be any positive real
number. Then

πF(x, y) �
x

log x

for all sufficiently large x, provided that y ≥ xg+ε−1/2k.

P. See [6, Theorem 1.2]. �

For a finite additive abelian group G, denote by n(G) the length of the longest
sequence of (not necessarily distinct) elements of G, no nonempty subsequence of
which sums to 0, the additive identity of G. For instance, if G = (Z/2Z)m, then
n(G) ≤ m, for any sequence of m + 1 elements of G contains a nonempty subsequence
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whose elements sum to (0, . . . , 0) mod 2, as can be seen by considering that such
a sequence contains 2m+1 − 1 > 2m = |G| nonempty subsequences. For any group G
of order m, then any sequence of m elements contains a nonempty subsequence
whose sum is 0, hence n(G) ≤ m − 1. The next theorem, due to van Emde Boas and
Kruyswijk [8], gives a nontrivial upper bound for n(G).

T 2.3. If G is a finite abelian group and m is the maximal order of an element
in G, then n(G) < m(1 + log(|G|/m)).

P. See [8]. A proof is also given in [1, Theorem 1.1]. �

The following proposition shows that under certain conditions there are many
sequences in G whose elements sum to 0.

P 2.4. Let G be a finite abelian group and let r and k be integers such that
r > k > n = n(G). Then any subsequence of r elements of G contains at least

(
r
k

) / (
r
n

)
distinct subsequences of length at most k and at least k − n, whose sum is the identity.

P. See [1, Proposition 1.2]. �

We will use the well-known Siegel–Walfisz theorem in the proof of Theorem 1.2.

T 2.5 (Siegel–Walfisz). For any positive number B, there is a constant CB that
depends only on B, such that∑

p≤N
p≡a mod k

log p =
N
φ(k)

+ O(N exp(−CB(log N)1/2))

whenever k ≤ (log N)B and a is coprime with k.

P. See [7, Ch. 22]. �

3. Proof of Theorem 1.1

The following proof hinges on Theorem 2.3 and Proposition 2.4, which are key
ingredients in the celebrated proof of Alford et al. [1] that there are infinitely many
Carmichael numbers. In fact it is shown in [1, Theorem 1] that C(x), the number of
Carmichael numbers up to x, satisfies C(x) ≥ xβ−ε for any positive ε and all sufficiently
large x (depending on the choice of ε), where

β =
5

12

(
1 −

1

2
√

e

)
= 0.290 36 . . . .

Using a variant of the construction in [1], Harman [12] proved that β = 0.332 240 8
is admissible, and, by combining the ideas of [1, 4, 12], Banks [3] established the
following result.
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T 3.1 [3, Theorem 1]. For every fixed C < 1, there is a number x0(C) such that
for all x ≥ x0(C) the inequality

|{n ≤ x : n is Carmichael and φ(n) is an rth power}| ≥ xβ−ε

holds, where β = 0.332 240 8 and ε is arbitrarily small but positive, for all positive
integers r ≤ exp((log log x)C).

(Harman [13] subsequently proved that β = 0.7039 × 0.4736 > 1/3 is admissible
here.) The method of the proof may yield further interesting results.

Theorems 2.1 and 2.2 are also crucial, and it will be manifest that extending the
admissible range for y in those theorems will lead to better estimates for |B(x; A, r)|.
Explicitly, if F(X) =

∏
a∈A(X + a) and

πF(x, xη) �F,η
x

log x
,

then the following proof yields |B(x; A, r)| ≥ x1−η−o(1).

P  T 1.1. Fix an integer r ≥ 2 and a set A = {a1, . . . , as} of nonzero
integers. Let x be a large number, and let

y =
log x

log log x
. (3.1)

Let t = π(y), and let G = (Z/rZ)st, so that by Theorem 2.3,

n(G) < r(1 + log|G|/r) = r(1 + (st − 1) log r). (3.2)

Fix any number ε ∈ (0, 1/3s), and let

u =


0.2961−1 if s = 1,(
1 + ε −

1
2s

)−1

if s ≥ 2.

Let
F(X) = (X + a1)(X + a2) · · · (X + as),

and let

S F(yu, y) = {p ≤ yu : F(p) is y-smooth}

= {p ≤ yu : p + a1, . . . , p + as are y-smooth}.

We may suppose that x, and hence y, is large enough so that, by Theorems 2.1 and 2.2,

|S F(yu, y)| = πF(yu, y)�
yu

(log yu)c
(3.3)
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for some constant c. (We may suppose that c = 1 if s ≥ 2.) Finally, let

k =

[ log x
log yu

]
, (3.4)

where [α] denotes the integer part of a real number α.
By (3.1), (3.3) and (3.4),

πF(yu, y)
k

�
(log x)u−1

(log log x)u−1+c
,

and by (3.1), (3.2) and (3.4),

k
n(G)

�r,s
log x/log yu

t
� log log x, (3.5)

because t = π(y) ∼ y/log y as y tends to infinity, by the prime number theorem. Hence,
since u > 1, we may assume x is large enough that

n(G) < k < πF(yu, y). (3.6)

For primes p ∈ S F(yu, y) and integers a ∈ A, we may write

p + a = 2β
(a)
1 3β

(a)
2 · · · pβ

(a)
t

t ,

where β(a)
i are nonnegative integers when 1 ≤ i ≤ t. We define

vp = (β(a1)
1 , . . . , β(a1)

t , β(a2)
1 , . . . , β(a2)

t , . . . , β(as)
1 , . . . , β(as)

t )

as the ‘exponent vector’ for p. For a subset R of S F(yu, y),
∏

p∈R(p + a) is an rth power
for every a ∈ A if and only if ∑

p∈R

vp ≡ 0 mod r,

where 0 mod r is the zero element of G. If, moreover, R is of size at most k, then by
(3.4), ∏

p∈R

p ≤ yuk ≤ x.

Thus
|B(x; A, r)| ≥

∣∣∣∣∣{R ⊆ S F(yu, y) : |R| ≤ k and
∑
p∈R

vp ≡ 0 mod r
}∣∣∣∣∣, (3.7)

as distinct subsets R ⊆ S F(yu, y) give rise to distinct integers n, by the uniqueness of
factorization.

Because of (3.6), we may deduce from Proposition 2.4 that the right-hand side of
(3.7) is at least(

πF(yu, y)
k

)/(
πF(yu, y)

n(G)

)
≥

(
πF(yu, y)

k

)k

πF(yu, y)−n(G) = x f (x),
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where

f (x) = (k − n(G))
log πF(yu, y)

log x
−

k log k
log x

.

Letting x tend to infinity and using (3.1), (3.3)–(3.5), we can now see that f (x) =

1 − 1/u − o(1). Therefore, as x tends to infinity,

|B(x; A, r)| ≥ x1−1/u−o(1),

and Theorem 1.1 follows by our choice of u, and letting ε tend to 0 if s ≥ 2. �

4. Proof of Theorem 1.2

We use a different approach to prove Theorem 1.2. The proof is ‘inspired’ by
the breakthrough results of Goldston et al. [11] on short intervals containing primes.
Basically, their proof begins with the observation that if W(n) is a nonnegative weight
and ∑

N<n≤2N

( ∑
1≤h≤H

ϑ(n + h) − log(2N + H)
)
W(n) (4.1)

is positive, then for some n ∈ (N, 2N], the interval (n, n + H] contains at least two
primes. Here and later,

ϑ(n) =

log n if n is prime,

0 otherwise.

Goldston et al. were able to obtain a nonnegative weight W(n) for which the sum (4.1),
with H = ε log N, is positive for all sufficiently large N. In our problem, we will be led
to consider ∑

1≤n≤N

( ∑
1≤a≤H

ϑ(arn + 1) − (r − 1) log(HrN + 1)
)

(see (4.3)). A lower bound for this expression corresponds to a lower bound for
the number of positive integers n ≤ N for which {arn + 1 : a ≤ H} contains at least r
primes. As we do not require H to be ‘short’ compared to N, we may take H = r log N;
then the weight W(n) = 1 works, and the problem is much easier.

P  T 1.2. Throughout the proof, r is a fixed integer greater than 1, and
n, a, a1, a2, . . . are positive integers. Observe that if, for some n, the numbers `i, given
by

`i = ar
i n + 1,

are distinct primes (where i = 1, . . . , r), then

φ(`1 · · · `r) = (a1 · · · arn)r.

If the primes `i are of the form ar
i n − 1 then σ(`1 · · · `r) = (a1 · · · arn)r. We will prove

that (1.1) holds for |B(x; −1, r)|, provided that x is sufficiently large, and the same
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proof applies to |B(x; +1, r)| if we consider primes of the form ar
i n − 1 rather than

ar
i n + 1.

Let N be a parameter tending monotonically to infinity and set H = r log N. Let
A(N) be the set of positive integers n ≤ N for which

Cn := {arn + 1 : a ≤ H} ∩ P

(where P is the set of all primes) contains at least r primes. We will show that

|A(N)| �
N

log N
, (4.2)

but first we will describe how this implies a lower bound for |B(x; −1, r)|.
Every n ∈ A(N) gives rise, via Cn, to some `1 · · · `r ∈ B((HrN + 1)r; −1, r), though

different n may give rise to the same r-tuple of primes. On the other hand, given
n ∈ A(N) and a prime p = arn + 1 ∈ Cn, each m ∈ A(N) for which p ∈ Cm corresponds
to a solution to arn = brm, b ≤ H. Therefore there can be at most H different integers
n ∈ A(N) giving rise to the same element of B((HrN + 1)r; −1, r). Consequently,

|B((HrN + 1)r; −1, r)| ≥
|A(N)|

H
�

N
r(log N)2

by (4.2), and (1.1) follows.
We will now establish (4.2). We will show that for all large N,

S (N) =
∑

1≤n≤N

( ∑
1≤a≤H

ϑ(arn + 1) − (r − 1) log(HrN + 1)
)
� rN log N. (4.3)

ConsequentlyA(N) is nonempty for large N. Indeed, if (4.3) holds then

rN log N � S (N) ≤
∑

n∈A(N)

( ∑
1≤a≤H

ϑ(arn + 1) − (r − 1) log(HrN + 1)
)

≤ |A(N)|H log(HrN + 1),

and (4.2) follows because log(HrN + 1) ∼ log N.
For the evaluation of S (N), first note that∑

1≤n≤N

∑
1≤a≤H

ϑ(arn + 1) =
∑

1≤a≤H

∑
p≤ar N+1

p≡1 mod ar

log p.

Since ar �r (log N)r for a ≤ H, we may apply Theorem 2.5 to the last sum. We have∑
p≤ar N+1

p≡1 mod ar

log p =
arN
φ(ar)

+ O
( arN
φ(ar)(log N)2

)
∼

a
φ(a)

N.
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Therefore, from the well-known estimate∑
1≤a≤H

a
φ(a)

∼ cH where c =
∏

p

(
1 +

1
p(p − 1)

)
= 1.943 596 . . . ,

we deduce that ∑
1≤n≤N

∑
1≤a≤H

ϑ(arn + 1) ∼ N
∑

1≤a≤H

a
φ(a)

∼ cNH.

Also, ∑
1≤n≤N

(r − 1) log(HrN + 1) ∼ N(r − 1) log N,

so combining all of this yields

S (N) ∼ N(cH − (r − 1) log N)� rN log N,

and (4.3) follows.
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