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A RECURRENCE FORMULA FOR ¢-BERNOULLI
NUMBERS ATTACHED TO FORMAL GROUP

JUNYA SATOH

Abstract. Kaneko [2] proved a new recurrence formula for the Bernoulli num-
bers and gave two proofs. One of them was due to Don Zagier. We shall apply
Zagier’s idea to the g-Bernoulli numbers attached to formal group.

1. Generalization of Kaneko’s recurrence formula

Let B = B(X) be the generating function of the Bernoulli numbers,
i.e.,

X
eX —1’

then it is anti-invariant under a map: B — BeX, i.e.,

B =

B(X)eX = B(—X).

Zagier gave another proof of Kaneko’s recurrence formula for the Bernoulli
numbers by using this property [2]. On the other hand because of B(—X) =
B(X) + X, we can see that B is transformed to the sum of a polynomial
and itself under the above map. We use the second property in order to gen-
eralize Kaneko’s recurrence formula and prove a formula for the ¢g-Bernoulli
numbers attached to formal group.

First we suppose a power series B in X which satisfies the following:

ASSUMPTION 1.
BeX =B+ C,

where C' is a polynomial.

If C = X, then B is equal to B, and if C = X2, then B is essentially
equal to the generating function of B,, which was defined in [2], i.e.,

_ X" X2\
> b= (1)
n! et —1

n>0
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The starting point of our argument is the following trivial lemma:
LEMMA 1.  For any power series A and mon-negative integer n, we

T

=0

have

where A means the n-th derivative of A.
Proof. Because of A = (AeX)e X, we can get what we want. 0

Set A = B and compare the coefficient of % for any non-negative
integer m, then we have a generalization of Kaneko’s recurrence formula as
follows:

PROPOSITION 1. If B satisfies Assumption 1, then we have
m " /n ;
S (2= 5 () s
1= 1=

where B =) by, X—, and C =Y ¢, %7 n,.
n>0 n>0

If m > deg C, then we have

COROLLARY 1.

> (7 )t

i=0 =0

n

("7) (—1)" by

i
Furthermore if m = n, then we have

COROLLARY 2.

n

5 (Moo,

1=0
iZn mod 2

If C = X, then there is no new information about the Bernoulli num-
bers. But if C = X2, then this is equivalent to Kaneko’s recurrence formula.
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2. ¢-recurrence formula

In this section we shall extend results in the previous section for the
g-Bernoulli numbers attached to formal group. Let ¢ be an indeterminate
and let o be the formal power series ring in ¢ — 1 over some QQ-algebra.
Furthermore let §(X,Y’) be a 1-dimensional commutative formal group de-
fined over o and let f(X) be an isomorphism from the additive formal group
X +Y to F(X,Y). We note that there exists a unique isomorphism fz(X)
from X +Y to §(X,Y") defined over o such that f5(0) = 1. And f(X) is equal
to fz(cX) for some invertible element ¢ € 0*. Conversely for any ¢ € 0*,
fz(cX) is an isomorphism from X + Y to F(X,Y’). Throughout this paper
we assume that

ASSUMPTION 2.
ordg—1 f(gn)(O) >n—1 forall n>1.

We note that by this assumption §, (4, B) (see Definition 1 below) and
f(a) are convergent in o for any A, B € o[[X]] and a € o as formal power
series (see [6, Remark 3]).

DEFINITION 1. For each non-negative integer n, we denote the expan-
sion of §(X,Y)" by

Y=Y (") Xy,

ijz0 1108
and we set
n
“ L)/3
4,20
for any power series A = 3 a,ir and B = 3 b,o in o[[X]]. Then we
n>0 n>0

define the *z-product by
XTZ

nl’

AxzB=> §n(A B)

n>0

We can prove (o[[X]],+,*z) is an o-algebra (see [6, Proposition 1]).
Next we extend the following map:

X" — " Xz x5 X
—_—————

n times
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o-linearly. Hence we can get a natural homomorphism from (o[[X]],+,)
to (o[[X]],+,*5). We call this map g-operator and denote the image of
A € o[[X]] under the g-operator by Az .. We define a g-analogue of power
series A attached to § and ¢ by Az .. The following proposition is essential
for our theory of g-analogue (see [6, Theorem 1 and Proposition 2]).

ProrosITION 2. For any a,b € o, we have

(i) (e")ge= €Y,

(ii) ef@)X xg SFOX — pfa+b)X

We define the ¢-Bernoulli numbers ,(§,c) attached to § and ¢ as
follows:

DEFINITION 2. For each non-negative integer n, we define the n-th ¢-
Bernoulli number 3,,(F, ¢) attached to §(X,Y) € o[[X,Y]] and ¢ € 0* by

. xXn . _ X
the coefficient of —in Bz .= P o .

X1

We note that if § = X +Y +(¢—1)XY and ¢ = 1;53, then f(X) = £

and 3, (3, ¢) satisfies the following recurrence formula:

log
-1

s

7 for n=1,
BO(S:C) :17 (qﬁ(%,c)—i—l)"—ﬂn(&c) =
0 for n>1,

where we use the usual convention about replacing 3(g,c)" by 3:(3,c) for
each non-negative integer .

Proof. Apply the g-operator to BeX —B = X, then we have Bg c *3
eX — Bz, = cX and Fn(Bz,eX) = (¢8(F,¢c) + 1)". Hence the above
recurrence formula holds. []

Now we may get a g-analogue of Proposition 1 by applying the g¢-
operator to Lemma 1, but it is unknown the commutativity of the g-operator
and the derivative on o[[X]]. So we need to take another approach to get a
g-analogue of Lemma 1.
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LEMMA 2. For any power series A, B and non-negative integer n, we
have

1 A sz B)™ = N A0 . BU).
(1) (A+5 B) i;o(w)% 5

Proof. For any non-negative integer m, the coefficient of % in the left
hand side of (1) is equal to

m-4+n
gm—l—n(A;B) = E ( .o ) aibj .
“ L) /3
1,520
On the other hand that in the right hand of (1) is equal to

2 (:j)sg(A(i)’B(j)) =2 (znj)@ 2 (l?z)g“”kbm.

i,j>0 i.j>0 k,1>0

)

Hence it is sufficient to show that

(mz,—;n)g - Z (IZLZ)3<1 — l:j — l)g

0<k<i
0<I<j

for all i > 0 and j > 0. Because of F(X,Y)"t" = F(X,Y)"F(X,Y)", we
can get what we want. 0

Apply this lemma to A g fWX and /=YX then we have

LEMMA 3.

AM) g FDX = Z ") (1) (A #g f DX
720 (Za] >3

This is a g-analogue of Lemma 1. If B satisfies Assumption 1, by ap-
plying the g-operator, we have

B&C *z ef(l)X = B&c + C&C.

If C is a polynomial, then C5 . is also a polynomial and deg C' = deg C5 .
(see [6, Lemma 2]). Hence we have the following:
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PropoOsITION 3. If B satisfies Assumption 1, then we have
m ig .. — " BN , ,
Z (17]>gf(1) 571-1—1 - Z (17]>gf( 1) (ﬁm—f—z +7m+z)
1,§20 1,j=>
for any non-negative integer m and n, where Bz .= > ﬁn% and Cz .=
n>0

XTL
Z In ot -
n>0

If m > deg C, then we have

COROLLARY 3.

> (Z;)gﬁlyﬁ%+i: > (;Z)SK_lyﬁ%”*

4,720 4,720
Furthermore if m = n, then we have

COROLLARY 4.

Z (i?j)g{f(l)j —f(=1)}Bp4i =0 .

1,520

Hence if C' = X, then we get a recurrence formula for 3, = 5,(F,¢).
On the other hand if C' = X2, then 3, is the coefficient of XTT in

X2
(CX - 1)@ =X 3 %%’C - CXd@(%S,c)7
,C

1 i
where dz = ;) (z 1)% % (see [6, Lemma 1]). Furthermore if F(X,Y) =
> )

X+Y+4+(¢q—1)XY and ¢ = 1q°§‘1’ then %dg(%g,c) is equal to the generating

1
function of Carlitz’s ¢-Bernoulli numbers (see the next section). This means

that we get a Kaneko’s type of recurrence formula for Carlitz’s ¢-Bernoulli
numbers.

3. X+Y+(¢g—1)XY

FFX,Y)=X+Y+(¢—1)XY andc= I;%f, then we can state results
in the previous section as follows:
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COROLLARY 5. If B satisfies Assumption 1, then we have

@) 3 ("7)a e = 2 (1) (D" B + ),
@) & (7 ) e B = 3 (7)1 B i m > dexC,
(iid) % (") = (1) i = 0 if m=n>degC,

n!

where By .= ) ﬁn% and Cg .= Y . Sy
n>0 n>0

Proof. If §(X,Y) = X +Y + (¢ — 1)XY, then, by the definition of

(m> , we have
4,]/3

I € R (L A Tt

Hence for any a € o0, we have

Z ( . )gf(a)jﬂnJri

i,5>0 0"J
- Z,jz>0 (T) (z + jZ— m) (¢ - 1)i+j7mf(a)j5n+i
=3 ()i 3 +ji— g = D@y
=0 j=m—i
. m n—i ai
-2 (") 5@ Bnsia
Hence we can get what we want. 0

Let 3, (3, c) be the coefficient of 21 in 1dz(B3,), i.e., that of ¢ X iy

n!
(e))f—:)& , then 3, (3, c) satisfies the following Carlitz’s recurrence formula
.

([1):

_ = > fi =
fF0 =1 al@iF0 1 RGO ={ o o n )
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Hence (3,(3,c) is equal to the n-th Carlitz’s ¢-Bernoulli number. To prove
this we need the following:

LemMA 4. If§(X,Y)=X+Y + (¢ —1)XY, then ds is a homomor-
phism on (o[[X]], +, *5).

Proof. In this case we can write
d5(A) = A+ (g— 1) A’
for any power series A € o[[X]]. Hence by Lemma 2 we have
=AxzB+(q—1){A 3 B+ Ax3 B + (¢—1)A" x5 B’}
=(A+ (- 1DA) +5(B+ (¢ - 1B
= d3(A) x5 d3(B)

for any A and B in o[[X]]. Hence dg is a homomorphism on (o[[X]], +, *5).
O

Proof (Carlitz’s recurrence formula). Apply dg to Bz . *zeX — Bg .=
cX, then we have

d3(Bz.c) *3 e~ — dz(Bgz.) = cX —logq .
Hence (3, (3, c) satisfies Carlitz’s recurrence formula. [
Finally we give another proof of Corollary 5.

LEMMA 5. If§(X,Y)=X+Y + (¢ — 1)XY, then the xz-product is
written by
Axg X" = d2(A)X"

for any non-negative integer n.

Proof. 1Tt is sufficient to prove for % kg % (i >0 and j > 0). By the
definition of *z and (2), we have

Xt X7 m Xm
=2 ()

m>0

i+J .

B (M) o
N /Ni+g—m m!
m=j
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On the other hand

XN\ XD N o dm (XN X
4 (5) =2 (- (5)

m=0
PN i —m  xiHiem
O L T

.

m=0

Hence we have what we want. []

Remark 1. UF=X+4+Y 4+ (¢—1)XY and c = 1;;5{1, then, by Lemma

5, we can get
A(X) x5 efl@) = A(q“X)e’((“)

for any power series A € o[[X]] and a € o. By this we can get Corollary 5
from Lemma 1 not using Lemma 2.

Remark 2. Lemma 4 and Lemma 5 hold only for §(X,Y)=X+Y +
(g —1)XY (see [6, Lemma 1 and Proposition 4]).
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