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Abstract
Currently, most of the robot path planning methods for spray painting are based on slicing the Computer-
Aided Design model of the target surface to generate a series of path points. They usually neglect the geometric
boundary of the model and the smoothness of the generated path, leading to a non-uniform coating thickness. To
ameliorate it, an improved “boundary fitting approach” is proposed. In this method, the upper and lower boundaries
of the target surface are firstly detected based on the topology of the stereolithography model. For each pass, several
sample points are extracted with a uniform length interval from the intersection points generated by the basic slicing
method. The path pass is then described by a fourth-order polynomial curve. It fits the boundary points and sample
points for the z-t and y-t relationships, respectively. Based on the spray gun’s motion direction and spray direction,
the orientation of each path point is also defined. The parameters of the path pass are optimized by particle swarm
optimization to get the optimal uniformity of the resulting coating thickness. Both of the global uniformity and the
local uniformity between two adjacent passes are considered. The strength of the proposed approach is validated
by comparing the simulation with the basic and other typical algorithms. The results denote that boundary fitting
approach could improve the uniformity of coating thickness. It brings about a better performance for the painted
workpiece.

1. Introduction
Spray painting is one of the most crucial processes in manufacturing. It plays a pivotal role in boosting
the workpiece’s performance, especially the durability in a hostile environment [1]. Currently, human’s
role in spray painting processes comes to be taken over by industrial robots, which substantially boost
the consistency of path generation and then bring about a much stabler painting performance, especially
in large batch production [2]. Hence, it is significant to develop a reliable algorithm to boost the quality
and quantity of robotic spray painting.

To evaluate the quality of spray painting, the uniformity of coating thickness could be the com-
monest indicator [3]. The evener the coating thickness, the better the mechanic and thermodynamic
properties of the painted workpiece [4]. To acquire a uniform thickness distribution, generating an appro-
priate painting path is rather critical, which directly impacts the painting result [5]. Typically, there are
two categories of methods to generate a robot motion path: online programing and offline programing.
Nowadays, the latter is preferred owing to its efficiency of production and feasibility of further opti-
mization. It could automatically generate the optimal path instead of empirically teaching the robot by
experienced workers [6]. Therefore, painting path generation based on offline programing has attracted
increasing interest from researchers.

Before achieving a uniform thickness distribution, the first issue is enabling the paint to cover the
target surface. Hence, the surface’s geometry information should be imported to prepare for path plan-
ning. Currently, there are three kinds of models to store the workpiece’s geometry information: the
C© The Author(s), 2023. Published by Cambridge University Press.
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point cloud model, the parametric model, and the tessellation model. In terms of the point cloud model,
Yu et al. [7] proposed an edge preservation algorithm and a slicing algorithm for spray painting path
planning. Their approach could preserve the model’s edge characteristic while processing. Considering
the complexity of different point cloud areas, Kong et al. [5] presented an approach where different algo-
rithms were used for different regions. An automatic region segmentation algorithm was also proposed
in their study. Generally, the point cloud model enjoys high precision when expressing the shape of a
real-time object. However, to generate a point cloud model, a professional 3D scanner is needed, which
substantially increases the cost. Besides, the data stored in the point cloud model are quite redundant,
which hamper further processing.

Getting rid of the high device requirement, the path generation approach based on the parametric or
tessellation model only needs the workpiece’s Computer-Aided Design (CAD) file. These two kinds of
models just differ in the data format that expresses the geometry information. The former uses a precise
mathematical description while the latter approximates a complex surface into multiple triangular facets.
Utilizing the parametric model, Atkar et al. [8] developed an algorithm to generate a group of path
passes. It is based on offsetting a selected geodesic called “start curve” extracted from the model. In
their approach, a complicated workpiece could be segmented into geometrically simple parts. However,
the workpiece had to own an extruded surface to apply their method.

Currently, the tessellated model, especially the stereolithography (STL) model, is more common
owing to its explicitness of geometric information and integrity for data processing compared with the
parametric one [9]. This model is also adopted in our work. Based on slicing the STL model along
a selected direction of its bounding box, Chen and Xi [10] developed an algorithm to generate path
points. In their method, a whole workpiece was divided into several simple patches according to the
threshold deviation angle between two triangles. Hence, paths were generated independently within
each patch for thickness uniformity. Afterwards, an integration algorithm was designed to combine paths
between different patches. The steepest-descent algorithm was used to optimize the coating thickness.
Their study took the target surface’s local geometry into account. However, the integration would be
considerably complex when the workpiece was highly curved. Instead of sectioning a workpiece into
multiple patches, Guan and Chen [11] presented a path generation approach based on directly slicing the
target surface. To ensure a satisfactory coating thickness for the complex surface, they put emphasis on
optimizing the shape of the transitional path between two adjacent path points generated by offsetting
the corresponding intersection points. The golden section method was used to optimize the spacing
distance to find the optimal uniformity. However, in this method, the spray painting parameters to be
optimized were too limited to obtain a uniform thickness distribution. Andulkar et al. [12] designed a
novel method instead of utilizing the slicing algorithm. In their study, the target surface was segmented
into a series of triangle sections according to paint’s coverage area. Based on the geometry information
of the triangles, the path point was generated by offsetting the section’s average point along the average
normal. Pattern search optimization was adopted to determine the overlap distance and velocity to the
optimal uniformity. They smoothed the path points using the two-sided moving average. Considering the
geometric boundary of the target surface, Zeng et al. [13] developed a path generation algorithm based
on model slicing. Particle swarm optimization (PSO) was used for optimization. Their method generated
a path that fits the model’s boundary. However, the uniformity of coating thickness deteriorated when
the boundary factor was considered. The main reason for this consequence was that they treated the
boundary as a constraint in the uniformity optimization. The improved spray efficiency and reduced
waste of paint were seen as the contribution of boundary fitting.

From these previous studies, it could be seen that most of the path planning methods are based on
slicing the CAD model to obtain a series of path points. However, up to date, there has been limited study
that considers the geometric boundary of the model, which could exert a strong influence on the resulting
path points generated by the slicing algorithm. Lacking further improvement to address this effect, an
unsatisfactory thickness distribution could emerge, especially when the target surface is free-formed and
complex. Besides, in terms of the optimization, many methods are confined to limited spray painting
parameters. It constrains the result to a deficient value. In addition, little attention has been paid to the
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smoothness of the generated path, which could also impact the spray painting result. To deal with these
problems, this paper proposes an improved path planning algorithm called “boundary fitting method.”
By boundary point detection, sample point generation, and curve fitting, it avoids the “boundary effect”
and generates a smooth painting path. Meanwhile, an appropriate optimization method is designed to
find a better result. Compared with the basic method and other typical methods, the uniformity of coating
thickness is enhanced.

This paper has been organized in the following structure. Section 2 explains the basic slicing method
and common models to simulate the coating thickness. The improved boundary fitting approach is
discussed in Section 3. The optimization for uniform coating thickness is described in Section 4.
Section 5 discusses the simulation. Section 6 reaches a conclusion.

2. Background
2.1. Basic slicing algorithm
To compactly cover the target surface, path points should be generated by processing corresponding
points on the target surface. This is commonly implemented by slicing the model with a set of planes to
extract the intersection points. It imitates the slicing process in additive manufacturing but with a much
longer spacing between slice planes. In spray painting, most of the path is in a raster pattern, which
ensures a better uniformity of coating thickness [14, 15]. Some key parameters of the raster pattern path
could be presented by these slice planes. For example, spacing distance between two adjacent passes is
expressed by that between two adjacent planes.

By importing the STL model of the target surface and transforming it to fit the XZ plane of the world
coordinate system, a group of slice planes could be defined by their Z coordinates. These planes are
perpendicular to the XZ plane and parallel to each other. Based on the plane, the intersection points on
STL facets’ edges could be calculated by:

xinter = x1 + (zsli − z1)(x2 − x1)

z2 − z1

(1a)

yinter = y1 + (zsli − z1)(y2 − y1)

z2 − z1

(1b)

zinter = zsli (1c)

where (xinter, yinter, zinter) is the coordinate of the resulting intersection point, (x1, y1, z1) and (x2, y2, z2) are
coordinates of the edge’s two vertices, and zsli is the Z coordinate of the current slice plane.

In the STL model, a vertex is shared with several adjacent facets. For each vertex, let us calculate the
average normal vector among its adjacent facets. This vector is defined as the normal vector of the vertex.
Moreover, the normal vector of the intersection point could be constructed by the average normal vector
between the sliced edge’s two vertices. By offsetting each intersection point along the normal vector
with a certain spray distance, a path pass for spray painting could be generated.

This method works when the slice plane is within the upper and lower boundaries. However, when
the plane slices some special places around the boundary, for instance, the highest or lowest vertex of
the model, the basic method could only generate limited path points compared with the middle passes.
This phenomenon is called “boundary effect.” Besides, the basic method lacks further processing to
boost path’s smoothness, making path points discrete and non-uniform. The above problems would
cause an unsatisfactory thickness distribution and weaker robot control [16]. To ameliorate these two
situations, the boundary fitting demand and path smoothness demand should be met in the proposed
method. Figure 1 illustrates the outline of the basic slicing algorithm.
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Figure 1. Outline of basic slicing algorithm.

2.2. Thickness modeling
Based on the generated pass, the following work is calculating the resulting coating thickness. This is
a preliminary step for further thickness uniformity optimization. To simulate it, two parts should be
considered here: the instant model and the dynamic model.

The instant model aims to compute the coating thickness formed by a spray gun targeted at an arbitrary
surface in an instant. To model such a scenario, the first step is finding the standard thickness distribution.
It is formed by a spray gun targeted at a standard plane with a perpendicular spray direction and a standard
spray distance. To implement it, an experimental test should be conducted beforehand to collect related
thickness data. Afterwards, a distribution function is adopted to fit the data. In this study, the ellipse
dual-β distribution model is selected owing to its flexibility in describing the shape of the thickness
distribution [7, 17]. It could be given by:

Tstd(p) = Tstd
(
xp, yp

)

= Tmax

(
1 − x2

p

a2

)β1−1
⎡
⎣1 − y2

p

b2
(

1 − x2
p

a2

)
⎤
⎦

β2−1

,
x2

p

a2
+ y2

p

b2
≤ 1

(2)

where Tmax is the maximum coating thickness in an instant, it is related to the paint flow rate and paint
transfer efficiency of the spray gun. a is the semi-major axis of the elliptical coverage area, and b is the
semi-minor axis. They could describe the cross-section contour of the distribution. β1 is the exponent
of the distribution on the Y -axis section and β2 is that on the X-axis section. They could delineate the
contour on the longitudinal section.

To make the model more general, the next step is projecting the distribution function from the standard
plane onto an arbitrary surface point. This course is based on differential geometry [18]:

T(p1) =
⎧⎨
⎩

Tstd(p) h2cosα
−→gp1

2cos3θ
, α ≤ 90◦

0 , α ≥ 90◦
(3)
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Figure 2. Instant model. The left figure illustrates the standard thickness distribution and the right
figure depicts the projection from the standard plane to an arbitrary surface point.

where g is the path point, p1 is the target point, −→gp1 is the vector from g to p1, P is the standard plane
mentioned above, p is the intersection point between −→gp1 and P, h is the standard spray distance between
g and P, which has been determined in the experimental test, θ is the angle between spray direction
and −→gp1, and α is the angle between the normal vector of p1 and the opposite direction of −→gp1. Hence, an
instant model could be constructed as discussed above. The instant model is illustrated in Fig. 2.

In contrast to the instant model, the dynamic model is targeted at finding the coating thickness formed
by a spray gun moving along a certain pass in a certain time interval. Dynamic model during time interval
[0, t] could be configured by integrating instant model T over time.

Tdyn =
∫ t

0

Tdt (4a)

To calculate it, a continuous path is divided into enough discrete segments where each segment is a
line segment bounded by two adjacent path points [19]. Hence, an instant time could be approximated
as a time interval as follows:

dt = |−−→gigi+1|
v

(4b)

where |−−→gigi+1| is the length of the path segment bounded by path points gi and gi+1, and v is the average
spray gun motion speed in this segment. In terms of p1, the cumulative thickness Tdyn(p1) could be
computed by summing all the products between the instant thickness Ti+1(p1) gained in the discrete path
segment gigi+1 and the corresponding time interval.

Tdyn(p1) =
n−1∑
i=1

Ti+1(p1)

∣∣−−→gigi+1

∣∣
v

(4c)

where i and n are the index and the total number of the path points, respectively. This model is depicted
in Fig. 3.

3. Path generation in boundary fitting approach
To deal with problems mentioned in Section 2.1, an improved algorithm called “boundary fitting
approach” is proposed. It smoothly generates a pass using a polynomial curve that fits the geometric
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Figure 3. Dynamic model.

Figure 4. Overview of boundary fitting approach.

boundary and sample points of the intersection points. The path generation starts from the pass near
the upper boundary. When the pass exceeds the lower boundary, the generation ends. To obtain the
optimal global uniformity of coating thickness, the local uniformity between two adjacent passes is opti-
mized based on PSO. Hence, key parameters related to coating thickness are adjusted pass by pass [12].
The resulting coating thickness is obtained by thickness modeling mentioned in Section 2.2. Figure 4
overviews the proposed approach.

3.1. Boundary point detection
To meet the demand for boundary fitting, the first step is identifying the boundary points of the target
surface, which are evident for human beings but a little tricky for computers. In the STL model, an
edge is defined as a line segment bounded by two vertices on a certain facet. According to the topology
of a meshed model, each boundary edge is exclusive to only one facet while other edges are shared
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Figure 5. Boundary point detection. (a) Boundary point extraction. (b) Segmentation.

with different facets. Based on this principle, the whole loop of boundary edges could be searched and
boundary points on these edges are extracted. A boundary point is shared with two boundary edges and
the other two boundary points on these edges are its neighboring boundary points. Figure 5(a) depicts
this course.

Generally, a boundary loop could be divided into four independent segments by four corner points.
To identify the corner points, let us connect each boundary point’s two boundary edges and compare the
angle between these two edges as shown in Fig. 5(b). The point with one of the largest four angles is a
corner point. Afterwards, to initialize the segmentation of boundary points, let us randomly choose one
corner point as the initial point on the initial segment and then randomly choose one of its neighboring
boundary points as the second point. Afterwards, by excluding the former point on the segment, the
remaining neighboring boundary point of the current point is selected as the next point. This step repeats
until another corner point is searched. The next segment begins with the new corner point and a new step
continues in the same way. This loop ends when the initial corner point is searched again. Figure 5(b)
also illustrates this course.

Thus far, the four independent boundary segments could be distinguished. Among them, the segment
with the highest average Z coordinate is defined as the upper boundary, whereas the segment with the
lowest one is defined as the lower boundary.

3.2. Sample point generation
Based on the intersection points mentioned in Section 2.1, several typical points should be selected
from them to reflect the general geometric information and facilitate further processing. The term “key
points” is used here to describe such points. They are selected at a uniform length interval between the
leftmost and the rightmost intersection point of a pass.

As shown in Fig. 6, the search starts from the leftmost intersection point, which is selected as the first
key point. During each step, the length of the line segment adds up one by one. When the accumulative
length of segments exceeds the length interval invl, the two vertices of the current segment remain to
be selected. If the current accumulative length is closer to invl, the right vertex is selected as the next
key point. Otherwise, the left vertex is selected. In the next step, the accumulative length is cleared and
the searching continues from the new key point. At the end of this loop, the rightmost intersection point
is selected as the last key point. By offsetting each key point along its normal vector with a value of
spray distance, a corresponding sample point is formed, whose spray direction is opposite to the normal
vector:
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Figure 6. Sample point generation. Key points are searched with a uniform length interval. The right
vertex of Segment 8 is selected as the key point because the accumulative length until Segment 8 just
exceeds the length interval and is closer to it than the former one.

⎡
⎢⎢⎢⎢⎢⎣

xsmp

ysmp

zsmp

1

⎤
⎥⎥⎥⎥⎥⎦ =

[
I3×3 h1 · −→nkey

0 0 0 1

]
⎡
⎢⎢⎢⎢⎢⎣

xkey

ykey

zkey

1

⎤
⎥⎥⎥⎥⎥⎦ (5a)

−→nsmp = −−→nkey (5b)

where (xkey, ykey, zkey) and −→nkey are the coordinate and normal vector of the key point, (xsmp, ysmp, zsmp) and−→nsmp are those of the sample point, I3×3 is a 3 × 3 identity matrix, and h1 is spray distance. Figure 6
depicts the generation of sample points from key points. By offsetting different key points with different
spray distances, various shapes of the pass could be generated based on the resulting sample points.

3.3. Curve fitting
Fitting boundary points and sample points extracted above, the pass could be expressed by a polynomial
curve [20]. Generally, a space curve could be defined by a parametric equation:

−→r = (x(t), y(t), z(t)) (6a)

Firstly, let x be a free parameter:

x(t) = t (6b)

Regarding the y-t relationship, a fourth-order polynomial is used to fit the sample points. It could be
approximated by:

y(t) = c0 + c1t + c2t2 + c3t3 (6c)

where c is the coefficient of the y-t polynomial.
In terms of the z-t relationship, another fourth-order polynomial should be introduced to meet the

demand for boundary fitting. Therefore, coordinates of the upper and lower boundary points are utilized
in the curve fitting. Firstly, let us assume that these two groups of points are translated with the same
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distance along the z axis to the place near the slice plane:

zupr − (z̄upr − zsli) = a0 + a1xupr + a2x2
upr + a3x3

upr + a4x4
upr (6d)

zlwr + (zsli − z̄lwr) = b0 + b1xlwr + b2x2
lwr + b3x3

lwr + b4x4
lwr (6e)

where xupr, xlwr, and zupr,zlwr are each X and Z coordinates of the upper and lower boundary points, z̄upr

and z̄lwr are the average Z coordinates of the upper and lower boundary points, zsli is the Z coordinates
of the slice plane indicating the rough Z-axis position of the pass, a is the coefficient of the translated
upper boundary polynomial, and b is the coefficient of the lower one. To offer more possibilities of the
generated path, the first or the last zsli could exceed the maximum or minimum Z coordinate of the model.
In this case, its y−t relationship is constructed by fitting corresponding upper or lower boundary points
instead of sample points.

Besides, the shape of the curve should vary gradually from pass to pass. It ensures an evener overlap
and brings about a more uniform thickness distribution. To fulfill it, a compound polynomial is con-
structed by a linear interpolation between two coefficients with the same order from the two translated
polynomials:

di = zsli − z̄lwr

z̄upr − z̄lwr
ai + z̄upr − zsli

z̄upr − z̄lwr
bi, i ∈ {0, 1, 2, 3, 4} (6f)

z(t) = d0 + d1t + d2t2 + d3t3 + d4t4 (6g)

where i is the index of the polynomial coefficient, and d is the compound coefficient. Eq. (6g) denotes the
final z-t polynomial. In the curve fitting, the fourth-order polynomial is selected to describe the path. As
shown in Eq. (6f), it could facilitate further construction by processing its five explicit and dominating
coefficients. Besides, the fourth order is sufficient to approximate various path passes. Meanwhile, it
could also avoid Runge’s phenomenon where the generated path could be highly oscillatory when the
degree comes to be higher. Figure 7 depicts the z-t and y-t polynomial curves.

Thus far, with an arbitrary t, the coordinates of path points could be obtained based on Eq. (6a).
Owing to the varying curvature of the path curve, points should be interpolated with a uniform length
interval as explained in Section 3.2, instead of directly plugging a series of uniform t into the polynomial.
It ensures a uniform distribution of the path points.

3.4. Path coordinate system definition
Up to now, a series of consecutive path points with certain positions have been generated. However,
orientation, another significant parameter to define a robot path, has not been expressed. In robotics, a
common way to describe these two parameters is attaching a coordinate system called {Path} to each
path point. In this scenario, the origin of {Path} is the position of the path point, the Y axis of {Path}
is along the spray gun’s motion direction, the Z axis of {Path} is along the spray direction, and the X
axis is orthogonal to both of the Y axis and Z axis. In this case, the motion direction is defined as the
direction of a connecting line between the current path point and the next one. Meanwhile, the spray
direction is mapped from the opposite normal vector of the closest intersection point to the path point.

In the definition of the coordinate system, the orthogonality between the motion direction and the
spray direction, the two independent axes, is required to be ensured. It could be fulfilled by rotating the
spray direction to be perpendicular to the motion direction. Let −−→p1p2 represent the vector from path point
p1 to its adjacent path point p2, −→n1 represents the original spray direction of p1,

−−→
i{path} , −−→j{path}

−−→
k{path} are the

standard bases of the X axis, Y axis, and Z axis in {Path} attached to p1, and θ is the angle between the
original spray direction and the adjusted one:

θ = arccos
(−→n1 · −−→j{path}

)
− π

2
(7a)
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Figure 7. z-t and y-t polynomial curves. x(t) = t.

hence
−−→
k{path} is given by:

−−→
k{path} = R−−−→

i{Path}
(θ) −→n1∣∣−→n1

∣∣ (7b)

where R−−−→
i{Path}

(θ ) is the desired rotation matrix that rotates −→n1 about −−→
i{path} to be orthogonal to −−→

j{path}. It
could be obtained by:

R−−−→
i{Path}

(θ ) = I3×3 + sinθ
−−→
i{Path} + (1 − cosθ)

−−→
i{Path}

2 (7c)

Therefore, {Path} could be completely defined by a 4×4 transformation matrix [21]:

T =
[−−→

i{path}
−−→
j{path}

−−→
k{path} P{path}

0 0 0 1

]
(7d)

where P{path} is the origin of {Path}. These coordinates are expressed from {W}, the world coordinate
system. Figure 8 illustrates the definition of {Path}.

4. Optimization for thickness uniformity
4.1. Influencing factors
With parameters of the generated path and the model to calculate the resulting coating thickness, an
optimization could be carried out to obtain the optimal uniformity of coating thickness. In spray painting,
a variety of parameters could impact uniformity. Among them, spray distance, spray speed, and spacing
distance are three of the most dominating factors related to path generation.

As discussed in Section 3.2, spray distance is introduced there to express the offset distance from the
key point to the sample point along the normal vector. Hence, spray distance affects the shape of the
pass, which fits the sample points. Besides, a higher spray distance would bring about a lower coating
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Figure 8. Definition of {Path}.

thickness and a wider coverage area, and vice versa. To gain a uniform coating thickness, it is workable
to adjust spray distance for each key point.

Spray speed directly affects the dynamic model of the thickness simulation as shown in Eq. (4c). The
higher the spray speed, the lower the coating thickness, and vice versa. In this study, the spray gun is
assumed to move at a constant speed along a certain pass.

Differing from the above two parameters, spacing distance impacts the uniformity indirectly. A stan-
dard thickness distribution is in a volcano shape where the thickness value is higher in the middle while
lower on the two tails. It makes the thickness uneven. To alleviate it, coating thickness distributions
resulting from two adjacent passes should overlap each other as shown in Fig. 9. It would accumulate a
higher coating thickness on the side of the coverage area, making the compositive thickness more uni-
form. In this scenario, spacing distance impacts the degree of overlap. Therefore, it also has an influence
on the thickness uniformity.

4.2. Objective function
To evaluate the uniformity of coating thickness, the coefficient of variation is selected to be the
indicator [11]:

cv = σthk

μthk
× 100% (8a)

where cv is the coefficient of variation, σthk and μthk are the standard deviation and the mean of the coating
thickness, respectively. As cv is a dimensionless number, it is feasible to evaluate the uniformity among
thickness datasets with different units and different desired values. If a specific desired thickness Tdesired

is determined, μthk is replaced by this value and σthk is revised to be the standard deviation from Tdesired.
In spray painting, the overall coating thickness is accumulated pass by pass and the global uniformity

of the target surface is a result of the local uniformity between each neighboring pass pair. To consider the
relationship between the global uniformity and the local one, the objective function here is constructed
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Figure 9. Two overlapped thickness distributions.

as a combination of them. For the first pass and the last pass, the global uniformity is selected as the
objective function. It considers the thickness of the whole surface points. In terms of the pass within
them, the corresponding objective function is the local uniformity, which only includes the surface points
between the current pass and the last neighboring one. Hence, the final objective function is given by

min f =
⎧⎨
⎩

cvglobal , the first or the last pass

cvlocal , otherwise.
(8b)

Considering the parameters mentioned in Section 4.1, the optimization problem could be defined as:

min f (H, v, d) (8c)

where H is an array stores spray distance of each sample point on the current pass, v is the spray speed
of the current pass, and d is the spacing distance between the current pass and the last pass. Figure 10
outlines the factors in the optimization.

4.3. Optimization method: PSO
Even though the problem has been defined in Eq. (8a), the objective function minf is non-continuous and
not specific. Therefore, the original optimization method requires the derivative of the objective func-
tion is not workable in this case. To deal with it, a global search algorithm needs to be adopted, which
only requires calculating the value of the objective function during running. Among global search algo-
rithms, the PSO [22, 23] is preferred in spray painting problems owing to its convergence efficiency and
feasibility for a large number of optimization variables [24]. Thus, it is selected to solve the optimization
problem here.

PSO is a bio-inspired algorithm. It heuristically imitates a flock of birds when they forage in groups.
In PSO, a particle is a position consisting of the optimization variables. In terms of the initialization of
PSO, the algorithm would randomly form a swarm of particles within the search space. The number of
particles in the swarm is defined as “size of swarm.” For each particle, the position with the minimal
value of the objective function so far is called “particle’s best-known position.” For the whole swarm,
the position with the minimal value so far among all of the particles is called “swarm’s best-known
position.”
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Figure 10. Factors in the optimization. The current pass is Pass 2. H is an array stores spray distance
of each sample point on the current pass, v is the spray speed of the current pass, and d is the spacing
distance between the current pass and the last pass.

At each step of PSO, a particle would move to a new position toward a certain direction. This
direction is constructed by the vector toward the particle’s best-known position, the vector toward the
swarm’s best-known position, and the vector from the last position to the current position. The influence
degrees of these three factors are expressed by the cognitive coefficient (between [0,4]), social coefficient
(between [0,4]), and inertia weight (between [0.1,1.1]). By this means, the position of each particles is
iteratively updated. Finally, these particles would gradually converge around where the global minimum
of the objective function is.

5. Simulation and discussion
To validate the performance of the proposed method, a simulation was conducted by comparing bound-
ary fitting approach with the basic one explained in Section 2.1 and other typical algorithms. Zeng et al.
[13]’s method and Guan and Chen [11]’s method were reproduced and applied there. Related programs
were executed in MATLAB R2021b on a PC with two Intel Core i7-1165G7 2.80 GHz processors.

To ensure the adaptability, STL models of a concave surface and a convex surface in the shape of a
turbine blade were imported as the target surfaces. They shared the same vertices while normal vectors
were opposite to each others. The number of the vertices was 1219. Parameters of the thickness model
required in Eq. (2) are given in Table I. Parameters of the spray painting process are given in Table II. In
terms of path generation, spacing distance was set between [150,200] mm. The Z coordinate difference
between the initial pass and the model’s highest vertex was within [0,100] mm. The number of key
points and path points on each pass was 6 and 100, respectively.

The results are shown in Figs. 11, 12, and Table III. In terms of the uniformity of coating thickness,
Table III presents that the coefficient of variation cv resulting from boundary fitting approach is lower
than the other methods. Meanwhile, Figs. 11 and 12 illustrate that the thickness distribution result-
ing from the proposed approach is also more uniform. Hence, the results verify that boundary fitting
approach could improve the uniformity of coating thickness for robotic spray painting. The main reason
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Table I. Parameters of the thickness calculation model.

Tmax(mm)

Concave Convex β1 β2 a(mm) b(mm) h(mm)
0.20 0.13 2 2 150 30 100

Table II. Parameters of spray painting.

Desired thickness (mm) Spray speed (mm/s) Spray distance (mm)
0.05 [100,200] [50,150]

Figure 11. Generated path and resulting thickness for concave surface. (a) Boundary fitting approach.
(b) Basic approach. (c) Zeng et al. [13]’s approach. (d) Guan and Chen [11]’s approach.

for the improvement is that boundary fitting approach enjoys richer flexibility in optimization than the
other three methods. By modulating each sample point’s spray distance, the generated pass could be
more varied. Therefore, a more satisfactory thickness distribution is likely to be found. In comparison,
the other methods could only adjust the spray distance of a whole pass. Besides, the pass generated by
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Figure 12. Generated path and resulting thickness for convex surface. (a) Boundary fitting approach.
(b) Basic approach. (c) Zeng et al. [13]’s approach. (d) Guan and Chen [11]’s approach.

boundary fitting approach could even exceed the target surface’s boundary. It also brings about more
possibilities for optimization.

In terms of the boundary fitting demand, Figs. 11 and 12 highlight that the path generated by the
proposed approach avoids the boundary effect. The pass around the boundary is complete. Nevertheless,
the basic method and Guan and Chen’s method only generate few path points around the boundary, as
shown in Figs. 11(b) and 12(b). In terms of the path smoothing demand, Figs. 11 and 12 depict that
the path points generated by the proposed approach are smooth and uniform. It facilitates the robot
control. However, the points generated by the basic method are discrete and fluctuating. Furthermore,
for both of the concave surface and the convex surface, the results show the same tendency. It validates
the adaptability of boundary fitting approach.

As discussed in Section 4.3, PSO is adopted to find the optimal uniformity of coating thickness. To
judge its optimization performance, other global search algorithms were also tested in the simulation
to draw a comparison. Simulated annealing, genetic algorithm, and pattern search were selected there.
They were executed to solve the same optimization problem in boundary fitting approach with the same
maximum number of iterations. Both concave surface and convex surface are considered. Table IV gives
the parameters of each method. The results are shown in Table V. It can be seen that PSO enjoys the
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Table III. Results of uniformity indicators.

Model Approach Average thickness (mm) cv(%)
Concave surface Boundary fitting 0.0506 6.59

The basic 0.0479 27.28
Zeng et al.’s 0.0494 10.79
Guan and Chen’s 0.0492 9.56

Convex surface Boundary fitting 0.0499 7.04
The basic 0.0471 26.06
Zeng et al.’s 0.0495 7.60
Guan and Chen’s 0.0513 9.55

Table IV. Parameters of optimization methods.

Parameter Value Parameter Value
Size of swarm 20 Initial temperature 100
Cognitive coefficient 1.49 Reannealing interval 100
Social coefficient 1.49 Temperature update coefficient 0.99
Inertia weight 1 Maximum iteration 100
Maximum iteration 100

(a) (b)

Parameter Value Parameter Value

Population size 20 Initial mesh size 1
Crossover rate 0.7 Mesh contraction factor 0.5
Mutation rate 0.01 Mesh expansion factor 2.0
Maximum iteration 100 Maximum iteration 100

(c) (d)
(a) PSO. (b) Simulated annealing. (c) Genetic algorithm. (d) Pattern search.

Table V. Results of the optimization method comparison.

Method Model Running time (s) Average thickness (mm) cv(%)
PSO Concave surface 4349.64 0.0506 6.59

Convex surface 3770.95 0.0499 7.04
Simulated annealing Concave surface 442.88 0.0495 13.53

Convex surface 418.65 0.0496 12.56
Genetic algorithm Concave surface 2052.55 0.0486 10.86

Convex surface 2239.37 0.0499 12.00
Pattern search Concave surface 3233.69 0.0494 7.57

Convex surface 3195.37 0.0498 7.65

best performance in terms of the coating thickness uniformity. The coefficients of variation are only
6.59% and 7.04% for the concave surface and convex surface, respectively. However, its running time is
somewhat lengthy compared with other methods. It indicates that further research should be conducted
to improve the efficiency of the optimization algorithm.
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6. Conclusion
To improve the uniformity of coating thickness, this paper proposes an improved path planning algorithm
called “boundary fitting approach” for robotic spray painting. It differs from the basic slicing method
in considering the geometric boundary of the target surface as well as the smoothness of the generated
path. The ellipse dual-β distribution model is used here to simulate the resulting coating thickness. The
path is expressed by a fourth-order polynomial curve that fits the boundary points and sample points.
The boundary points are detected according to the topology of the STL model and the sample points are
extracted from the intersection points with a uniform length interval. The orientation of each path point
is also defined by the spray gun’s motion direction and spray direction. Based on PSO, the parameters
of the path are optimized pass by pass. By constructing a compound objective function, both of the
global uniformity and local uniformity are considered in the optimization. Comparing the optimized
thickness distribution with other methods, it indicates that the proposed approach meets the boundary
fitting demand and significantly improves the uniformity of coating thickness.

Notwithstanding the progress, several issues remain to be tackled. Firstly, the efficiency of the opti-
mization method needs further improvement. To concentrate on the optimal coating uniformity, other
indexes to estimate the quality of spray painting were not considered in this paper, such as paint waste,
cycle time, and latent surface failure. Hence, there is still a fruitful area for further work to validate and
improve this algorithm.
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