Proceedings of the Edinburgh Mathematical Society (2007) **50**, 597–603 © DOI:10.1017/S0013091505001380 Printed in the United Kingdom

MULTIPLE SOLUTIONS FOR A QUASILINEAR ELLIPTIC VARIATIONAL SYSTEM ON STRIP-LIKE DOMAINS

F. CAMMAROTO*, A. CHINNÍ AND B. DI BELLA

Department of Mathematics, University of Messina, Salita Sperone 31, 98166 Sant'Agata-Messina, Italy (bdibella@unime.it)

(Received 4 October 2005)

Abstract We consider the quasilinear elliptic variational system

$$\begin{aligned} -\Delta_p u &= \lambda F_u(x, u, v) + \mu H_u(x, u, v) & \text{in } \Omega, \\ -\Delta_q v &= \lambda F_v(x, u, v) + \mu H_v(x, u, v) & \text{in } \Omega, \\ u &= v = 0 & \text{on } \partial\Omega. \end{aligned}$$

where Ω is a strip-like domain and λ and μ are positive parameters. Using a recent two-local-minima theorem and the principle of symmetric criticality, existence and multiplicity are proved under suitable conditions on F.

Keywords: Strip-like domain; eigenvalue problem; elliptic systems

2000 Mathematics subject classification: Primary 35A15, 35J65 Secondary 35P30

1. Introduction

Very recently, in [1] Kristály studied the eigenvalue problem

$$-\Delta_p u = \lambda F_u(x, u, v) \quad \text{in } \Omega, -\Delta_q v = \lambda F_v(x, u, v) \quad \text{in } \Omega, u = v = 0 \qquad \text{on } \partial\Omega,$$

$$(S_\lambda)$$

where $\lambda > 0$ is a parameter and Ω is a strip-like domain in \mathbb{R}^N , i.e. $\Omega = \omega \times \mathbb{R}^l$, ω being a bounded open subset of \mathbb{R}^m with smooth boundary, $m \ge 1$, $l \ge 2$, 1 < p, q < N = m+l, $F \in C^0(\Omega \times \mathbb{R}^2, \mathbb{R})$, and $\Delta_{\alpha} w = \operatorname{div}(|\nabla w|^{\alpha-2} \nabla w)$. Here, F_z denotes the partial derivative of F with respect to variable z. He applies a critical point result (see [5]) in order to obtain the existence of an open interval $\Lambda \subset (0, +\infty)$ such that, for every $\lambda \in \Lambda$, the system S_{λ}

 $^{^{\}ast}\,$ Because of a surprising coincidence of names within our department, we have to point out that the author was born on 4 August 1968.

has at least two distinct non-trivial solutions. Also, he assumes that the nonlinear term F is sub-p, q-linear; that is,

(1_F)
$$\lim_{u,v\to 0} \frac{F_u(x,u,v)}{|u|^{p-1}} = \lim_{u,v\to 0} \frac{F_v(x,u,v)}{|v|^{q-1}} = 0$$
, uniformly w.r.t. $x \in \Omega$.

Inspired by [1], we prove two multiplicity theorems, which extend the results contained in [1], for the system

$$-\Delta_p u = \lambda F_u(x, u, v) + \mu H_u(x, u, v) \quad \text{in } \Omega, -\Delta_q v = \lambda F_v(x, u, v) + \mu H_v(x, u, v) \quad \text{in } \Omega, u = v = 0 \qquad \qquad \text{on } \partial\Omega,$$
 (S_{\lambda,\mu)}

where μ is a positive parameter. Our approach is based on a recent result of Ricceri [6, Theorem 4]; in a convenient form for our purposes it can be read as follows.

Theorem 1.1 (Ricceri). Let X be a reflexive real Banach space, let $I \subseteq \mathbb{R}$ be an interval, and let $\Psi : X \times I \to \mathbb{R}$ be a function such that $\Psi(x, \cdot)$ is concave in I for all $x \in X$, while $\Psi(\cdot, \lambda)$ is continuous, coercive and sequentially weakly lower semicontinuous in X for all $\lambda \in I$. Further, assume that

$$\sup_{\lambda \in I} \inf_{x \in X} \Psi(x, \lambda) < \inf_{x \in X} \sup_{\lambda \in I} \Psi(x, \lambda).$$

Then, for each $\rho > \sup_I \inf_X \Psi(x, \lambda)$ there exists a non-empty open set $A \subseteq I$ with the following property: for every $\lambda \in A$ and every sequentially weakly lower semicontinuous functional $\Phi : X \to \mathbb{R}$, there exists $\delta > 0$ such that, for each $\mu \in]0, \delta[$, the functional $\Psi(\cdot, \lambda) + \mu \Phi(\cdot)$ has at least two local minima lying in the set $\{x \in X : \Psi(x, \lambda) < \rho\}$.

In the present paper, the function F is assumed to be a $C^0(\varOmega\times\mathbb{R}^2,\mathbb{R})$ function such that

 (2_F) F is axially symmetric in the first variable; that is,

$$F((x_1, x_2), s, t) = F((x_1, gx_2), s, t)$$
 for all $x_1 \in \omega, x_2 \in \mathbb{R}^l, g \in O(l), (s, t) \in \mathbb{R}^2$;

 (3_F) $(s,t) \to F(x,s,t)$ is of class C^1 and F(x,0,0) = 0 for all $x \in \Omega$.

Moreover, let $\alpha^* = N\alpha/(N-\alpha)$, $\alpha \in \{p,q\}$, be the critical Sobolev exponent and we assume that

 (4_F) there exist $\varepsilon > 0$, and $r \in [p, p^*[, s \in]q, q^*[$, with ps = qr, such that

$$|F_u(x, u, v)| \leq \varepsilon(|u|^{p-1} + |v|^{(p-1)q/p} + |u|^{r-1}),$$

$$|F_v(x, u, v)| \leq \varepsilon(|v|^{q-1} + |u|^{(q-1)p/q} + |v|^{s-1})$$

for each $x \in \Omega$ and $(u, v) \in \mathbb{R}^2$.

598

Throughout this paper, the norm on $W_0^{1,\alpha}(\Omega)$ is defined by

$$||u||_{\alpha} = \left(\int_{\Omega} |\nabla u|^{\alpha}\right)^{1/\alpha}, \quad \alpha \in \{p,q\}.$$

As Kristály points out in [1], since Ω is unbounded, the loss of compactness of the Sobolev embedding $W_0^{1,\alpha}(\Omega) \hookrightarrow L^{\beta}(\Omega), \beta \in [\alpha, \alpha^*], \alpha \in \{p, q\}$, makes standard variational techniques more delicate. For this reason, we consider the subgroup G of O(l) defined by $G = \mathrm{id}^m \times O(l)$. The action of G on $W_0^{1,\alpha}(\Omega)$ is defined by

$$gu(x_1, x_2) = u(x_1, g_1^{-1}x_2)$$

for each $(x_1, x_2) \in \omega \times \mathbb{R}^l$, $q = \mathrm{id}^m \times q_1 \in G$ and $u \in W_0^{1,\alpha}(\Omega)$. Let

$$W_{0,G}^{1,\alpha}(\varOmega) = \operatorname{Fix} W_0^{1,\alpha}(\varOmega) = \{ u \in W_0^{1,\alpha}(\varOmega) : gu = u, \ \forall g \in G \}.$$

Hence, the elements of $W^{1,\alpha}_{0,G}(\Omega)$ are the axially symmetric functions of $W^{1,\alpha}_0(\Omega)$. Obviously, the action G on $W^{1,\alpha}_{0,G}(\Omega)$ is isometric, that is

$$||gu||_{\alpha} = ||u||_{\alpha}, \text{ for all } g \in G.$$

Since $l \ge 2$, the embedding $W_{0,G}^{1,\alpha}(\Omega) \hookrightarrow L^{\beta}(\Omega), \alpha < \beta < \alpha^*, \alpha \in \{p,q\}$, is compact [2]. In the space $W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)$, endowed with the norm

$$||(u,v)||_{p,q} = ||u||_p + ||v||_q,$$

one has

$$\begin{aligned} \operatorname{Fix}_{G}(W_{0}^{1,p}(\varOmega) \times W_{0}^{1,q}(\varOmega)) &= \{(u,v) \in W_{0}^{1,p}(\varOmega) \times W_{0}^{1,q}(\varOmega) : g(u,v) = (u,v), \ \forall g \in G \} \\ &= W_{0,G}^{1,p}(\varOmega) \times W_{0,G}^{1,q}(\varOmega). \end{aligned}$$

2. Main result

Our main result is the following.

Theorem 2.1. Let $F: \Omega \times \mathbb{R}^2 \to \mathbb{R}$ be a continuous function that satisfies conditions (1_F) - (4_F) . Furthermore, assume that

- (5) $\lim_{|(\xi,\eta)| \to +\infty} \frac{F(x,\xi,\eta)}{|\xi|^p + |\eta|^q} \leq 0 \text{ uniformly for every } x \in \Omega;$
- (6) there exists $(u_0, v_0) \in W^{1,p}_{0,G}(\Omega) \times W^{1,q}_{0,G}(\Omega)$ such that

$$\int_{\Omega} F(x, u_0(x), v_0(x)) \,\mathrm{d}x > 0.$$

Then there exist a number σ and a non-degenerate compact interval $C \subseteq [0, +\infty]$ such that, for every continuous function $H: \Omega \times \mathbb{R}^2 \to \mathbb{R}$ satisfying conditions $(1_H) - (4_H)$ and for every $\lambda \in C$, there exists $\delta > 0$ such that, for each $\mu \in [0, \delta[$, the problem $(S_{\lambda,\mu})$ has at least two solutions, denoted by $(u^i_{\lambda,\mu}, v^i_{\lambda,\mu})$, $i \in \{1,2\}$, with $u^i_{\lambda,\mu}$ and $v^i_{\lambda,\mu}$ axially symmetric and with norms less than σ .

https://doi.org/10.1017/S0013091505001380 Published online by Cambridge University Press

Proof. Let $X = W_{0,G}^{1,p}(\Omega) \times W_{0,G}^{1,q}(\Omega)$. We define two functionals Φ and \mathcal{F} by setting, for each $(u, v) \in X$,

$$\Phi(u,v) = \frac{1}{p} ||u||_p^p + \frac{1}{q} ||v||_q^q,$$

$$\mathcal{F}(u,v) = -\int_{\Omega} F(x,u(x),v(x)) \,\mathrm{d}x.$$

In view of (3_F) and (4_F) , and using the Sobolev embeddings, we can prove that \mathcal{F} is a class- C^1 function; its differential is given by

$$\mathcal{F}'(u,v)(w,y) = -\int_{\Omega} [F_u(x,u,v)w + F_v(x,u,v)y] \,\mathrm{d}x.$$

By the same arguments as used in the proof of [1, Theorem 2.2], owing to (1_F) , (3_F) and (6) there exists $\rho > 0$ such that the functional

$$\mathcal{G}(u, v, \lambda) = \Phi(u, v) + \lambda \mathcal{F}(u, v) + \lambda \rho$$

satisfies the inequality

$$\sup_{\lambda \in I} \inf_{(u,v) \in X} \mathcal{G}(u,v,\lambda) < \inf_{(u,v) \in X} \sup_{\lambda \in I} \mathcal{G}(u,v,\lambda),$$

where $I = [0, +\infty[$. Now, we wish to apply Theorem 1.1 to the continuous functional \mathcal{G} . Clearly, for each $(u, v) \in X$, the functional $\mathcal{G}(u, v, \cdot)$ is concave in I.

Fix $\lambda \in I$. Since $W_G^{1,\alpha}(\Omega) \hookrightarrow L^{\alpha}(\Omega)$ is continuous, there exist two positive constants, c_1 and c_2 , such that

$$||u||_{L^p} \leq c_1 ||u||_p$$
 and $||v||_{L^q} \leq c_2 ||v||_q$.

Let

$$a < \min\left\{\frac{1}{\lambda p c_1^p}, \ \frac{1}{\lambda q c_2^q}\right\}.$$

Since (5) holds, there exists a function $k_a \in L^1(\Omega)$ such that

$$F(x,\xi,\eta) \leqslant a(|\xi|^p + |\eta|^q) + k_a(x)$$

for all $(\xi, \eta) \in \mathbb{R}^2$ and $x \in \Omega$.

Fix $(u, v) \in X$. From the last inequality we deduce that

$$\int_{\Omega} F(x, u(x), v(x)) \, \mathrm{d}x \leqslant a(c_1^p \|u\|_p^p + c_2^q \|v\|_q^q) + \|k_a\|_{L^1}.$$

So,

$$\mathcal{G}(u,v,\lambda) \geqslant \left(\frac{1}{p} - \lambda c_1^p a\right) \|u\|_p^p + \left(\frac{1}{q} - \lambda c_2^q a\right) \|v\|_q^q - \lambda \|k_a\|_{L^1} + \lambda \rho,$$

i.e. $\mathcal{G}(\cdot, \cdot, \lambda)$ is coercive.

600

Fix $\lambda \in I$. In view of (1_F) and (4_F) , by [1, Lemma 3.4], the functional \mathcal{F} is sequentially weakly continuous on X. Thus, the functional $\mathcal{G}(\cdot, \cdot, \lambda)$ is sequentially weakly lower semicontinuous in X.

Now, fixing $\gamma > \sup_{\lambda \in I} \inf_{(u,v) \in X} \mathcal{G}(u,v,\lambda)$, Theorem 1.1 ensures that there exists a non-empty open set $A \subseteq I$ with the following property: for every $\lambda \in A$ and every continuous function $H: \Omega \times \mathbb{R}^2 \to \mathbb{R}$ satisfying conditions $(1_H)-(4_H)$, there exists $\delta > 0$ such that, for each $\mu \in [0, \delta[$, the functional

$$E_{\lambda,\mu}(u,v) = \mathcal{G}(u,v,\lambda) + \mu \mathcal{H}(u,v)$$

has at least two local minima lying in the set $\{(u, v) \in X : \mathcal{G}(u, v, \lambda) < \gamma\}$, namely $(u^i_{\lambda,\mu}, v^i_{\lambda,\mu}), i \in \{1, 2\}$, where \mathcal{H} is the sequentially weakly continuous functional defined by

$$\mathcal{H}(u,v) = -\int_{\Omega} H(x,u(x),v(x)) \,\mathrm{d}x.$$

Since F and H are axially symmetric in the first variable, and each $g \in G$ is isometric, the function $E_{\lambda,\mu}$ is G-invariant, i.e.

$$E_{\lambda,\mu}(g(u,v)) = E_{\lambda,\mu}(gu,gv) = E_{\lambda,\mu}(u,v)$$

for each $g \in G, (u, v) \in W_0^{1, p}(\Omega) \times W_0^{1, q}(\Omega)$. As

$$\operatorname{Fix}(W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)) = W_{0,G}^{1,p}(\Omega) \times W_{0,G}^{1,q}(\Omega),$$

by the principle of symmetric criticality of [3], we find that $(u_{\lambda,\mu}^i, v_{\lambda,\mu}^i)$, $i \in \{1, 2\}$, are also the critical points of $E_{\lambda,\mu}$ and then weak solutions of the problem $(S_{\lambda,\mu})$.

Finally, let $[a,b] \subset A$ be any non-degenerate compact interval. Observe that

$$\bigcup_{\lambda \in [a,b]} \{(u,v) \in X : \mathcal{G}(u,v,\lambda) \leqslant \gamma\}$$
$$\subseteq \{(u,v) \in X : \mathcal{G}(u,v,a) \leqslant \gamma\} \cup \{(u,v) \in X : \mathcal{G}(u,v,b) \leqslant \gamma\}.$$

This implies that the set

$$S := \bigcup_{\lambda \in [a,b]} \{ (u,v) \in X : \mathcal{G}(u,v,\lambda) \leqslant \gamma \}$$

is bounded. Hence, the local minima of $E_{\lambda,\mu}$ have norm less than or equal to σ , taking $\sigma = \sup_{(u,v)\in S} ||(u,v)||_{p,q}$. This concludes the proof.

Now, we give an example in which the hypotheses of Theorem 2.1 are satisfied.

Example 2.2. Let $\Omega = \omega \times \mathbb{R}^2$, where ω is a bounded open interval in \mathbb{R} . Let $\alpha, \beta : \Omega \to \mathbb{R}$ be two continuous, non-negative, not identically zero, axially symmetric functions with compact support in Ω . Then there exist a number σ and a non-degenerate compact

interval $C \subseteq [0, +\infty[$ such that, for every $a \in]\frac{3}{2}, 3[, b \in]\frac{9}{4}, 9[, \lambda \in C]$, there exists $\delta > 0$ such that, for each $\mu \in]0, \delta[$, the system

$$\begin{aligned} -\Delta_{3/2} u &= \frac{5}{2} \lambda \alpha(x) |u|^{1/2} u \cos(|u|^{5/2} + |v|^3) + \mu \beta(x) a u |u|^{a-2} & \text{in } \Omega, \\ -\Delta_{9/4} v &= 3\lambda \alpha(x) |v| v \cos(|u|^{5/2} + |v|^3) + \mu \beta(x) b v |v|^{b-2} & \text{in } \Omega, \\ u &= v = 0 & \text{on } \partial\Omega, \end{aligned}$$

has at least two solutions with the properties from Theorem 2.1.

In this case we have

$$F(x,\xi,\eta) = \alpha(x)\sin(|\xi|^{5/2} + |\eta|^3)$$
 and $H(x,\xi,\eta) = \beta(x)(|\xi|^a + |\eta|^b)$

for each $(x, \xi, \eta) \in \Omega$. It is easy to observe that conditions $(1_F)-(3_F)$ and $(1_H)-(3_H)$ hold immediately, while (4_F) is verified by choosing $r = \frac{11}{4}$, $s = \frac{33}{8}$, and (4_H) is verified choosing $r \in]a, 3[, s \in]b, 9[$ with $s = \frac{3}{2}r$. Finally, (5) is obvious and (6) follows by putting $u_0(x) = (\frac{1}{2}\pi)^{2/5}$ for every $x \in \text{supp } \alpha$ and $v_0(x) = 0$ for every $x \in \Omega$.

By the same arguments as used in the proof of Theorem 2.1, but applying also the Palais–Smale properties, we obtain the result below. We recall that a Gâteaux differentiable functional S on a real Banach space X is said to satisfy the Palais–Smale condition if each sequence $\{x_n\}$ in X such that $\sup_{n \in \mathbb{N}} |S(x_n)| < +\infty$ and $\lim_{n \to +\infty} ||S'(x_n)||_X = 0$ admits a strongly converging subsequence.

Theorem 2.3. Assume that the hypotheses of Theorem 2.1 hold.

Then there exists a non-empty open set $A \subseteq [0, +\infty)$ such that, for every $\lambda \in A$ and for every continuous function $H: \Omega \times \mathbb{R}^2 \to \mathbb{R}$ satisfying conditions $(1_H) - (4_H)$ and

(5_H)
$$\lim_{|(\xi,\eta)| \to +\infty} \sup_{|\xi|^p + |\eta|^q} < +\infty \text{ uniformly for every } x \in \Omega,$$

there exists $\delta > 0$ such that, for each $\mu \in [0, \delta[$, the problem $(S_{\lambda,\mu})$ has at least three solutions axially symmetric.

Proof. Let A and $E_{\lambda,\mu}$ have the same meaning as in the proof of Theorem 2.1, H: $\Omega \times \mathbb{R}^2 \to \mathbb{R}$ being a continuous function satisfying (5_H) . Reasoning as in the proof of Theorem 2.1, there exists $\delta_1 > 0$ such that, for each $\mu \in [0, \delta_1[$, the problem $(S_{\lambda,\mu})$ has at least two solutions.

First of all, the functional $E_{\lambda,\mu}$ is coercive. In fact, from (5_H) , there exist a positive constant $b \in \mathbb{R}$ and a function $k_b(x) \in L^1(\Omega)$ such that

$$H(x,\xi,\eta) \leq b(|\xi|^p + |\eta|^q) + k_b(x)$$

for all $x \in \Omega$ and $(\xi, \eta) \in \mathbb{R}^2$.

Fix $(u, v) \in X$. From the previous inequality we deduce that

$$\mathcal{H}(u,v) = -\int_{\Omega} H(x,u(x),v(x)) \,\mathrm{d}x \ge -b(c_1^p \|u\|_p^p + c_2^q \|v\|_q^q) - \|k_b\|_{L^1}.$$

602

Let

$$\delta < \min\left\{\delta_1, \frac{1}{b}\left(\frac{1}{pc_1^p} - \lambda a\right), \frac{1}{b}\left(\frac{1}{qc_2^q} - \lambda a\right)\right\}.$$

So, for each $\lambda \in A$ and $\mu \in]0, \delta[$, we have

$$\begin{aligned} E_{\lambda,\mu}(u,v) \\ &= \mathcal{G}(u,v,\lambda) + \mu \mathcal{H}(u,v) \\ &\geqslant \left(\frac{1}{p} - c_1^p(\lambda a + \mu b)\right) \|u\|_p^p + \left(\frac{1}{q} - c_2^q(\lambda a + \mu b)\right) \|v\|_q^q - \lambda \|k_a\|_{L^1} + \lambda \rho - \mu \|k_b\|_{L^1} \end{aligned}$$

for all $(u, v) \in X$. This ensures the coercivity of the functional $E_{\lambda,\mu}$ for each $\lambda \in A$ and $\mu \in]0, \delta[$.

Now, let us check the Palais–Smale condition for $E_{\lambda,\mu}$. To this end, let $\{(u_n, v_n)\}$ be a sequence in X satisfying

$$\sup_{n \in \mathbb{N}} |E_{\lambda,\mu}(u_n, v_n)| \leqslant M, \qquad \lim_{n \to \infty} \|E'_{\lambda,\mu}(u_n, v_n)\|_{X^*} = 0.$$
(2.1)

Since the functional $E_{\lambda,\mu}$ is coercive, the sequence $\{(u_n, v_n)\}$ is bounded in X. So, applying [1, Lemma 3.5] to the functional $E_{\lambda,\mu}(\cdot, \cdot)$ we obtain that $\{(u_n, v_n)\}$ contains a strongly convergent subsequence in X.

Since the functional $E_{\lambda,\mu}$ is C^1 in X, our conclusion follows by [4, Corollary 1], which ensures that there exists a third critical point of the functional $E_{\lambda,\mu}$ which is a solution of problem $(S_{\lambda,\mu})$.

References

- 1. A. KRISTÁLY, Existence of two nontrivial solutions for a class of quasilinear elliptic variational systems on strip-like domains, *Proc. Edinb. Math. Soc.* **48** (2005), 465–477.
- P. L. LIONS, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Analysis 49 (1982), 315–334.
- R. S. PALAIS, The principle of symmetric criticality, Commun. Math. Phys. 69 (1979), 19–30.
- 4. P. PUCCI AND J. SERRIN, A mountain pass theorem, J. Diff. Eqns 60 (1985), 142–149.
- 5. B. RICCERI, On a three critical points theorem, Arch. Math. 75 (2000), 220–226.
- 6. B. RICCERI, Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set, *Topol. Applic.* **153** (2006), 3308–3312.