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Abstract We consider the quasilinear elliptic variational system

−∆pu = λFu(x, u, v) + µHu(x, u, v) in Ω,

−∆qv = λFv(x, u, v) + µHv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a strip-like domain and λ and µ are positive parameters. Using a recent two-local-minima
theorem and the principle of symmetric criticality, existence and multiplicity are proved under suitable
conditions on F .
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1. Introduction

Very recently, in [1] Kristály studied the eigenvalue problem

−∆pu = λFu(x, u, v) in Ω,

−∆qv = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (Sλ)

where λ > 0 is a parameter and Ω is a strip-like domain in R
N , i.e. Ω = ω × R

l, ω being
a bounded open subset of R

m with smooth boundary, m � 1, l � 2, 1 < p, q < N = m+l,
F ∈ C0(Ω×R

2, R), and ∆αw = div(|∇w|α−2∇w). Here, Fz denotes the partial derivative
of F with respect to variable z. He applies a critical point result (see [5]) in order to obtain
the existence of an open interval Λ ⊂ (0, +∞) such that, for every λ ∈ Λ, the system Sλ

∗ Because of a surprising coincidence of names within our department, we have to point out that the
author was born on 4 August 1968.
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has at least two distinct non-trivial solutions. Also, he assumes that the nonlinear term
F is sub-p, q-linear; that is,

(1F ) lim
u,v→0

Fu(x, u, v)
|u|p−1 = lim

u,v→0

Fv(x, u, v)
|v|q−1 = 0, uniformly w.r.t. x ∈ Ω.

Inspired by [1], we prove two multiplicity theorems, which extend the results contained
in [1], for the system

−∆pu = λFu(x, u, v) + µHu(x, u, v) in Ω,

−∆qv = λFv(x, u, v) + µHv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (Sλ,µ)

where µ is a positive parameter. Our approach is based on a recent result of Ricceri [6,
Theorem 4]; in a convenient form for our purposes it can be read as follows.

Theorem 1.1 (Ricceri). Let X be a reflexive real Banach space, let I ⊆ R be an
interval, and let Ψ : X × I → R be a function such that Ψ(x, ·) is concave in I for all
x ∈ X, while Ψ(· , λ) is continuous, coercive and sequentially weakly lower semicontinuous
in X for all λ ∈ I. Further, assume that

sup
λ∈I

inf
x∈X

Ψ(x, λ) < inf
x∈X

sup
λ∈I

Ψ(x, λ).

Then, for each ρ > supI infX Ψ(x, λ) there exists a non-empty open set A ⊆ I with the
following property: for every λ ∈ A and every sequentially weakly lower semicontinuous
functional Φ : X → R, there exists δ > 0 such that, for each µ ∈ ]0, δ[, the functional
Ψ(· , λ) + µΦ(·) has at least two local minima lying in the set {x ∈ X : Ψ(x, λ) < ρ}.

In the present paper, the function F is assumed to be a C0(Ω × R
2, R) function such

that

(2F ) F is axially symmetric in the first variable; that is,

F ((x1, x2), s, t) = F ((x1, gx2), s, t) for all x1 ∈ ω, x2 ∈ R
l, g ∈ O(l), (s, t) ∈ R

2;

(3F ) (s, t) → F (x, s, t) is of class C1 and F (x, 0, 0) = 0 for all x ∈ Ω.

Moreover, let α∗ = Nα/(N − α), α ∈ {p, q}, be the critical Sobolev exponent and we
assume that

(4F ) there exist ε > 0, and r ∈ ]p, p∗[, s ∈ ]q, q∗[, with ps = qr, such that

|Fu(x, u, v)| � ε(|u|p−1 + |v|(p−1)q/p + |u|r−1),

|Fv(x, u, v)| � ε(|v|q−1 + |u|(q−1)p/q + |v|s−1)

for each x ∈ Ω and (u, v) ∈ R
2.
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Throughout this paper, the norm on W 1,α
0 (Ω) is defined by

‖u‖α =
( ∫

Ω

|∇u|α
)1/α

, α ∈ {p, q}.

As Kristály points out in [1], since Ω is unbounded, the loss of compactness of the Sobolev
embedding W 1,α

0 (Ω) ↪→ Lβ(Ω), β ∈ [α, α∗], α ∈ {p, q}, makes standard variational tech-
niques more delicate. For this reason, we consider the subgroup G of O(l) defined by
G = idm ×O(l). The action of G on W 1,α

0 (Ω) is defined by

gu(x1, x2) = u(x1, g
−1
1 x2)

for each (x1, x2) ∈ ω × R
l, g = idm ×g1 ∈ G and u ∈ W 1,α

0 (Ω). Let

W 1,α
0,G(Ω) = FixW 1,α

0 (Ω) = {u ∈ W 1,α
0 (Ω) : gu = u, ∀g ∈ G}.

Hence, the elements of W 1,α
0,G(Ω) are the axially symmetric functions of W 1,α

0 (Ω).
Obviously, the action G on W 1,α

0,G(Ω) is isometric, that is

‖gu‖α = ‖u‖α, for all g ∈ G.

Since l � 2, the embedding W 1,α
0,G(Ω) ↪→ Lβ(Ω), α < β < α∗, α ∈ {p, q}, is compact [2].

In the space W 1,p
0 (Ω) × W 1,q

0 (Ω), endowed with the norm

‖(u, v)‖p,q = ‖u‖p + ‖v‖q,

one has

FixG(W 1,p
0 (Ω) × W 1,q

0 (Ω)) = {(u, v) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω) : g(u, v) = (u, v), ∀g ∈ G}
= W 1,p

0,G(Ω) × W 1,q
0,G(Ω).

2. Main result

Our main result is the following.

Theorem 2.1. Let F : Ω × R
2 → R be a continuous function that satisfies conditions

(1F )–(4F ). Furthermore, assume that

(5) lim sup
|(ξ,η)|→+∞

F (x, ξ, η)
|ξ|p + |η|q � 0 uniformly for every x ∈ Ω;

(6) there exists (u0, v0) ∈ W 1,p
0,G(Ω) × W 1,q

0,G(Ω) such that∫
Ω

F (x, u0(x), v0(x)) dx > 0.

Then there exist a number σ and a non-degenerate compact interval C ⊆ [0, +∞[ such
that, for every continuous function H : Ω ×R

2 → R satisfying conditions (1H)–(4H) and
for every λ ∈ C, there exists δ > 0 such that, for each µ ∈ ]0, δ[, the problem (Sλ,µ)
has at least two solutions, denoted by (ui

λ,µ, vi
λ,µ), i ∈ {1, 2}, with ui

λ,µ and vi
λ,µ axially

symmetric and with norms less than σ.
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Proof. Let X = W 1,p
0,G(Ω) × W 1,q

0,G(Ω). We define two functionals Φ and F by setting,
for each (u, v) ∈ X,

Φ(u, v) =
1
p
‖u‖p

p +
1
q
‖v‖q

q,

F(u, v) = −
∫

Ω

F (x, u(x), v(x)) dx.

In view of (3F ) and (4F ), and using the Sobolev embeddings, we can prove that F is a
class-C1 function; its differential is given by

F ′(u, v)(w, y) = −
∫

Ω

[Fu(x, u, v)w + Fv(x, u, v)y] dx.

By the same arguments as used in the proof of [1, Theorem 2.2], owing to (1F ), (3F ) and
(6) there exists ρ > 0 such that the functional

G(u, v, λ) = Φ(u, v) + λF(u, v) + λρ

satisfies the inequality

sup
λ∈I

inf
(u,v)∈X

G(u, v, λ) < inf
(u,v)∈X

sup
λ∈I

G(u, v, λ),

where I = [0, +∞[. Now, we wish to apply Theorem 1.1 to the continuous functional G.
Clearly, for each (u, v) ∈ X, the functional G(u, v, ·) is concave in I.

Fix λ ∈ I. Since W 1,α
G (Ω) ↪→ Lα(Ω) is continuous, there exist two positive constants,

c1 and c2, such that

‖u‖Lp � c1‖u‖p and ‖v‖Lq � c2‖v‖q.

Let

a < min
{

1
λpcp

1
,

1
λqcq

2

}
.

Since (5) holds, there exists a function ka ∈ L1(Ω) such that

F (x, ξ, η) � a(|ξ|p + |η|q) + ka(x)

for all (ξ, η) ∈ R
2 and x ∈ Ω.

Fix (u, v) ∈ X. From the last inequality we deduce that
∫

Ω

F (x, u(x), v(x)) dx � a(cp
1‖u‖p

p + cq
2‖v‖q

q) + ‖ka‖L1 .

So,

G(u, v, λ) �
(

1
p

− λcp
1a

)
‖u‖p

p +
(

1
q

− λcq
2a

)
‖v‖q

q − λ‖ka‖L1 + λρ,

i.e. G(· , · , λ) is coercive.

https://doi.org/10.1017/S0013091505001380 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001380


Multiple solutions for a quasilinear elliptic variational system 601

Fix λ ∈ I. In view of (1F ) and (4F ), by [1, Lemma 3.4], the functional F is sequentially
weakly continuous on X. Thus, the functional G(· , · , λ) is sequentially weakly lower
semicontinuous in X.

Now, fixing γ > supλ∈I inf(u,v)∈X G(u, v, λ), Theorem 1.1 ensures that there exists a
non-empty open set A ⊆ I with the following property: for every λ ∈ A and every
continuous function H : Ω × R

2 → R satisfying conditions (1H)–(4H), there exists δ > 0
such that, for each µ ∈ ]0, δ[, the functional

Eλ,µ(u, v) = G(u, v, λ) + µH(u, v)

has at least two local minima lying in the set {(u, v) ∈ X : G(u, v, λ) < γ}, namely
(ui

λ,µ, vi
λ,µ), i ∈ {1, 2}, where H is the sequentially weakly continuous functional defined

by

H(u, v) = −
∫

Ω

H(x, u(x), v(x)) dx.

Since F and H are axially symmetric in the first variable, and each g ∈ G is isometric,
the function Eλ,µ is G-invariant, i.e.

Eλ,µ(g(u, v)) = Eλ,µ(gu, gv) = Eλ,µ(u, v)

for each g ∈ G, (u, v) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω). As

Fix(W 1,p
0 (Ω) × W 1,q

0 (Ω)) = W 1,p
0,G(Ω) × W 1,q

0,G(Ω),

by the principle of symmetric criticality of [3], we find that (ui
λ,µ, vi

λ,µ), i ∈ {1, 2}, are
also the critical points of Eλ,µ and then weak solutions of the problem (Sλ,µ).

Finally, let [a, b] ⊂ A be any non-degenerate compact interval. Observe that

⋃
λ∈[a,b]

{(u, v) ∈ X : G(u, v, λ) � γ}

⊆ {(u, v) ∈ X : G(u, v, a) � γ} ∪ {(u, v) ∈ X : G(u, v, b) � γ}.

This implies that the set

S :=
⋃

λ∈[a,b]

{(u, v) ∈ X : G(u, v, λ) � γ}

is bounded. Hence, the local minima of Eλ,µ have norm less than or equal to σ, taking
σ = sup(u,v)∈S ‖(u, v)‖p,q. This concludes the proof. �

Now, we give an example in which the hypotheses of Theorem 2.1 are satisfied.

Example 2.2. Let Ω = ω × R
2, where ω is a bounded open interval in R. Let α, β :

Ω → R be two continuous, non-negative, not identically zero, axially symmetric functions
with compact support in Ω. Then there exist a number σ and a non-degenerate compact
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interval C ⊆ [0, +∞[ such that, for every a ∈ ] 32 , 3[, b ∈ ] 94 , 9[, λ ∈ C, there exists δ > 0
such that, for each µ ∈ ]0, δ[, the system

−∆3/2u = 5
2λα(x)|u|1/2u cos(|u|5/2 + |v|3) + µβ(x)au|u|a−2 in Ω,

−∆9/4v = 3λα(x)|v|v cos(|u|5/2 + |v|3) + µβ(x)bv|v|b−2 in Ω,

u = v = 0 on ∂Ω,

has at least two solutions with the properties from Theorem 2.1.
In this case we have

F (x, ξ, η) = α(x) sin(|ξ|5/2 + |η|3) and H(x, ξ, η) = β(x)(|ξ|a + |η|b)

for each (x, ξ, η) ∈ Ω. It is easy to observe that conditions (1F )–(3F ) and (1H)–(3H)
hold immediately, while (4F ) is verified by choosing r = 11

4 , s = 33
8 , and (4H) is verified

choosing r ∈ ]a, 3[, s ∈ ]b, 9[ with s = 3
2r. Finally, (5) is obvious and (6) follows by

putting u0(x) = ( 1
2π)2/5 for every x ∈ suppα and v0(x) = 0 for every x ∈ Ω.

By the same arguments as used in the proof of Theorem 2.1, but applying also the
Palais–Smale properties, we obtain the result below. We recall that a Gâteaux differen-
tiable functional S on a real Banach space X is said to satisfy the Palais–Smale condition
if each sequence {xn} in X such that supn∈N |S(xn)| < +∞ and limn→+∞ ‖S′(xn)‖X = 0
admits a strongly converging subsequence.

Theorem 2.3. Assume that the hypotheses of Theorem 2.1 hold.
Then there exists a non-empty open set A ⊆ [0, +∞[ such that, for every λ ∈ A and

for every continuous function H : Ω × R
2 → R satisfying conditions (1H)–(4H) and

(5H) lim sup
|(ξ,η)|→+∞

H(x, ξ, η)
|ξ|p + |η|q < +∞ uniformly for every x ∈ Ω,

there exists δ > 0 such that, for each µ ∈ ]0, δ[, the problem (Sλ,µ) has at least three
solutions axially symmetric.

Proof. Let A and Eλ,µ have the same meaning as in the proof of Theorem 2.1, H :
Ω × R

2 → R being a continuous function satisfying (5H). Reasoning as in the proof of
Theorem 2.1, there exists δ1 > 0 such that, for each µ ∈ ]0, δ1[, the problem (Sλ,µ) has
at least two solutions.

First of all, the functional Eλ,µ is coercive. In fact, from (5H), there exist a positive
constant b ∈ R and a function kb(x) ∈ L1(Ω) such that

H(x, ξ, η) � b(|ξ|p + |η|q) + kb(x)

for all x ∈ Ω and (ξ, η) ∈ R
2.

Fix (u, v) ∈ X. From the previous inequality we deduce that

H(u, v) = −
∫

Ω

H(x, u(x), v(x)) dx � −b(cp
1‖u‖p

p + cq
2‖v‖q

q) − ‖kb‖L1 .
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Let

δ < min
{

δ1,
1
b

(
1

pcp
1

− λa

)
,
1
b

(
1

qcq
2

− λa

)}
.

So, for each λ ∈ A and µ ∈ ]0, δ[, we have

Eλ,µ(u, v)

= G(u, v, λ) + µH(u, v)

�
(

1
p

− cp
1(λa + µb)

)
‖u‖p

p +
(

1
q

− cq
2(λa + µb)

)
‖v‖q

q − λ‖ka‖L1 + λρ − µ‖kb‖L1

for all (u, v) ∈ X. This ensures the coercivity of the functional Eλ,µ for each λ ∈ A and
µ ∈ ]0, δ[.

Now, let us check the Palais–Smale condition for Eλ,µ. To this end, let {(un, vn)} be
a sequence in X satisfying

sup
n∈N

|Eλ,µ(un, vn)| � M, lim
n→∞

‖E′
λ,µ(un, vn)‖X∗ = 0. (2.1)

Since the functional Eλ,µ is coercive, the sequence {(un, vn)} is bounded in X. So, apply-
ing [1, Lemma 3.5] to the functional Eλ,µ(· , ·) we obtain that {(un, vn)} contains a
strongly convergent subsequence in X.

Since the functional Eλ,µ is C1 in X, our conclusion follows by [4, Corollary 1], which
ensures that there exists a third critical point of the functional Eλ,µ which is a solution
of problem (Sλ,µ). �
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