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COEFFICIENT BOUNDS IN THE LORENTZ 
REPRESENTATION OF A POLYNOMIAL 

BY 

D. S. LUBINSKY AND Z. ZIEGLER 

ABSTRACT. Each polynomial P(x) has a "Lorentz representation", of 
the form P(x) = 52?=oCjXJ(\—x)n~J. This representation becomes unique 
if we insist that n equals the degree of P. Motivated partly by questions 
involving polynomials with integer coefficients, we investigate the rela­
tionship between H^H/^fo,!] and \CJ\J = 0 , 1 , . . .n. 

1. Introduction and Statement of Results. A Lorentz representation of a poly­
nomial P(x), is a representation of the form 

n 

( 1 . 1 ) P{x) = ^Cjx?{\-x)n-J. 

7=0 

While it is not unique in general - for example 

7=0 \J ' 

- it becomes unique if we insist in (1.1) that n equals the degree of P. 
One of the interesting features of the representation is that every polynomial P, 

positive in (0, 1), possesses a representation (1.1) with all Cj ^ 0. Further, every 
polynomial P with integer coefficients has a representation (1.1), with all c} integers, 
and in which n equals the degree off. The representation (1.1) has been found useful 
in various contexts of approximation theory [2, 4, 6], and has helped indirectly to 
inspire others [10, 11]. 

In investigating extremal polynomials with integer coefficients [8], the problem of 
estimating the relationship between \\P 11̂ 10,1] a nd |c/|, j — 0, 1, ...AI, arose. In this 
paper, we present some sharp and near-sharp inequalities along these lines. The proofs 
involve maximum principles, conformai maps, and classical arguments of Markov. 
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One feature of the results is that they depend mainly on the number n of terms 
in (1.1), not on the actual degree of P. The proofs are presented in Section 2. Given 
p > 0, we define 

(1.2) A ( p ) : = V / 2 / ( l + p 1 / 2 ) 2 , 

and if also 0 < p < oo, n ^ 0, we set 

r 4 ri* . ll/p 

(1.3) /(P,P,«):= | - y | l - A ( p ) s i n 2 ^ r ^ J . 

THEOREM 1.1. L^r P(jt) /im>e ^ representation (1.1), am/ /ef p > 0. TTzerc 
( n \ 1/2 

(1-4) Ç kylV7 ^ d + p1/2)2"/(2, p, H)||P||^[0,1]. 

Here 

(1.5) 0 < / ( 2 , p , n ) ^ l , 

mY/i strict inequality unless n — 0. Further, 

(1.6) /(2,p,«) ^ {2v/2[7rA(p)r'/2r(2n + l)/r(2n + 3/2)}1/2, 

wMe 

(1.7) lim 7(2, p, «)n'/4 = {2/[7rA(p)]}'/4. 
n—>oo 

We note that Theorem 1.1 is "nearly sharp". To be more precise, let Tn(x) denote 
the usual Chebyshev polynomial of degree n. From the expressions given in [3, p.34], 
one readily derives the representation 

n 

(1.8) Tn(2x - 1) = J2d"JxJ(l -x)n-j(-l)n-j, 

where 
min{ j,n-j} / . 

<>•»> «•-= E ( ; ) ( " : t ) 4 ' ' = ° ' ' - 2 - - -

We shall see in Section 2 that for each fixed p > 0, 

(1.10) J 2 K > I V | /l(l+Pl/2)2nH2,p,n)\\Tn(2x-l)\\LMl]]-+^ n-*oo. 
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Thus for n large enough, (1.4) cannot be improved by much more than 1/2. This "gap" 
of 1/2 also arises in classical majorization of polynomials on intervals, for technical 
reasons. 

We note that by comparing coefficients of xn on both sides of (1.8), we see that 

n 

(l.H) 22"-1 = 5>W i / . 
j=o 

For individual coefficients, we shall prove 

THEOREM 1.2. Let P(x) have the representation (1.1) and let 0 < p, ^ 1/2. Then 
for 0 ^ 7 ^ [in, and for n{\ — p) ^ j ^ n, 

(1.12) | 9 | ^ { ^ ( l - / i ) - 1 + " } 2 " | | J P | L [ o , . ] 

Note that the 1 is the smaller term in the minimum if n is small and p is close to 
zero. For large n, the minimum decreases like a constant multiple of n~ll2. 

A cursory examination of {dnj}j=0 shows that (1.12) is sharp for j = 0 ov j = n, 
if we let \i —» 0+. Further, a crude application of Stirling's formula shows that (1.12) 
is sharp for j close to n/2. 

While Theorem 1.2 is not fully sharp, it is at least easily applicable. A sharp, but 
less convenient, inequality can be derived using a classical argument of Markov: 

THEOREM 1.3. Let P(x) have the representation (1.1), and let 0 ^ j ^ n. Let dnj 
be defined by (1.9). Then, 

(1-13) \cj\ ^ dnJ\\P\\Loom]j 

with equality if and only if P(x) is a constant multiple ofTn(2x — 1). 

A pleasant feature of Theorem 1.3 is that it is in a sense more elegant than its 
classical cousin [9, p. 56, Cor. 2] involving ordinary powers, since there the parity of 
the degree of P and of y (that is, whether they are even or odd) plays a role. 

In the opposite direction to Theorems 1.1 to 1.3, we note the following fairly 
immediate (and sharp) consequence of (1.1): 

(1-14) l i ^ l l w o , n ^ m a £ x { | c y | / ( ; ) } . 

2. Proofs. 

LEMMA 2.1. Let R(u) be a polynomial of degree at most n. Then for u G C \[0, oo), 

(2.1) \R{u)\ S 11 + ^\ln\\R(s)l(\ + J)"|L[O,OO), 
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where the branch of the square root is the principal one. 

PROOF. Note that for u € C\[0, oo), we have Rey/^H > 0, so f(u) :— R(u)/(\ + 
>/^-u)2n is analytic in C \[0, oo), and has a finite limit at oo, namely (— \)nc, where c 
is the coefficient of un in R(u). By the maximum modulus principle, 

|/(ll)| ^ 11/11^0,00), KeC\[0,OO). 

But as u —> s G [0, oo), from the upper or lower half planes, 

| / ( I I ) | -+ \R(s)/(l+i^~s)2"\ = \R(s)\/(l+s)". 

Therefore 

11/11^0,00) = ||/?W/(1+ ^11^0,00). 

Hence (2.1). • 

We note that (2.1) is nearly sharp: Let 

Rn{u)-Tn(
U—^\{\+u)n

1 n^\. 
\u+\ J 

Then uniformly in compact subsets of C \[0, oo), 

lim \Rn(u)\/{\\ + v>^u~\2n\\Rn(s)/(\ + s)n\\Lool0iOO)} = ^ 
n—>oo Z 

See the proof of (1.10) below. 
We can now prove: 

THEOREM 2.2. Let p, p > 0, and let R(u) be a polynomial of degree at most n. 
(a) Then 

( 1 r2lx Ï l/p 

(2.2) | - j f \R(pe»)rd9} 

^ (1 +pl'2)2"l(p,P,n)\\R(s)/(l +s)fl||too[o,oo), 

where I(p1 p,ri) is defined by (1.3) and (1.2). 
(Z?) //A(p) w <fe/wé?d fry (1.2), then 

(2.3) 0 < A ( p ) ^ l , 

vv/r/z X(p) = 1 // owd o«fy if p — 1, #«d 

(2.4) 0 < / ( p , p , f i ) ^ 1, 
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with I(p, p,ri) = 1 if and only if n = 0, while 

(2.5) I{p, p, n) Û {2^/2[K\(p)T'l2T(pn + l)/T(pn + 3 / 2 ) } ^ 

(c) Further, 

(2.6) lim /(/?, p, n)n{l{2p) = {2[ir\ip)prl'2y,p. 

PROOF, (a) In view of Lemma 2.1, it suffices to estimate 

?i* Ï UP ( 1 /-27T ï V P 

We see that 

r7r/2 N UP 

= - / [ l + p + 2 v ^ c o s s r * 

= { - y [ ( l + p 1 / 2 ) 2 - 2 v / p ( l - c o s 5 ) f ^ J 

= ( l + pi/2)2« j ^ T [i_A(p)sin2(^)]"P^J (by (1.2)) 

= (l+p'/2)2-/(p,p,«), 

by the substitution y := s/2, and by (1.3). 
(b) The inequality (2.3) follows from 

(I + P 1 / 2 ) 2 - V / 2 = O - P I / 2 ) 2 ^ O , 

while (2.4) is fairly obvious. Next, the substitution t := 1 — A(p)sin2;y in (1.3) yields 

(2.7) /(p, p, «)" = -A(p)- '/2 /" f(l - tr{l\\ - (1 - t)/Mp)yl/2dt 
* JI-MP)/2 

^ - Vïxip)-^2 J f\\-tyxi2dt 

- Tipn + 3/2) 
o /^r w M-l/2 T(p;f+1) = 2V2[7rA(p)] / — -77^7. 

r(pw + 3/2) 

Hence (2.5). 
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(c) We note that as n —* oo, on removing the \fl, the inequality in the first line 
after (2.7) becomes essentially an equality, since for any 0 < r\ < 1, the integral over 
[0,1 — 7]] decreases geometrically to zero, as n —» oo, while 1 — (1 — t)/\{p) —> 1 
as t —* 1—. On applying Stirling's formula to the last right-hand side of (2.7), and 
omitting the y/l we obtain (2.6). • 

We note that, as in Lemma 2.1, the polynomials 

Rn(u):=Tn(?—l)(l+u)n, n^ 1, 
\ u+ 1 J 

may be used to show that (2.2) is nearly sharp. We now turn to the 

PROOF OF THEOREM 1.1. For the polynomial P with representation (1.1), let us define 
an associated polynomial 

n 

(2.8) R(u) :=^2cju!. 
7=0 

Consider the transformation 

r u 

(2.9) u : 1 — x \ + u 

for x G [0,1] and u G [0, oo). We see that 1 — x — (1 + u)~\ so that 

(2.10) P(x) = (1 - x)nR ( —— ) = R(u)/(l + a)71. 

Then by Theorem 2.2, 

in \ i/2 27r i/2 

^ (1 +p1/2)2"/(2,p,«)|]/?(M)/(l +«)fl||z„[0,oo) 

= (l+p1/2)2"/(2,p,«)||/>||£oû[0,11. 

The remaining inequalities of Theorem 1.1 follow (2.5) and (2.6). D 

PROOF OF THEOREM 1.2. Let R be defined by (2.8). Then for 0 < p ^ 1,0 ^ j ^ p,n, 

(2.11)191 = - ! - [ R(t)/t'+ldt 
2™ J\t\=p 

^ p-'(l +P
l/2)2nI(hp,n)\\R(u)/(l +Mr||Loo[0,oo) 

(by Theorem 2.2) 

^p-^il+p^fmm ( l , 2 x / 2 V A ( p ) ] - ' / 2 J ^ ± l L j l^lkto, .] , 
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by (2.4), (2.5) and as in the previous proof. Choosing p1/2 := /i/(l — /i), (which yields 
the minimal value for p~^n(\ + pxl2)ln, p e (0, oo)) and then using (1.2), we obtain 
(1.12) for 0 ^ j ^ pn. For n(\ — p) ^ j ^ n, we need only note that 

n 

p(i-x) = j2c»-*xk(l-xy~k' 
k=0 

and apply our previous inequality for 0 ^ k Û pn. • 

PROOF OF THEOREM 1.3. Let 0 ^ j < n. We first show that {xk(l — x)n~k : k — 
0, 1, . . . , 7 — 1,7 + 1, . . . , n} is a Chebyshev system on [0, 1]. To do this, we need 
only show that if 

n 

S(JC):= 53*^(1-JC)"-*, 
*=o 
Hi 

and 5 is not identically zero, then S can have at most n — 1 zeros in [0, 1] (see [1]). 
Suppose S has at least « distinct zeros in [0, 1] — say /a t 1(1 = Oor 1) and « — / in 
[0, 1). Let 

tf(K):= J ] dku
k. 

k=0 

Hi 
Then S(x) = (1 — x)nR(x/(l — JC)), and it follows that R(u) has at least « — / distinct 
zeros in [0, oo). If / = 1, then dn = S (I) = 0, and then R has degree n — 1. So, as 
an ordinary polynomial, R has degree at most n — l. Hence R is a linear combination 
of the n — / functions {*/ : & = 0, 1, . . . , 7 — 1,7 + 1, . . . , n — l} (recall here that 
j < n so j û n — I), which form a Chebyshev system on [0,00) [5, pp. 9-10]. Then 
necessarily all dk = 0, so S is identically zero. 
Next, let us define 

n 

(2.12) Enj = m i n i m i - x)n~j - V W ( 1 - ^ I k t o , ! ] . 

Hi 

Let us denote the unique {d{\ minimizing this expression by {d%} and let 

n 

r(x) := y'(l - x)n~j - ] T dtxk(l - x)n~k. 
k=0 

Hi 

By the alternation theorem [1], there exist 0 ^ x\ <X2 < ... <xn+\ ^ 1 such that 
r(xi+i) = -r(Xi) = ±EnJ, i = 1, 2, . . . , n + 1. 

It follows that r(x) has « distinct zeros in [0, 1], so is a polynomial of degree n. 
Note here that r cannot vanish identically, for {xk(l — x)n~k}n

k=Q is a basis for the 
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polynomials of degree at most n. We can then write r(x) = c{xn — p(x)}, where 
c ^ O , and p(x) is a polynomial of degree at most n. Since xn — p(x) alternates at 
least n+ 1 times in [0, 1], the alternation theorem and uniqueness of best polynomial 
approximations [1] imply that 

(2.13) r(x)/c = 2-2n+{Tn(2x - 1). 

Also then from (1.8) to (1.9), comparing coefficients of xj(l —x)n~J on both sides of 
(2.13), l/c = 2-2n+ldnJ. 
Then 

EnJ = lklkoo[0,l] 

= c2-2"+1||7A2(2x-l)||Loo[o,i] = l / ^ . 

Next, if P has the representation (1.1), and q ^ 0, the 

| |P | | w o ^|c , |Hl-*)"-> 
n 

+ £{c*/c,}**(l -*)""* 1^(0,,] 
Jt=0 

Hi 

This yields (1.13) if c} ^ 0. Of course, if c} = 0, then (1.13) is trivial. Finally, if 
j — n, we may apply (1.13) to P(l — JC), and use the symmetry, as well as the fact 
that dn^n = dnio — 1. The case of equality may be handled much as above. • 

Finally, we turn to the 

PROOF OF (1.10). Let 

n 

Rn(u) := ^dnj(c-ui, n^\, 

and consider the transformation (2.9). As at (2.10), we see that 

Tn(2x - 1) = (1 -xT(-l)nRn ( y ^ ) 

Let 
(^(z):-z + ( z 2 - l ) 1 / 2 , z G C , 

denote the usual conformai map of C \[— 1,1] onto {w : \w\ > 1}. The branch of the 
square root is chosen so that (z2 — l)1/2 > 0, z G [1, oo). It is well known [3, p. 116] 
that 

Tn{z)/<p(z)n = i { l + viz)'2"} — \ as n — oo, 
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uniformly in closed subsets of C \[—1,1]. Then 

,. , _ . , , . . .„ / " - 1 lim 
n—>oo 

lim 
n—»oo 

M — 1 

r* <p 

w+ 1 

w — 1 
= 1/2, 

u+I J / \u+1 

uniformly in closed subsets of C \[0, oo). But for u G C \[0, oo), 

(1 + w)y? 
M+ 1 

u— 1 + (1 +w) 
-4w 

(w + 1)2 

u—\— 2\T-ïi = - (1 + V-")2> 

so 

(2.14) Iim|*n(i0/(1 + V ^ ) 2 n | = ; î, 
A2—KX) 2 

uniformly in closed subsets of C \[0, oo). Then given p > 0, as n —->• oo, 

« i /.2TT 

/»3TT/2 / i 

/ II + V - P ^ T ^ T+^( 
A/2 V4 

7 - 0 

1 
2 T T . 

7(1) 

of r + /* ii+v
/zp^i4^>) 

WO 73TT/2 / 

^7r/2 ^27T 

/37T/2 

(by (2.14) and Lemma 2.1) 

'4 W8 
(1+P1 A(p)sin2j]2^y (i««>) 

+ 0 | / r i -A(p)s in 2 y] 2 "^ 

205 

(r/4„ 
V77T/8 

exactly as in the proof of Theorem 2.2. Now given 77 G (0,7r/4], for y G [77,7r/4], 

[1 - A(p)sin2 y]2n ^ [1 - A(p)sin2(r7)]2", 

which decreases geometrically to zero as n —> 00. Hence from (2.6) and (1.3), 

£</ >;=o 

1/2 

(l+p1/2)2"/(2,/9,«)Q+0(l)V n- • 0 0 . 
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Finally, since \\Tn(2x - 1)||LOO[0,I] = 1, (1.10) follows. D 
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