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Taylor–Couette flow in a compressible perfect gas is studied. The onset of instability
is examined as a function of the Reynolds numbers of the inner and outer cylinder,
the Mach number of the flow and the Prandtl number of the gas. We focus on the case
of a wide gap, with radius ratio 0.5. We find new modes of instability at high Prandtl
number, which can allow oscillatory axisymmetric modes to onset first. We also find
that onset can occur even when the angular momentum increases outwards, so that
the classical Rayleigh criterion can be violated in the compressible case. We have also
considered the case of counter-rotating cylinders, where the m= 0 and m= 1 modes
can onset simultaneously to give a codimension 2 bifurcation, leading to the formation
of complex flow patterns. In compressible flow we also find codimension 3 points. The
Mach number and the critical inner and outer Reynolds numbers can be adjusted so
that the two neutral curves for the m = 0 and m = 1 modes touch rather than cross.
Complex codimension 3 points occur more readily in the compressible case than in
the Boussinesq case, and they are expected to lead to a rich nonlinear behaviour.
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1. Introduction
Taylor–Couette flow, the flow found between two concentric rotating cylinders,

has been much studied both theoretically and experimentally. In the vast majority of
this work, the fluid has been assumed incompressible. The first successful analysis
of the incompressible problem was done by Taylor (1923). However, his work
focused on those cases where the difference of the radii of the cylinders is small.
More comprehensive studies of the linear incompressible problem have since been
done, for example by Chandrasekhar (1961) and Davey, DiPrima & Stuart (1968).
However, most of the research effort in the incompressible case has been focused on
experimental problems.

The present paper was originally motivated by astrophysical questions and we
have thus concentrated our efforts on the compressible problem. A major challenge
in astrophysical fluid dynamics has been to explain the turbulence which must be
present in accretion disks. Since the angular momentum increases outwards in disks in
Keplerian rotation one might naively expect these disks to be stable. Magnetorotational
instability has been identified as a possible solution to the problem of turbulence and
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angular momentum transport in accretion disks (Balbus & Hawley 1998), though
purely hydrodynamic explanations have also been considered (see e.g. Armitage
2011, and references therein). Similarities between astrophysical disks and fluid flows
bounded by concentric differentially rotating cylinders have motivated a number of
theoretical and experimental studies of hydrodynamic and magnetohydrodynamic
Taylor–Couette flows (see, e.g. Goodman & Ji 2002; Dubrulle et al. 2005; Hersant,
Dubrulle & Huré 2005; Stefani et al. 2006). One problem of considerable interest
is, for instance, the controversial question of subcritical hydrodynamic turbulence
in Keplerian-like Taylor–Couette flows. From the experimental measurement of the
torques acting on the cylinders Paoletti & Lathrop (2011) found that efficient angular
momentum transport would be possible in accretion disks for purely hydrodynamical
reasons; this is in contradiction with experiments conducted by Ji et al. (2006)
who demonstrated that the required turbulence level could not be achieved in their
apparatus. There is still no consensus on this issue despite subsequent complementary
experimental runs (Paoletti et al. 2012; Schartman et al. 2012). As yet, no studies of
Taylor–Couette flows motivated by astrophysical problems have considered the effects
of compressibility, despite the fact that accretion disk flows have high Mach numbers.

To date, the only controlled laboratory experiment on compressible Taylor–Couette
flow was reported by Larignon, Marr & Goldstein (2006) who went up to Mach 2.
At these speeds the Reynolds number is too far above critical to make contact
with linear theory unless the gas density is very low, to compensate for the low
value of the dynamic viscosity (see (2.6) below). Their experiment was therefore
carried out in a low pressure environment of 10–100 Pa. They used a narrow gap
apparatus, and measured the torque and the heat flux and compared their results with
numerical simulations assuming axisymmetry. At the lowest pressures, their results
were consistent with laminar flow, but at the higher pressures, where the Reynolds
number was beyond the critical value, they were consistent with a Taylor-vortex flow.
Their heat flux measurements suggested that significant heat is being generated in the
fluid interior. It is slightly surprising that so little experimental work has been done
on the compressible problem, as huge advances were made in fluid mechanics from
the experimental and theoretical studies of the incompressible problem.

The compressible Taylor–Couette problem becomes somewhat more complex with
an added equation of state and a temperature equation. A sensible choice of boundary
conditions, particularly for the density ρ, also requires some care. So far, the
problem has been relatively neglected, with only a few studies published. Hatay
et al. (1993) concluded that compressibility has a stabilising effect, while Kao &
Chow (1992) found that compressibility both stabilises and destabilises, depending on
the temperature ratio and speeds of the cylinders. In response to this paper, Manela
& Frankel (2007) published another study which focuses particularly on the narrow
gap limit and they conclude that compressibility stabilises. They pointed out that
some previous studies had not conserved mass as the external parameters were varied.
They have also modified the no-slip boundary condition to allow for a very low
density fluid where the mean free path is comparable to the gap-width. This is a
regime of interest for potential experiments, but here we use the classical continuum
approximation.

In this paper we concentrate on two aspects of the problem which have revealed
what we believe to be new phenomena. The first area investigated is the stability of
axisymmetric disturbances. We have explored a much greater range of space than in
previous studies. At Prandtl number unity and with the outer cylinder stationary, we
find that compressibility is generally stabilising, in agreement with Manela & Frankel
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(2007). However, at higher Prandtl numbers, we find new branches of instability.
Somewhat surprisingly, we can even find instability below the Rayleigh line (see e.g.,
Chandrasekhar 1961), that is when the angular momentum increases outwards. Even at
moderate Prandtl numbers, in compressible flow the Rayleigh criterion can be violated.
Another surprising phenomenon is that there are significant regions of the parameter
space where axisymmetric modes first onset in oscillatory form, that is, through a
Hopf bifurcation. This cannot happen with an incompressible fluid (Yih 1972).

The second aspect we examined was the counter-rotating case, where it is known
that m= 1 non-axisymmetric modes may onset before axisymmetric m= 0 modes, and
at special codimension 2 points, the two modes can onset simultaneously. This leads
to interesting and rich nonlinear behaviour; see e.g. Chossat & Iooss (1994). They are
called codimension 2 points because two parameters, often the Reynolds numbers of
the outer cylinder and inner cylinder, must have particular values for the simultaneous
onset. In the compressible problem, we find not only these codimension 2 points but
also codimension 3 points. Normally, the curves of critical inner Reynolds number
as a function of outer Reynolds number for the m = 0 and m = 1 modes cross at
the codimension 2 point. At certain values of the Mach number these curves touch
rather than cross, giving rise to a codimension 3 point. This phenomenon requires
three parameters to be tuned to specific values, and below these are taken to be the
two Reynolds numbers and the Mach number.

This codimension 3 behaviour can occur in the incompressible case (Signoret 1988;
Signoret & Iooss 1988) at low radius ratio, but it appears to be much more common in
the compressible case. We have not explored here the nonlinear behaviour associated
with these codimension 3 points. Other examples in the literature suggest that many
different possibilities can occur, so this will be a substantial further undertaking,
beyond the scope of this paper.

2. Governing equations
We consider two infinite, concentric cylinders of radius R1 and R2, with R2 > R1

where d= R2 − R1 is the gap width between them. We use cylindrical coordinates (r,
θ , z) where z coincides with the common axis of the cylinders. The gap is filled with a
compressible fluid of density ρ, pressure p and temperature T . The fluid is maintained
at constant temperature on both inner and outer cylinders. However, viscous heating,
Φ, produced by the fluid flow u= (ur,uθ ,uz) leads to the interior fluid having a higher
temperature than the boundaries.

We consider a fluid with constant dynamic viscosity, µ̂, coefficient of thermal
conduction, k̂, and specific heats, cp and cv. As a result of mass density variations,
the fluid kinematic viscosity ν = µ̂/ρ and thermal diffusivity κ = k̂/(ρcp) are not
constant. The temperature dependence of µ̂ and k̂ observed in kinetic models of
compressible fluids has therefore not been considered in our study. However, in order
to get some insights into the effects of nonuniform transport coefficients on the
dynamics of the flow, we have also partially investigated the case of constant ν and
κ , which has led to qualitatively similar results. Since the equations governing both
regimes of dissipation are conceptually close but somewhat different, we only present
in this paper results obtained for constant µ̂ and k̂; the main differences between the
two regimes will however be emphasised. For simplicity, we also assume that the
fluid is a perfect gas of adiabatic index γ = cp/cv, which is taken as γ = 5/3. We
neglect gravity, which will be small in comparison with the centrifugal acceleration
at the high rotation rates we envisage.
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The two cylinders are maintained at constant angular velocities and we examine the
resulting fluid flow, governed by the equations

∂ρ

∂t
+∇ · (ρu)= 0, (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · (2µ̂ e

)− 2
3
∇
(
µ̂∇ · u

)
, (2.2)

ρcv

(
∂T
∂t
+ u · ∇T

)
=−p∇ · u+∇ ·

(
k̂∇T

)
+Φ, (2.3)

Φ = µ̂
(

2eijeij − 2
3
(∇ · u)2

)
where eij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.4)

p= (cp − cv)ρT. (2.5)

2.1. Nondimensional equations
Let M0 be the mass per unit length of fluid between the two cylinders. The unit of
length is the gap width, d, and the unit of mass density the average fluid density
within the gap, ρ?=M0/(π(R2

2−R2
1)), or equivalently the density of an incompressible

fluid of the same mass. Some previous studies (e.g. Kao & Chow 1992; Hatay et al.
1993) used ρ at the inner boundary as the unit of density but, as noted by Manela
& Frankel (2007), only M0 can be prescribed in experiments, not the local density;
in our equilibrium models, ρ can vary quite significantly at the inner cylinder as the
parameters change. The unit of time is the viscous relaxation time, ρ?d2/µ̂, µ̂ constant,
and the unit of temperature, T?, the temperature on the inner cylinder. This leads to
the units of velocity µ̂/(ρ?d) and pressure (cp − cv)ρ?T?.

The ratio of the angular velocity of the outer cylinder to the angular velocity of
the inner cylinder is defined by µ=Ω2/Ω1 and η= R1/R2 is the radius ratio, which
is taken as η= 0.5 in the calculations described in this paper, except in a few cases
which are detailed below. These are familiar definitions from the incompressible case.
We also introduce Re1, the Reynolds number at the inner cylinder, and Re2, the
Reynolds number at the outer cylinder:

Re1 = Ω1R1ρ∗d
µ

, Re2 = Ω2R2ρ∗d
µ

. (2.6a,b)

The isothermal sound speed cs is given by c2
s = (cp − cv)ρ2

?T?d2/µ̂2 and is a
dimensionless parameter, but it is more convenient to define the Mach number
Ma = Re1/cs which is a useful measure of compressibility. The limit Ma → 0 is
the incompressible limit in which we expect to recover the well-known Boussinesq
results.

Once the pressure, p= ρT , is eliminated, the dimensionless equations become

∂ρ

∂t
+∇ · (ρu)= 0, (2.7)

ρ

(
∂u
∂t
+ u · ∇u

)
=− Re2

1

Ma2
∇ (ρT)+∇2u+ 1

3
∇(∇ · u), (2.8)

ρ

(
∂T
∂t
+ u · ∇T

)
=−(γ − 1)ρT ∇ · u+ γ

Pr
∇2T + (γ − 1)

Ma2

Re2
1
Φ, (2.9)

where Pr= cpµ̂/k̂ is the Prandtl number.
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The boundary conditions are taken as no-slip, with constant temperature boundaries,

ur = 0, uz = 0 on r= η

1− η , r= 1
1− η ;

uθ = Re1, T = 1 on r= η

1− η ;

and uθ = Re2, T = χ on r= 1
1− η . (2.10)

The outer cylinder temperature is always taken as χ = 1 unless otherwise stated.
Manela & Frankel (2007) used a set of boundary conditions which introduces
additional kinetic effects. The dynamical and thermal importance of these processes
is quantified by the Knudsen number, Kn, defined as the ratio of the mean free path
to the gap width. Using the kinetic theory of a perfect gas, which relates the viscosity
to the mean free path, we obtain Kn∼Ma/Re1 with a constant of proportionality of
order unity. Yoshida & Aoki (2006) found that centrifugal instabilities are suppressed
for Kn & 0.01 in Taylor–Couette flows of rarefied gases, for a limited domain
of the parameter space. Their calculations showed a good agreement between the
Bhatnagar–Gross–Krook model of kinetic theory and the continuum model, except
when large mass density gradients are present. Here we typically expect Kn < 0.01,
so that the continuum limit applies, except in some particular circumstances, e.g. for
large Mach numbers or high Prandtl numbers.

The basic state solutions of (2.7)–(2.12), denoted by ρ0, u0 and T0, where u0
consists of a purely azimuthal flow, are functions of r only. We linearise for
small perturbations about the basic state, seeking normal modes of the form
∼exp(σ t + imθ + ikz), where m is the azimuthal wavenumber, k is the axial
wavenumber and σ is in general complex. The linear equations are reduced to
scalar equations, details being given in appendix A.

2.2. The basic state
As in Boussinesq Couette flow, we seek a basic state solution with ur = uz = 0
and steady axisymmetric azimuthal flow. The solution of the θ -component of the
momentum equation (2.8) is given by

u0 = Ar+ B
r
. (2.11)

Following Chandrasekhar (1961),

A= Re1
µ− η2

η(1+ η) and B= Re1
η(1−µ)

(1− η)(1− η2)
, (2.12a,b)

where µ and η are defined in § 2. For the steady state temperature, we solve

1
r

d
dr

(
r

dT0

dr

)
+ γ − 1

γ

Pr Ma2

Re2
1

[
r

d
dr

(u0

r

)]2

= 0, (2.13)

and obtain

T0 = χ + γ − 1
γ

Pr Ma2

Re2
1

B2

(
C ln r− 1

r2
+D

)
+ (1− χ) ln [r(1− η)]

ln η
, (2.14)
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where

C= (1− η
2)(1− η)2
η2 ln η

and D= (1− η)2
[

1+ 1− η2

η2

ln(1− η)
ln η

]
(2.15a,b)

are constants of integration.
The steady state density of mass is determined by the radial component of the

momentum equation (2.8), which can be written as a second order boundary value
problem for the distribution of mass defined by

M(r)= 2π

∫ r

η/(1−η)
ρ0(s) s ds. (2.16)

So, we first numerically solve the differential equation

d2M
dr2
+
(

1
T0

dT0

dr
− Ma2

Re2
1

u2
0

r T0
− 1

r

)
dM
dr
= 0, (2.17)

with

M
(

η

1− η
)
= 0 and M

(
1

1− η
)
=π

1+ η
1− η , (2.18a,b)

then we compute the mass density

ρ0 = 1
2πr

dM
dr
. (2.19)

Our choice of unit of density ensures that the mass of fluid in the gap between
the cylinders is a constant, but it also ensures consistency with the Boussinesq
approximation since ρ0→ 1 as Ma→ 0.

There can be quite significant fluctuations in the density as Ma is increased, i.e.
when the compressibility is increased. In figure 1, we show the basic state for a
range of Ma at Pr = 1, Re2 = 0 and Re1 close to critical (see figure caption for
the values of Re1). At small Ma, i.e. the incompressible limit, the density is evenly
distributed throughout the system. We notice that, as Ma increases, this profile
changes dramatically and the density concentrates more and more towards the outer
cylinder. This means, as compressibility increases, more of the mass in the system
moves towards the outer cylinder and concentrates there, leaving less mass at the
inner boundary. This behaviour is typical at moderate Prandtl number; however the
distribution of mass within the gap can become even more complex as Pr increases
(see figure 4). For this reason, we chose to fix the overall mass of fluid rather than
the density at any specific point in the system.

Similarly, we notice that for small Ma, the temperature profile is fixed and there
is almost no variation in the temperature. This is exactly what you would expect
from the incompressible case, because for small Ma, the effect of viscous heating,
Φ, is completely negligible. As Ma increases, we see the formation of a distinct
hump. Indeed, the larger the increase in Ma, the more noticeable the hump becomes
as the impact of Φ becomes more and more significant. The heat flux measurements
in the experiment of Larignon et al. (2006) were consistent with the existence of a
temperature hump in the interior of the fluid.
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FIGURE 1. Basic state profiles of velocity (a), temperature (b) and density (c) for
different values of Ma, with Pr= 1, Re2= 0 and Re1 close to critical. The Mach number
takes the following values: the incompressible case Ma≈ 0 with Re1c≈ 68.19 (dotted line),
Ma= 1 with Re1c ≈ 71.64 (solid line) and Ma= 3 with Re1c ≈ 94.65 (dashed line).

The steady state defined for constant µ̂ and k̂ by (2.11), (2.14) and (2.17) is the
solution to a boundary value problem which consists of three second order differential
equations for azimuthal velocity, temperature and radial mass distribution – the first
two equations have been solved analytically, the third numerically. In the case of
constant kinematic viscosity and thermal diffusion, steady states are solutions to an
analogous boundary value problem, where the azimuthal velocity is still dictated
by a vanishing viscous force in azimuth but since µ̂ = ρν it now depends on the
fluid mass density (see (2.2)); similarly, the heat conduction equation is now also
a function of the density (see (2.3)). Thus, all three equations are coupled and
require fully numerical solutions. In both regimes, we have found that the basic
state temperature and mass distributions remain qualitatively similar for identical
independent parameters, however an inflexion point appears in the azimuthal velocity
profile as Pr is increased, when ν and κ are assumed constant.

3. Axisymmetric instabilities

We first consider modes with m= 0, because this is known to be the most unstable
mode when µ= 0 in the Boussinesq problem.
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k

Re1

FIGURE 2. Curves of marginal stability showing Re1, at instability onset, vs k for Pr= 1,
Re2= 0 and for different values of Ma; the Mach number takes the values Ma≈ 0 (dotted
line), Ma= 1 (solid line), Ma= 2 (dashed line) and Ma= 5 (dash-dotted line).

3.1. Fixed outer cylinder, Re2 = 0
In principle, unstable sound waves could occur in this problem, but in practice we
did not find any. In most situations, the most unstable axisymmetric modes have zero
frequency, but there are exceptions to this at high Pr, detailed below.

In figure 2 we show the Reynolds number at the instability onset as a function of
k for different Ma; we define the critical Reynolds number, Re1c, and corresponding
wavenumber, kc, as the minimum of Re1 at instability onset when optimised over k. In
the incompressible limit, Ma≈0, we obtain the well-known results of Rogers & Beard
(1969) (see also DiPrima, Eagles & Ng 1984). By increasing gradually Ma from 0 to
5, we find that the effect of compressibility is to stabilise the system and increase the
critical wavenumber kc slightly (see table 1 below); a similar behaviour for Re1c and
kc has also been observed when Ma> 5. This is in agreement with the analysis done
by Manela & Frankel (2007). Considering fluids with constant ν and κ , rather than
constant µ̂ and k̂, does not change the behaviour of the critical point (kc,Re1c) on the
curves of marginal stability significantly.

In addition to the Mach number, the compressible problem has a new dimensionless
parameter, the Prandtl number, Pr. We therefore explore how the critical Reynolds
number, Re1c, and the critical wavenumber, kc, vary with different Prandtl numbers.
At Ma = 1, increasing the Prandtl number up to around 4.5 increases Re1c and so
stabilises the system, but the behaviour of this branch of instability, analogous to
the incompressible Taylor–Couette modes, is not very different from the Pr= 1 case.
However, beyond Pr≈ 4.5, the behaviour of Re1c changes radically.

In figure 3 we plot, in solid line, Re1c as a function of Pr at Ma= 1. This graph
shows that different types of modes of instability have been found; in particular,
between Pr ≈ 4.49 and Pr ≈ 10.36, the critical modes of instability are oscillatory,
i.e. with ω = Im(σ ) 6= 0. (Owing to the symmetries of the system, critical modes of
both frequencies ±ω onset simultaneously.) This is quite remarkable as Yih (1972)
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 a: Taylor−Couette branch
 b: Oscillatory branch
 c: Convective branch

Pr

Re1c

FIGURE 3. Critical Reynolds number Re1c vs Pr, for Re2 = 0 and Ma = 1 (solid line),
Ma = 2 (dashed line) and Ma = 5 (dotted line). We show the Taylor–Couette branch of
instability (a), the oscillatory branch (b) and the convective branch (c).

Taylor–Couette branch Oscillatory branch Convective branch
Ma Re1c kc Re1c kc ω Re1c kc

1 Pr= 1 Pr= 7 Pr= 15
71.6357 3.1729 79.2450 3.1243 3.0374 63.4623 5.3778

2 Pr= 1 Pr= 5 Pr= 10
81.1803 3.1950 94.4030 3.1094 4.6189 75.5901 5.4300

5 Pr= 1 Pr= 3 Pr= 10
125.0028 3.2457 143.6191 3.1549 7.8603 90.5228 5.6478

TABLE 1. Typical values of Re1c and kc for the three different branches of instability,
when the outer cylinder is at rest.

proved that there could be no unstable oscillatory modes with m= 0 in incompressible
Couette flows. So, the appearance of a Hopf bifurcation is a specifically compressible
effect. For Pr > 10.36 a new type of steady mode, which we identify below as a
convective mode, takes over; it has a much higher wavenumber (kc & 5) at onset. The
three different branches of instability identified continue to exist, for a range of values
of Pr, when they are no longer the critical mode. As expected, the frequency of the
oscillatory modes tend to zero when Pr tends to values where this branch ceases to
exist. Interestingly, whereas the Taylor–Couette modes are stabilised by increasing
the Prandtl number, for the oscillatory branch of instability, Re1c diminishes as
Pr increases. The reduction of Re1c with increasing Pr is even more pronounced
for convective modes, inasmuch as the smallest values of Re1c are achieved by these
modes at large Pr. In the region Pr & 20, Ma& 5 of the parameter space the Knudsen
number satisfies Kn∝Ma/Re1 & 10−1. Therefore kinetic effects may lead to velocity
slip and temperature jump at the walls, which are not modelled by our choice of
boundary conditions (Manela & Frankel 2007).
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FIGURE 4. Basic state profiles of velocity (a), temperature (b) and density (c) for
different values of Pr, with Ma= 1, Re2 = 0 and Re1 close to critical. The case Pr = 1
with Re1c ≈ 71.64 is shown in dotted line, Pr = 7 with Re1c ≈ 79.24 in dashed line and
Pr= 15 with Re1c ≈ 63.46 in solid line.

The plots in dashed and dotted lines in figure 3 show that similar regimes of
instability occur for higher Ma, the main difference being that the range of Pr
leading to oscillatory modes is reduced and shifted towards lower Pr (critical modes
are oscillatory between Pr ≈ 2.96 and Pr ≈ 6.59 at Ma = 2, and between Pr ≈ 1.99
and Pr ≈ 4.69 at Ma = 5; they become convective at larger Pr). Hence, convective
modes can become dominant at smaller Pr when Ma is sufficiently large. We see
in figure 3 that, when the Mach number changes from Ma = 1 to Ma = 2, Re1c is
reduced slightly for Prandtl numbers from Pr ≈ 10.36 to Pr & 20; note however that
all three types of modes of instability, Taylor–Couette, oscillatory and convective, are
stabilised by compressible effects at large Ma.

Some insight into the new branches of instability may be gained from examining
the changes to the basic state. So, in figure 4 we show basic states at Ma = 1 and
for parameter values where the three different types of instability onset: a Taylor–
Couette mode in dotted line, an oscillatory mode in dashed line and a convective
mode in solid line. Since viscous heating is generated in these differentially rotating
flows, the temperature profile depends crucially on viscosity and thermal conductivity.
Figure 4(b) shows that the temperature in the bulk of the fluid increases with the
Prandtl number; the maximum temperature varies from T ≈ 1.1 at Pr= 1 to T ≈ 1.6
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at Pr= 7 and T ≈ 2.4 at Pr= 15. Large temperature gradients, which develop at high
Prandtl number, have an important impact on the fluid density stratification. When
Pr= 1 the temperature does not vary significantly with the radius and thus the density
profile shown in figure 4(c), slightly increasing outwards, is essentially determined
by the balance between pressure and centrifugal forces. But, at Pr = 7, the fluid,
hotter near the mid-radius than at the boundaries, expands and creates a depletion of
material locally. By conservation of mass, fluid removed from the centre accumulates
near the boundaries. Thus, a negative density gradient forms near the inner cylinder,
in the presence of an effective gravity pointing outwards, which corresponds to the
centrifugal force acting on the fluid in rotation. This configuration is analogous to the
setup leading to Rayleigh–Taylor instabilities when heavy fluid stands on top of lighter
fluid and gravitation points downwards. Near the outer cylinder, the density gradient
is positive, giving a stable stratification there. The stable stratification has the potential
to give rise to waves analogous to gravity waves. In figure 4(c), the negative density
gradient observed at the inner radius at Pr = 7 becomes larger at Pr = 15, and the
density is also higher at the outer radius.

The critical Reynolds numbers, corresponding wavenumbers and, where non-zero,
the frequencies at some typical parameter values are given in table 1. We note
that the frequencies of the oscillatory modes are much smaller than those of sound
waves, since in these units the isothermal sound speed is Re1/Ma. In figure 5 we
show the eigenfunctions corresponding to the different types of unstable mode,
all at Ma = 1, at the parameter values given in the top row of table 1. In the
incompressible limit, as the Mach number tends to zero, the differentially rotating
flow between the cylinders becomes neutrally stable for Re1c ≈ 68.19, and steady
(ω= 0) Taylor–Couette cells form with a critical wavenumber kc ≈ 3.16. Figure 5(a)
shows that, when compressible effects are considered, at Ma = 1, with Pr = 1, the
formation of such Taylor–Couette cells persists, on similar length-scales, but at
a higher critical Reynolds number. As seen in figure 5(d), this perturbation flow
changes the fluid density. Two effects combine to modify the distribution of mass
in the fluid: the divergence or convergence of the perturbation flow (ρ0∇ · u) and
the perturbation of the radial mass-flux (urdρ0/dr). At Pr = 1, both mechanisms are
stabilising since they lead to heavy fluid moving inwards and lighter fluid moving
outwards in an effective gravity field pointing towards the outer cylinder. However,
at Pr = 1, these density fluctuations are small and do not affect the Taylor–Couette
instability significantly, only increasing the critical Reynolds number somewhat.

For higher Prandtl numbers, between Pr≈ 4.49 and Pr≈ 10.36, the positive density
gradient region near the outer cylinder, combined with the Taylor–Couette instability
mechanism, leads to oscillatory motion at the instability onset. The flow pattern
of the oscillatory mode, shown in figure 5(b), is very similar to that of the steady
mode in figure 5(a), but the density perturbation, shown in figure 5(e), is now large
near the outer cylinder, where the stable stratification exists. The Taylor–Couette
instability is in this case destabilising the gravity waves in much the same way as
a destabilising thermal stratification, acting on a stably stratified salt distribution,
can excite gravity waves in the ocean. It is possible to define an effective buoyancy
frequency N = [−U2

0/r ln′(T0ρ
1−γ
0 )]1/2, where prime denotes a radial derivative. We

have found that N is imaginary in the inner part of the flow and real in its stably
stratified outer part, where density fluctuations peak (see figure 5e). The magnitude
of the real part of N is of the same order of magnitude as the frequency of our
oscillatory eigenfunctions, but accurate quantitative agreement is not possible. This
is not surprising since the buoyancy frequency is a local concept and its derivation
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FIGURE 5. (a–c) The flow patterns at the onset of instability. The shades give uθ
and the arrows the meridional flow in the r–z plane; eigenmodes are normalised so
that max(|uz|) = 1. The shade in (d–f ) denotes density, and again the arrows give the
meridional flow. The outer cylinder is at rest, Ma= 1 and (a,d) Pr= 1, (b,e) Pr= 7 and
(c,f ) Pr= 15; the corresponding values of Re1c and the characteristics of the eigenmodes
are given in table 1.

assumes inviscid and adiabatic processes, whereas unstable modes are global and
dissipative effects are crucial.

When the Prandtl number increases further, beyond Pr≈ 10.36, the negative density
gradient present near the inner cylinder becomes even larger and, at the instability
onset, the dynamics of the fluid is now dominated by the buoyancy instability. The
neutral instability cells, shown in figures 5(c,f ), develop nearer to the inner cylinder
– where the negative density gradient exists – and on shorter axial length scales than
for the rotational instability, which is why figures 5(c) and 5(f ) are shorter. In this
compressible regime, at high Prandtl numbers, the critical modes are steady and of
a convective nature since they are driven by an effective buoyancy instability. Here
the rotational instability plays essentially a limiting role in the development of the
convective instability.

Interestingly, buoyancy, and hence convective instabilities, can be enhanced or
reduced by varying the basic state temperature distribution between the cylinders; this
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FIGURE 6. Critical Reynolds number Re1c vs Pr, for Re2 = 0, Ma = 1 and the outer
cylinder temperature χ = 0.5, 0.9, 1.1 and 1.2 in dotted, dash-dotted, dashed and solid
line respectively.

should therefore affect the range of Pr corresponding to the different critical branches
of instability. Variations of the wall temperature were present in the experiment of
Larignon et al. (2006). Figure 6 shows the consequences of varying the temperature
of the outer cylinder; χ < 1 (resp. χ > 1) corresponds to the case of the temperature
on the outer cylinder being lower (resp. higher) than that on the inner one. Hence
decreasing χ should stabilise the fluid stratified by an effective gravity pointing
radially outwards. As expected, when χ varies from 1 (solid line in figure 3) to 0.5,
the critical Reynolds number increases for all Pr; conversely, when χ varies from 1
to 1.2, Re1c is reduced. In addition we have found that the lower bound of the range
of Prandtl numbers leading to convective modes at instability onset decreases with
increasing χ ; critical modes are of a convective nature when Pr & 13.65 for χ = 0.5;
when Pr & 11.24 for χ = 0.9; and when Pr & 8.80 for χ = 1.1. Simultaneously,
the upper bound of the range of Prandtl numbers producing centrifugal modes at
instability onset increases with χ ; critical modes are centrifugal when Pr . 2.22 for
χ = 0.5; when Pr . 3.69 for χ = 0.9; and when Pr . 6.04 for χ = 1.1. Therefore the
interval of Pr giving oscillatory modes at onset shrinks when the outer cylinder gets
hotter. In fact, when χ = 1.2 we have found steady modes at instability onset for all
Prandtl numbers: the oscillatory branch still exists, over a narrow range of Pr, but
only at Reynolds numbers above critical. This shows that the centrifugal branch of
instability merges with the branch of convective instability as χ is increased. When
χ = 1 the centrifugal and convective branches are distinct, but when χ = 1.1 the two
branches have merged to form a single branch of instability. However at χ = 1.1 for
the range 6.04 . Pr . 8.80 the oscillatory mode is preferred, though at higher χ the
merged centrifugal-convective branch dominates. Interestingly, the critical Reynolds
number for this convective branch is a slowly varying function of the Prandtl number,
for small Pr.

By adjusting the wall temperature ratio χ downwards, it is therefore possible to see
all the possible modes of instability (centrifugal, oscillatory and convective) even for
fluids with Prandtl numbers around unity.
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FIGURE 7. (a) Stability curves, Re1c vs Re2, for Ma= 1 and Pr= 7, 4 and 2, in dashed,
dash-dotted and dotted line respectively; the solid line indicates the Rayleigh line, Re1 =
Re2/η. (b) Critical Reynolds number Re1c, on the Rayleigh line Re2= ηRe1c, as a function
of Pr for a series of values of Ma between 0.1 and 5, as indicated.

3.2. Crossing of the Rayleigh line
We now consider the case where both inner and outer cylinders rotate in the same
direction. It is well-known that, in the incompressible regime, linear instability only
occurs when the angular momentum in the basic state flow decreases outwards, i.e.
when Re2 < ηRe1 in our nondimensional units (see e.g. Chandrasekhar 1961). Very
unexpectedly we found that, for compressible flows, instability can occur even when
the Reynolds numbers Re1 and Re2 lie below the Rayleigh line Re1 = Re2/η.

In figure 7(a) we show a series of stability curves, Re1c against Re2, for Ma = 1.
At Pr= 7, an oscillatory mode onsets first when the outer cylinder is at rest (see also
figure 3) and, as Re2 increases, the critical modes remain oscillatory until Re2 ≈ 43,
when convective modes become the most unstable. Since these convective modes are
not driven by centrifugal instability, they do not respect the Rayleigh line, and we
find that this branch of instability crosses the Rayleigh line at Re2 ≈ 90. For smaller
Prandtl numbers, as Re2 increased we again observed similar changes in the nature
of the critical modes of instability as well as the crossing of the Rayleigh line by
the convective branch, but for larger Reynolds numbers. At Pr = 4, for 0 6 Re2 < 7,
steady Taylor–Couette modes of instability onset first. However, for larger Re2, gravity
waves are destabilised so that the critical modes become oscillatory, until Re2 ≈ 128
when convective modes take over. The crossing of the Rayleigh line then occurs at
Re2 ≈ 201. For Pr = 2, at the onset of instability, steady Taylor–Couette modes are
preferred for 06Re2< 63, oscillatory modes for 636Re2< 484 and convective modes
beyond. The convective branch intersects the Rayleigh line at Re2 ≈ 1040.

We notice in figure 7(a) that, as Pr decreases from 7 to 2, the critical curve for the
convective branch tends to become parallel to the Rayleigh line. This demonstrates
that a reduction of the maximum temperature in the bulk of the fluid, resulting from a
diminution of Pr, leads to the stabilisation of the radial stratification. In fact, we found
that the underlying physical mechanism giving rise to convective instabilities differs
depending on the value of Pr. The convective modes found are the consequence of
an unstable stratification of the fluid between the cylinders which can result from an
unstable mass distribution (a form of Rayleigh–Taylor instability) or from an unstable

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.279


On compressible Taylor–Couette flow 569

temperature profile (thermal convection). At Pr = 7 and Pr = 4, for the range of
Reynolds numbers shown in figure 7(a), the mass distribution always presents an
unstable (negative) gradient near the inner boundary, driving convective instabilities
as previously discussed (see e.g. figure 4c). However, at Pr = 2, the mass density
increases monotonically with the radius, for all basic state flows at instability onset.
We can nevertheless demonstrate that, at Pr = 2, the temperature profile still makes
the fluid unstably stratified, by examining the basic state entropy, s ∝ ln(T0ρ

1−γ
0 ),

which presents a positive (and hence unstable) gradient near the inner boundary. For
Reynolds numbers on the Rayleigh line at the instability onset, the magnitude of
the unstable entropy gradient decreases with decreasing Pr and, simultaneously, the
extent of the unstably stratified region shrinks. These properties of the basic state
illustrate the stabilisation of the radial stratification and the localisation of the critical
modes at low Pr. Moreover, for all critical modes on the Rayleigh line, the velocity
perturbations are confined to meridional planes, i.e. uθ = 0.

In figure 7(b) we see very rapid increases in critical Reynolds numbers around
values of Pr that depend on Ma. For instance, at Ma = 1, on the Rayleigh line,
thermal convection onsets at Re1c ≈ 2080.75 and kc ≈ 11.44 when Pr = 2 and at
Re1c ≈ 139 164.01 and kc ≈ 52.85 when Pr = 1.2. Interestingly, we found that there
is an optimal value of Ma which minimises Re1c for all the values of Pr considered.
Increasing the fluid compressibility from incompressible to Ma ≈ 1.75 reduces the
critical Reynolds number for the convective modes crossing the Rayleigh line (see
solid lines in figure 7b). However, above this threshold, shown by a dotted line in
figure 7(b), increasing the Mach number stabilises the radial stratification (see dashed
lines).

Most of the results discussed in this section hold whether µ̂ and k̂, or ν and
κ , are assumed constant. In both regimes of dissipation we have found the same
branches of modes at instability onset (centrifugal, oscillatory and convective), with
the convective branch leading to the violation of Rayleigh’s criterion. The regions
of the parameter space where the various types of modes exist vary in both regimes
however. For instance, when ν and κ are constant, no value of the Prandtl number
has been found (with χ = 1) where oscillatory modes onset first for Re2 . 10. In this
regime, convective modes seems generally dominating, leading in particular to the
breaking of Rayleigh’s criterion at significantly smaller Reynolds numbers than when
µ̂ and k̂ are constant (all other parameters being fixed).

4. Counter-rotating cylinders
In this section, we discuss the stability of compressible Taylor–Couette flows

with counter-rotating cylinders, for which we have taken Re1 > 0 and Re2 < 0. We
investigated the impact of changing Ma and Pr on the stability of axisymmetric
(steady) modes and of non-axisymmetric (oscillatory) modes with m = 1, which are
known to be important in the case of counter-rotating cylinders, for incompressible
flows (see, e.g., Davey et al. 1968; Chossat & Iooss 1994). Critical values of the
Reynolds numbers are referred to as Re0

1c and Re1
1c, for modes m = 0 and m = 1

respectively. We define the difference between the critical Reynolds numbers to
be ∆ = Re1

1c − Re0
1c, so that ∆ is negative when non-axisymmetric instabilities are

preferred. The case ∆= 0 is a codimension 2 point, as discussed below, corresponding
to the simultaneous onset of one axisymmetric and one non-axisymmetric mode of
instability. A nonlinear analysis is then required to elucidate the behaviour of the
fluid at the onset of instability.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.279


570 S. Welsh, E. Kersalé and C. A. Jones

−600 −500 −400 −300 −200 −100 0

0

5

10

15

20

25

Re2

−300 −200 −100

−2

0

2

4

FIGURE 8. Difference between the critical Reynolds number for the modes m = 0 and
m = 1, ∆ = Re1

1c − Re0
1c, plotted against Re2 for incompressible flows and for different

values of η. The radius ratio takes the values η= 1/3 (dash-dot line), η≈ 0.3630 (dashed
line), η≈ 0.4632 (solid line) and η= 2/3 (dotted line).

4.1. The incompressible case
Firstly we wish to review, in this framework, results from the incompressible regime,
corresponding to Ma ≈ 0. In figure 8, we plot ∆ against Re2 for different radius
ratios η. For all values of η, non-axisymmetric instability is preferred provided that
Re2 is sufficiently negative. However, for η = 1/3 and η = 2/3, a crossing of the
axis ∆= 0 occurs, which means that the axisymmetric instability is preferred below
a certain value of |Re2|.

At η = 1/3, as Re2 decreases the value of ∆ goes through a local minimum at
Re2 ≈−118, followed by a local maximum at Re2 ≈−190, subsequently falling and
crossing the ∆ = 0 axis at Re2 ≈ −460. As we gradually increase η from 1/3, the
local minimum of ∆ approaches the ∆ = 0 axis, which it touches at η ≈ 0.363,
Re2 ≈ −113.19 and Re1 ≈ 113.12. This point is therefore a codimension 3 point
where the parameters η, Re1 and Re2 all have particular values. If one lets σ 0 and σ 1

(both functions of k, Re1, Re2 and η) be the growth rates of the modes m = 0 and
m = 1 respectively, then, at a critical point of the m = 0 mode, σ 0 = ∂σ 0/∂k = 0.
Solving these equations determines k0

c(Re2, η) and Re0
1c(Re2, η). Similarly, for

the m = 1 mode, we obtain k1
c(Re2, η) and Re1

1c(Re2, η). A codimension 2 point
satisfies the additional equation Re0

1c(Re2, η) = Re1
1c(Re2, η), or equivalently ∆ = 0,

which, for given η, determines Re2. At a codimension 3 point the further equation
∂Re0

1c/∂Re2= ∂Re1
1c/∂Re2, or ∂∆/∂Re2= 0, must hold and thus determines η uniquely.

As η is increased above 0.363, the local minimum goes below the ∆= 0 axis, so
there are now three codimension 2 points. The local maximum, located between the
codimension 2 points with the most negative Re2 values, comes down and touches
the ∆= 0 axis to give a second codimension 3 point at η ≈ 0.4632, Re2 ≈−197.65
and Re1 ≈ 144.08. Further increasing η reduces the number of codimension 2 points
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FIGURE 9. Difference between the critical Reynolds number for the modes m = 0 and
m= 1, ∆=Re1

1c−Re0
1c, plotted against Re2, at Ma= 2 and Pr= 1. Four turning points of

the curve, occurring successively for increasing values of |Re2|, are labelled α, β, γ and
δ respectively.

back to one and there are no further codimension 3 points. The codimension 3
points described above have also been observed by Signoret & Iooss (1988) (see also
Signoret 1988).

4.2. The compressible case
We now revert back to the case when η = 0.5 and investigate the effects of
compressibility on counter-rotating Taylor–Couette flows.

Figure 9, presenting ∆ as a function of Re2 at Ma = 2 and Pr = 1, shows that
axisymmetric modes are preferred when the outer cylinder is a rest; this remains true
until |Re2| reaches values where ∆ becomes negative, in which case m = 1 modes
onset first. As |Re2| is increased further, the curve ∆ crosses the ∆ = 0 axis for a
second time and remains above for Re2 >−103, thus demonstrating the prevalence of
axisymmetric modes for a large range of Reynolds numbers. We believe however that
∆ crosses the ∆= 0 axis again, at |Re2| significantly greater than 103 (not computed),
so that m= 1 modes are ultimately preferred.

Similarly to the incompressible case, the graph of ∆ against Re2, as shown in
figure 9, presents a series of local maxima and minima, but compressibility typically
introduces additional turning points. Changes in the sign of these local extrema, as a
parameter varies, indicate the emergence or coalescence of a pair of codimension 2
points, where modes m = 0 and m = 1 onset simultaneously. The sign of successive
turning points of ∆, fixing the number of crossings of the ∆=0 axis or codimension 2
points (always odd), determines the number of intervals of Re2 where modes of a
given symmetry are preferred. Figure 10 illustrates this behaviour of the system when
Pr= 1 and Ma varies. For values of Ma between 0 and ≈0.74, only one crossing of
the ∆= 0 axis has been found, so axisymmetric modes are preferred above a critical
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FIGURE 10. The same as in figure 9 but for different Mach numbers: the curves shown
by dotted, dashed, dash-dotted and solid lines correspond to Ma ≈ 0, 0.7412, 1.6074
and 1.6780 respectively. Codimension 3 points are denoted using labels of turning points
touching the horizontal axis, as defined in figure 9.

Re2 and m = 1 modes below. When Ma ≈ 0.74, the local maximum ∆β (value of
∆ named after turning point labels as defined in figure 9) becomes zero; this is a
codimension 3 point, as discussed in § 4.1, with Ma replacing the parameter η. As
Ma increases further two additional codimension 2 points appear; hence two intervals
of Re2 leading to m= 1 modes at instability onset are interspersed with two regions
where m= 0 modes are preferred, until Ma≈1.61 when another local maximum, ∆δ,
becomes zero. This determines a second codimension 3 point. For a narrow range
of Ma, from ≈1.61 to ≈1.68, we found five codimension 2 points, so that three
intervals of Re2 where m= 1 modes are preferred straddle three regions where modes
are axisymmetric at the instability onset. The point where the local minimum ∆γ = 0,
obtained for Ma≈1.68, is a third codimension 3 point; beyond this value of Ma the
number of crossings of the ∆= 0 axis is reduced back down to three. For Pr= 1 we
have not attempted to compute a fourth codimension 3 point, which would have to
satisfy the condition ∆α = 0, as the Mach number involved would be too large.

Figure 11 presents the displacement of codimension 3 points as Ma and Pr vary
in a consistent manner allowing us to follow these points. We focus on two turning
points of the curve (Re2, ∆), namely the local maximum δ, defined in figure 9, and
a local minimum labelled ε, which could not be seen for Ma = 2 and |Re2| 6 103.
(Notice that the presence of the local minimum ε suggests the existence of another
local maximum at higher |Re2|.) At Ma= 1, the codimension 3 point defined by ∆δ =
0 is located on the curve aδ around Re2 = −544 and that defined by ∆ε = 0 at a
higher Reynolds number (in absolute value), Re2≈−829, on the curve aε. When Ma
decreases from 1 to 0.6, the turning points δ and ε get closer to one another; as seen
on the curves bδ and bε these codimension 3 points are now found at Re2 ≈ −569
and Re2 ≈ −676 respectively. Interestingly, as Ma tends to 0.51 and Pr approaches
1.97, the local maximum δ and the local minimum ε merge to form a horizontal
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FIGURE 11. The same as in figure 9 but for different Ma and Pr. Three families of curves,
denoted by a, b and c (dotted, dashed and solid lines), have been obtained for Ma= 1,
0.6 and 0.51 respectively. Each curve a and b possesses a local maximum, labelled δ
(see figure 9), and a local minimum, labelled ε. When δ touches the horizontal axis it
is a codimension 3 point, as on aδ and bδ for which Pr ≈ 1.336 and 1.792 respectively;
on aε and bε, for which Pr≈ 1.357 and 1.794 respectively, ε touches the horizontal axis
and is therefore also a codimension 3 point. The curve c, which has a horizontal inflexion
point on the horizontal axis, was obtained for Pr≈ 1.970.

inflexion point on the ∆ = 0 axis, visible on the curve c. This means that the two
codimension 3 points coalesce in a codimension 4 point, where both parameters Ma
and Pr are uniquely determined by the conditions ∂∆/∂Re2 = ∂2∆/∂Re2

2 = 0. At the
codimension 4 point Re2≈−620; the actual value of the Reynolds number is however
difficult to calculate accurately, owing to the limited variation in ∆ for a range of Re2

near the codimension 4 point.
In the more general case when Re2, Ma and Pr are considered as independent

parameters (η being kept fixed), the condition ∆= 0 can again be used, as discussed
in § 4.1, to determine Re2, say, as a function of Ma and Pr, at a codimension 2
point. At a codimension 3 point, the further equation ∂∆/∂Re2 = 0 then defines
a relationship between Ma and Pr that can be represented as a continuous curve
in the (Pr, Ma)-plane. Such curves are plotted in the regime diagram in figure 12,
for codimension 3 points which coincide with the turning points α–ε (see figures 9
and 11). The different lines shown bound regions of space where the system possesses
a fixed number of codimension 2 points. This diagram is however incomplete since
at least one codimension 3 point, occurring at a local maximum of ∆ which must
exist beyond the turning point ε (i.e. at larger |Re2|), is missing. Nevertheless, one
can see in figure 12(a) that only one codimension 2 point exists above the curve α
and below the curve β. In the region of parameter space banded by the dotted and
dash-dot lines, the number of codimension 2 points has been found to vary between
3 and 5. It may seem that the line δ terminates abruptly but in fact figure 12(b)
shows that it intersects the line ε to form a cusp. This demonstrates how the two
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FIGURE 12. Regime diagram showing the location of codimension 3 points in the
(Pr–Ma) plane. (a) Four lines, bounding different regimes of instability, consist of
codimension 3 points which follow maxima (β in dash-dotted line and δ in solid line) and
minima (α in dotted line and γ in dashed line) defined in figure 9. (b) Two lines now
follow the maximum, δ in solid line, and minimum, ε in dotted line, defined in figure 11.

codimension 3 points δ and ε coalesce in a codimension 4 point as Ma decreases (or
equivalently as Pr increases).

5. Discussion and conclusions

In this paper, we have studied the linear Taylor–Couette problem for a compressible
fluid. We have modelled the flow of a perfect gas in the continuum limit and thus
kinetic effects, which may affect both the boundary conditions and the form of the
transport coefficients, have been ignored. This level of approximation is valid as
long as the Knudsen number, Kn ∼ Ma/Re1, remains sufficiently small. Yoshida &
Aoki (2006) and Manela & Frankel (2007) have shown that, in a limited region
of the parameter space, slight rarefaction (Kn ∼ 0.01) can stabilise the system. It
would therefore be of great interest to re-examine, in subsequent work, the dynamical
effects revealed by our analysis, in the framework of rarefied gas dynamics, by
using appropriate kinetic models. Here, we have primarily investigated the effect
of changing the Mach number and the Prandtl number of the fluid flow, for both
axisymmetric and asymmetric modes of instability.

When the outer cylinder is held fixed, axisymmetric instabilities onset first. For
Pr= 1 or less, we found that increasing Ma does have a stabilising effect, confirming
the results of Manela & Frankel (2007). As they pointed out, it is important to solve
for the basic state temperature and density in a way which leaves the total mass of
gas unchanged as external parameters such as Re1, Re2 and Ma are varied.

At larger values of Pr, previously unknown behaviour occurs due to compressibility.
Axisymmetric oscillatory modes, and steady convective modes can occur, in addition
to the classical rotationally driven Taylor–Couette modes. Physically, these new
modes arise because of the viscous heating occurring in the basic state. At high
Prandtl number, the heat generated by the viscous shear cannot escape quickly,
and so the temperature rises significantly in the middle of the gap. At moderate
gap widths the centrifugal acceleration provides an effective radial gravity, so the
density variations consequent on the shear heating can give rise to either stabilising
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or destabilising radial density gradients. In the case of a stabilising radial density
gradient, internal gravity waves can be destabilised by the shear, leading to oscillatory
modes of instability. When the density gradient is destabilising, we have the possibility
of Rayleigh–Taylor instability, which can occur even when the angular momentum
increases outward everywhere. The classical Rayleigh criterion for instability therefore
no longer applies, and instability can be found below the Rayleigh line. Even when
the density gradient increases outwards, if there is an unstable entropy gradient,
thermal convection, rather than Rayleigh–Taylor instability, can occur.

Our physical explanation of the instability is supported by the nature of the
eigenfunctions of the various modes. Modes driven by Rayleigh–Taylor or thermal
convection are located mainly in the regions where the basic state gradient is most
unstable. Note that for very narrow gaps, the centrifugal acceleration u2

0/r becomes
small, so we would not expect these instability mechanisms to occur for very narrow
gaps, i.e. η close to unity. For inner and outer cylinders at the same fixed temperature,
we only found these new instability mechanisms at Prandtl numbers greater than unity,
whereas most simple gases have Prandtl numbers slightly less than unity. To see these
mechanisms in the laboratory, it will be necessary to adjust the temperature boundary
conditions, so that the outer cylinder is slightly warmer than the inner cylinder, to
enhance the instability of the basic state density and entropy gradients. Preliminary
estimations show for instance that is possible to violate Rayleigh’s criterion for air
(Pr= 0.7) at Re1c' 452 if the temperature of the outer cylinder is increased by 20 %.
In astrophysical situations, sheared magnetic fields can lead to ohmic heating, and
this might also destabilise Couette flow in a way similar to that found here.

We have also considered the counter-rotating case. The interest here is not so much
in the high Prandtl number instabilities, but mainly in the interaction between the
axisymmetric m = 0 mode and the non-axisymmetric m = 1 mode. The existence of
a codimension 2 point where these onset simultaneously has long been known in
the Boussinesq case. Less well-known, but verified by our studies, is the existence
of Boussinesq codimension 3 points at radius ratios η ≈ 0.363 and η ≈ 0.463. Our
exploration of the compressible case shows that codimension 3 points can occur for
a range of radius ratios at particular values of the Mach number. Indeed, the nature
of these compressible bifurcation points is remarkably complex, with many different
possibilities of codimension 3 bifurcations available. It remains to see what nonlinear
behaviour emerges from these complex bifurcations.
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Appendix A. The governing non-dimensional linear equations
On assuming a normal mode solution, in which all variables take the form exp[σ t+

i(mθ + kz)], and denoting perturbations to the density, velocity and temperature
by ρ, u = (ur, uθ , uz) and T respectively, the equations governing the linear
perturbations, derived from (2.7) to (2.9), may be expressed as:

σρ = −im
u0

r
ρ − 1

r
d
dr
(rρ0) ur − ρ0

dur

dr
− im

ρ0

r
uθ − ikρ0 uz, (A 1)
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σur = Re2
1

Ma2

T0

ρ2
0

dρ0

dr
ρ − Re2

1

Ma2

T0

ρ0

dρ
dr
−
[

1
ρ0

(
4

3r2
+ m2

r2
+ k2

)
+ im

u0

r

]
ur

+ 4
3rρ0

dur

dr
+ 4

3ρ0

d2ur

dr2
+
(

2
u0

r
− 7im

3r2ρ0

)
uθ + im

3rρ0

duθ
dr

+ ik
3ρ0

duz

dr
− Re2

1

Ma2ρ0

dρ0

dr
T − Re2

1

Ma2

dT
dr
, (A 2)

σuθ = −im
Re2

1

Ma2

T0

rρ0
ρ −

[
1
r

d
dr
(ru0)− 7im

3r2ρ0

]
ur + im

3rρ0

dur

dr

−
[

1
ρ0

(
1
r2
+ 4m2

3r2
+ k2

)
+ im

u0

r

]
uθ + 1

rρ0

duθ
dr

+ 1
ρ0

d2uθ
dr2
− mk

3rρ0
uz − im

Re2
1

rMa2
T, (A 3)

σuz = −ik
Re2

1

Ma2

T0

ρ0
ρ + ik

3rρ0
ur + ik

3ρ0

dur

dr
− mk

3rρ0
uθ

−
(

m2

r2ρ0
+ 4k2

3ρ0
+ im

u0

r

)
uz + 1

rρ0

duz

dr
+ 1
ρ0

d2uz

dr2
− ik

Re2
1

Ma2
T, (A 4)

σT = −
{

dT0

dr
+ (γ − 1)

[
T0

r
− 2im

Ma2

Re2
1ρ0

d
dr

(u0

r

)]}
ur − (γ − 1)T0

dur

dr

− (γ − 1)
[

2
Ma2

Re2
1ρ0

d
dr

(u0

r

)
+ im

T0

r

]
uθ + 2(γ − 1)

Ma2

Re2
1

r
ρ0

d
dr

(u0

r

) duθ
dr

− ik(γ − 1)T0 uz −
[
γ

Prρ0

(
m2

r2
+ k2

)
+ im

u0

r

]
T

+ γ

Prrρ0

dT
dr
+ γ

Prρ0

d2T
dr2

. (A 5)

This set of linear equations constitutes an eighth-order system of ordinary
differential equations in r, which may be expressed as an eigenvalue problem where
the eigenvalue is the complex coefficient σ . The linear system is completed by
specifying eight boundary conditions derived from (2.12):

ur = 0, uθ = 0, uz = 0, T = 0 on r= η

1− η , r= 1
1− η . (A 6)

The eigenvalue problem (A 1)–(A 6) is solved numerically, utilising the computational
software MATLAB. The linear equations are discretised and written in matrix form
by means of a Chebyshev spectral collocation method, then solved for σ using
the eigenvalue solver eig. We seek solutions with growth rate Re(σ ) = 0 and,
using the optimisation function fminbnd, compute critical values of various control
parameters.
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