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Scaling in Rayleigh–Bénard convection
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We consider the Nusselt–Rayleigh number problem of Rayleigh–Bénard convection and
make the hypothesis that the velocity and thermal boundary layer widths, δu and δT , in the
absence of a strong mean flow are controlled by the dissipation scales of the turbulence
outside the boundary layers and, therefore, are of the order of the Kolmogorov and
Batchelor scales, respectively. Under this assumption, we derive Nu ∼ Ra1/3 in the high
Ra limit, independent of the Prandtl number, δT/L ∼ Ra−1/3 and δu/L ∼ Ra−1/3Pr1/2,
where L is the height of the convection cell. The scaling relations are valid as long
as the Prandtl number is not too far from unity. For Pr ∼ 1, we make a more general
ansatz, δu ∼ να , where ν is the kinematic viscosity and assume that the dissipation scales
as ∼ u3/L, where u is a characteristic turbulent velocity. Under these assumptions we
show that Nu ∼ Raα/(3−α), implying that Nu ∼ Ra1/5 if δu were scaling as in a Blasius
boundary layer and Nu ∼ Ra1/2 (with some logarithmic correction) if it were scaling as in
a standard turbulent shear boundary layer. It is argued that the boundary layers will retain
the intermediate scaling α = 3/4 in the limit of high Ra.

Key words: boundary layer structure, Bénard convection

1. Introduction

An ideal Rayleigh–Bénard convection experiment would be to let a fluid be enclosed by
two infinite horizontal walls separated by a vertical distance L, keeping both the walls at
constant temperature, with the lower wall at a higher temperature, and measure the heat
flux through the walls in a stationary state. Given certain constraints the flow in such
a configuration can be described by the Navier–Stokes equations under the Boussinesq
approximation (Tritton 1988)

Du
Dt

= − 1
ρ

∇p + gθez + ν∇2u, (1.1)
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∇ · u = 0, (1.2)

Dθ

Dt
= κ∇2θ, (1.3)

where ρ, p, g, ν and κ are density, pressure, acceleration due to gravity, kinematic
viscosity and diffusivity, ez is the vertical unit vector and θ = βT is non-dimensional
temperature, with β being the thermal expansion coefficient. We let θ0 and θ1 be the
temperatures at the lower and upper walls and 	θ = θ0 − θ1. If 	θ � θ0, the input of
the experiment can be specified by the Rayleigh and Prandtl numbers

Ra = g	θL3

νκ
, Pr = ν

κ
, (1.4a,b)

while the output can be specified by the Nusselt number

Nu = −d〈θ〉
dz

|z=0/(	θ/L), (1.5)

where 〈〉 is the horizontal mean. The Nusselt number is the ratio between the actual heat
flux and the heat flux in the case the fluid is static. The Nusselt–Rayleigh–Prandtl number
problem, in the following just called the Nusselt–Rayleigh number problem, is to predict
the output given the input, that is, find F such that

Nu = F(Ra, Pr). (1.6)

Within the format of a brief introduction it is impossible to give a fair account of all
theoretical and experimental efforts that have been devoted to the problem. Therefore,
we will only consider some of the previous work that are of special relevance to the
present paper. For more extensive reviews, the reader is referred to Siggia (1994), Ahlers,
Grossmann & Lohse (2009) and Chillà & Schumacher (2012).

Building on a mixing length theory by Priestley (1959), Kraichnan (1962) developed
an analysis predicting two types of scaling laws with respect to Ra, each divided into
two scaling laws with respect to Pr. Putting Nu ∼ Raγ Prτ , he predicted γ = 1/3 for
moderately large Ra, with τ = 0 for Pr > 0.1 and τ = 1/3 for Pr < 0.1, and γ = 1/2 for
very high Ra, with τ = 1/2 for Pr < 0.15 and τ = −1/4 for Pr > 0.15. The expression
for the large Ra regime also included a logarithmic correction (ln(Ra))−3/2. The reason
why there is a transition from γ = 1/3 to γ = 1/2 (with a logarithmic correction) is that
the boundary layers are supposed to undergo a transition at some high Ra. The width of
the viscous layer of a turbulent boundary layer scales almost linearly with the Reynolds
number with a deviation that can be expressed with a logarithmic factor. This is the reason
why there is a corresponding logarithmic factor in the high Ra expression. An interesting
essay on Kraichnan’s hypothesis, including some biographical information on its genesis,
is written by Doering (2020a).

Castaing et al. (1989) developed a model where the convection cell is divided into three
zones: the boundary layers, a well mixed middle zone and a mixing zone separating the
boundary layers from the middle zone. Using this model they managed to deduce γ = 2/7,
which is close to the experimental value extracted from several experiments. Shraiman &
Siggia (1990) deduced the same value based on a very different model in which the central
assumption is that the boundary layers are fully turbulent. Grossmann & Lohse (2000)
argued that there are eight different regimes of Nu ∼ Raγ Prτ with different combinations
of (γ, τ ) depending on three different conditions: (1) whether kinetic energy dissipation is
mainly taking place in the boundary layers or in ‘the bulk’, (2) whether thermal dissipation
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Scaling in Rayleigh–Bénard convection

is mainly taking place in the boundary layers or in ‘the bulk’, and (3) whether δT < δu or
δT > δu, where δT and δu are the thermal and velocity boundary layer widths, respectively.

A central issue in all proposed solutions to the Rayleigh–Nusselt number problem is
the nature of the boundary layers. Castaing et al. (1989) assume that the boundary layers
resemble a laminar plane Couette flow and that they are stabilised by a ‘shearing wind’.
Shraiman & Siggia (1990) make the assumption that there exists ‘a persistent mean flow,
which sufficiently close to the horizontal plates can be approximated by a linear profile’
and that the boundary layers associated with the mean flow are turbulent. Grossmann &
Lohse (2000) assume that the boundary layers are associated with ‘the mean large-scale
velocity near the boundaries of the cell’ and that they start as laminar at low Ra and
undergo a transition to become turbulent at high Ra. The analogy with the fully developed
turbulent shear boundary layer in the limit of high Ra was introduced by Kraichnan (1962).
In the following section we will take a closer look at this analogy.

An interesting case for γ = 1/3 is derived from the marginal stability argument of
Howard (1966) that sometimes is attributed to Malkus (1954). The stability of the
boundary layers can be assumed to be controlled by the Rayleigh number based on the
thermal boundary layer width, δT ,

RaδT = Ra
(

δT

L

)3

∼ RaNu−3. (1.7)

If it is assumed that the boundary layers will remain stable, RaδT must stay below a
critical threshold and we must have γ ≥ 1/3. On the other hand, as long as they are
stable they will grow by diffusion and, therefore, δT will adjust so that RaδT is just below
the threshold, implying that γ = 1/3. In the same tradition, extensive efforts have been
made to rigorously establish upper bounds on the heat transfer by maximising Nu over
all possible flow fields. The most impressive result is the upper bound Nu ≤ 0.152Ra1/3,
derived in the infinite Pr limit by Chan (1971). The techniques used in such analyses have
been reviewed by Howard (1972) and Busse (1978).

A vast number of experiments have been carried out on the Nusselt–Rayleigh number
problem. In most experiments γ fall in the range [2/7, 1/3] (e.g. Goldstein & Tokuda
1980; Castaing et al. 1989; Wu & Libchaber 1991; Chavanne et al. 1997; Lui & Xia 1998;
Ashkenazi & Steinberg 1999; Glazier et al. 1999). The experiment that has reached the
highest Ra was carried out by Niemela et al. (2000) who used helium that was cooled close
to the lambda point. A log-log plot extending over more than ten decades shows an almost
perfect straight line with slope γ = 0.31. When the data are plotted as Nu/Ra1/3 in a
lin-log plot, there is a discernible deviation from a straight line. In the range Ra = 106–1014

there is a convex approach to a straight line. In the range Ra = 1014–1017 there is a concave
dip below a straight line. The Prandtl number in the experiment was constant, Pr ≈ 0.7,
up to Ra ≈ 1013, above which it was continuously increasing to Pr ≈ 30 at Ra = 1017.
Niemela et al. (2000) concluded that the Prandtl number effect on the Nusselt number
is small. Subsequently, Niemela & Sreenivasan (2006) found a way to introduce a slight
correction of the data, which changed the scaling exponent to γ = 0.32. The plot given
by Niemela & Sreenivasan (2006) with the corrected exponent is reproduced in figure 1.
As pointed out by Niemela et al. (2000), there is no sign of a transition to the asymptotic
high Ra range predicted by Kraichnan (1962). In the authors eyes this plot is absolutely
fascinating, not because the corrected exponent is 0.32 rather than 0.31 or exactly 1/3,
but because the scaling extends over ten decades of Ra. Such an extended scaling range
suggests that the underlying physics is ruled by some permanent principle.
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Figure 1. Nusselt number versus Rayleigh number plotted using slightly corrected data from the experiment
by Niemela et al. (2000). Reproduced from Niemela & Sreenivasan (2006).

In the wake of the experiment by Niemela et al. (2000) the γ = 1/2 prediction of
Kraichnan (1962) has been the object of a great number of investigations as well as
a lively debate. Chavanne et al. (2001) claimed that they found experimental evidence
of a regime with γ ≈ 0.38 at Ra > 1011 and interpreted this result as evidence of a
transition to the ‘ultimate’ Kraichnan regime, despite the difference between 0.38 and 0.5.
Funfschilling, Bodenschatz & Ahlers (2009) carried out experiments up to Ra ≈ 3 × 1014

and reported results consistent with Niemela et al. (2000), with no evidence of a transition
to the ultimate regime. Roche et al. (2010) assessed data from different experiments
and claimed that there is clear evidence of a transition to the ultimate regime in the
range Ra = 1011–1015, displaying γ = 0.33–0.43. He et al. (2012) also claimed that they
found experimental evidence of a transition at Ra ≈ 1013–1014, where they measured
γ ≈ 0.38, which they interpreted as an approach to the ultimate regime. These claims
were questioned by Urban, Musilovà & Skrbek (2011) and Urban et al. (2012) who found
that γ = 1/3 is retained if the data are accurately analysed. This was in turn questioned
by He et al. (2013) who suggested that the results of Urban et al. (2012) were artifacts of
particular parameter choices that led to strong non-Boussinesq effects. Skrbek & Urban
(2015) made a systematic investigation of virtually all experimental studies until 2015
and found that the evidence for a transition is weak. The claim of He et al. (2012) was
also criticised by Doering (2020b) who scrutinised their curve fitting procedure and found
that it was far from satisfactory. In an attempt to reconcile different data sets in which
some of them seem to show evidence of a transition Roche (2020) developed a model
of a transition from a semi-turbulent boundary layer to a fully turbulent boundary layer
in accordance with the prediction of Kraichnan (1962). Iyer et al. (2020) investigated the
issue by carrying out direct numerical simulations (DNS) in a cylindrical cell with aspect
ratio 1/10 and found no evidence of a transition. On the contrary, the γ = 1/3 scaling was
observed up to Ra = 1015.

In a recent meta study by Ahlers et al. (2022), data from a great number of experiments
were compiled and a correction with respect to the aspect ratio of the convection cell was
proposed, which improved the collapse of the data. The data were divided into two sets,
where Pr ≈ 4.4 in the first and Pr ≈ 0.8 in the second. Two lin-log plots show Nu/Ra1/3

versus Ra uncorrected and two similar plots show the corrected data. The Pr ≈ 0.8 plots
are reproduced in figure 2. All four curves have a maximum around Ra = 106 and a convex
decrease at higher Ra, seemingly towards a straight line, which would correspond to a
perfect γ = 1/3 range. For Pr ≈ 4.4, with Ramax ≈ 1012, the curves have still a clear
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Figure 2. (a) Lin-log plot of the compensated Nusselt number versus Rayleigh number from different data
sets with Pr ≈ 0.8. (b) The same data plotted using an aspect ratio correcting model. The inset shows an
enlargement at the highest Ra, illustrating a supposed transition to the ultimate regime. Reproduced from
Ahlers et al. (2022).

negative slope in the high Ra end. For Pr ≈ 0.8, on the other hand, the curves seem to
level off to a straight line in the high Ra end, Ra ∼ 1012–1014, although there is no range
of extension where the curve is a perfect straight line. There is no discernible difference
between the two sets at different Prandtl number, which is also consistent with recent
analyses of DNS data by Pandey & Sreenivasan (2021). On the contrary, it appears that
there would be an almost perfect collapse of the two sets if they had been presented in the
same plot. In the data from three of the low Prandtl number experiments the curves show
upwards bending short tails in the high Ra end with γ ≈ 0.38. In the uncorrected data the
three curves start to bend upwards at different Ra. Only after the data have been corrected
the curves show a common point of transition. Nevertheless, Ahlers et al. (2022) interpret
these tails as evidence of a transition to the ultimate Kraichnan regime taking place at
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Ra ≈ 1014, in spite of the criticism of Skrbek & Urban (2015) and Doering (2020b) as
well as the numerical evidence presented by Iyer et al. (2020).

It is now time to put the debate aside and develop an independent analysis. In the
following we will first take a closer look at the hypothesis of Kraichnan (1962) and
formulate an alternative hypothesis. Then we will analyse the Nusselt–Rayleigh number
problem from a slightly different point of view as compared with previous studies and
suggest that the wide scaling range seen in figure 1 is a manifestation of the fact that the
boundary layers are of a special type in Rayleigh–Bénard convection. In the end, we will
also argue that the γ ≈ 1/3 scaling seen in figure 1 is the ultimate regime.

2. An alternative hypothesis

Kraichnan (1962) makes the hypothesis that ‘big eddies develop boundary layers
in strict analogy with the boundary layer of a fully developed shear flow’. In a
high-Reynolds-number turbulent flow a standard turbulent shear boundary layer will
therefore form in the vicinity of a wall even in the absence of a mean velocity. The role
played by the mean velocity will be taken over by the turbulent velocity, u. Accordingly,
there is a viscous layer whose width scales as δu ∼ ν/uτ , where uτ = √

τw/ρ is the friction
velocity based on the wall shear stress τw, associated with the turbulence. We use the term
‘viscous layer’ where Kraichnan used ‘viscous sublayer’ to denote the region close to the
wall where the dynamics is strongly influenced by viscous forces. Instead of δu = 20ν/uτ

as used by Kraichnan we set δu = 50ν/uτ for a standard shear boundary layer, so that
the viscous layer consists of the whole region below the log layer, including both the two
layers that in modern text books (see e.g. Pope 2000) are called the ‘viscous sublayer’ and
the ‘buffer layer’. Outside the viscous layer Kraichnan (1962) assumes that there is a log
layer where

u = uτ

(
1
κ̄

ln
(uτ z

ν

)
+ B

)
, (2.1)

and κ̄ is the Kármán constant. All readers who are familiar with the basics of turbulent
boundary layers will appreciate that the Kraichnan (1962) analogy is indeed very ‘strict’.
If we let L be the outer length scale of the boundary layer and u the corresponding velocity
scale of the largest eddies, we will have

u ∼ uτ ln(Reτ ) ⇒ Re ∼ Reτ ln(Reτ ), (2.2)

where Reτ = uτ L/ν is the friction Reynolds number and Re = uL/ν. The width of the
viscous layer thus scales as

δu ∼ Re−1
τ L ∼ ln(Reτ )Re−1L. (2.3)

This strong scaling with Re means that the viscous layer is extremely thin in comparison to
virtually all other length scales in fluid mechanics. The width of a laminar boundary layer
scales as Re−1/2L and the Kolmogorov scale, η = (ν3/ε)1/4, as Re−3/4L, where L in each
case is the relevant macroscopic length scale. The author can only think of one example of
a stronger scaling with Re and that is a shock wave whose width scales exactly as Re−1L
(Whitham 1970).

Since η generally is considered to be the smallest length scale that can develop in an
incompressible flow, it seems paradoxical that the viscous layer with respect to scaling
with Re more resembles a shock wave than η. The paradox is resolved if we take
into consideration that there is a continuous decrease of η through the log layer down
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to the wall. The reason for this is that there is local balance between turbulence production
and dissipation in the log layer, expressed as (see e.g. Pope 2000)

ε = −∂U
∂z

〈uw〉 = u3
τ

κ̄z
, (2.4)

where U is the mean velocity and 〈uw〉 is the Reynolds stress. As the wall is approached,
the Kolmogorov scale decreases as ∼ z1/4, due to increased turbulence production by mean
shear close to the wall. The dependence of η on wall distance can be expressed as

η = κ̄1/4Re−3/4
z z, (2.5)

where Rez = uτ z/ν. The width of the viscous layer, corresponding to Rez = 50, can thus
be estimated as

δu ≈ 20η|z=δu, (2.6)

stating that it ends where z is equal to a fixed number of local Kolmogorov scales. The
continuous decrease of dissipation with wall distance, in accordance with (2.4), is thus
crucial for the existence of the thin viscous wall layer in a shear flow. Without such
a decrease, a viscous layer obeying the scaling (2.3) would be thinner than the local
Kolmogorov scale, which can be deemed impossible.

In the following it will be argued that dissipation does not necessarily scale as (2.4)
above the viscous wall layer in a turbulent flow and that Kraichnan’s hypothesis therefore
cannot be generally valid. The argument is based on a comparison between a turbulent flow
confined by walls and a corresponding flow where the walls are absent. First, we consider a
flow in a cubic tank with side L where turbulent kinetic energy with characteristic velocity
u and integral length scale ∼L is produced by some mechanical device in the central
region. Second, we consider a flow that is generated by letting the tank be surrounded
by identical tanks with identical flows that in turn are surrounded by identical tanks ad
infinitum, after which all walls are removed. In this way, an almost homogeneous and
isotropic turbulent field will be generated. In particular, the dissipation will be almost
homogeneous. Since both flows are in a statistically stationary state, the total dissipation
will be the same since energy injection is the same. It is also reasonable to assume that
the characteristic velocity as well as the dissipation in the central region of a cube will be
almost equal in the two flows. The dissipation in the central region can be estimated using
the fundamental scaling law of three-dimensional turbulence, stating that

ε

u3/L
= Constant as Re = uL

ν
→ ∞. (2.7)

We thus obtain the standard estimate η ∼ Re−3/4L for the Kolmogorov scale. According
to the hypothesis of Kraichnan (1962), viscous layers would form close to the walls in the
first flow and the outer length scale of the boundary layers would scale with L. The ratio
between the width of the viscous layer and the Kolmogorov scale in the central region
would be

δu/η ∼ Re−1/4 ln Reτ . (2.8)

In the high-Reynolds-number limit we would thus have δu � η. Outside the viscous layers
there would be log layers in which dissipation is continuously decreasing away from the
walls in accordance with (2.4). The width of the log layers would scale with the turbulent
integral length scale and, thus, be of the order of L, as also pointed out by Grossmann
& Lohse (2011). This is analogous to channel flow where the log layer ends at a fixed
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ratio of the channel hight. Since dissipation would decrease as z−1 through the bulk of
the flow, total dissipation would be much larger in the first flow as compared with the
second. However, this is contradicting the fact that total dissipation must be equal. It can
be concluded that the mere presence of walls in a turbulent field is not sufficient for the
formation of standard shear boundary layers. In order for the effect of the walls on total
dissipation in the tank to be negligible they must have a much weaker influence on the
flow field as a whole.

An alternative hypothesis can be formulated by assuming that dissipation is uniform
above the viscous layers, in which case δu must obey a different scaling than (2.3). In
analogy with (2.6) it is reasonable to assume that δu also in this case ends at a fixed
number of Kolmogorov scales, with the important difference that η now is independent of
wall distance above δu. The width of the viscous layer, in the following called the boundary
layer, will then scale as

δu ∼ Re−3/4L, (2.9)
which is the important difference compared with hypothesis (2.3) of Kraichnan (1962).
In the boundary layers turbulent kinetic energy is strongly attenuated by increased
dissipation. Outside the boundary layers, the main influence of the walls is to induce an
increasing degree of anisotropy with decreasing wall distance. As the wall is approached,
the wall normal velocity component is damped and the tangential component is enforced
by pressure-strain, while total turbulent kinetic energy remains approximately independent
of wall distance, just as in the log layer of a classical shear boundary layer (see Pope
2000). This means that the logarithmic scaling (2.1) of the turbulent velocity proposed by
Kraichnan (1962) cannot hold.

In a convection cell the production of turbulent kinetic energy by buoyancy is
approximately independent of wall distance above the boundary layer. It is therefore
reasonable to assume that the flow more closely resembles the flow in a tank rather than, for
example, a channel or pipe flow and that the scaling (2.9) therefore holds rather than (2.3).
It may be objected that if a mean flow emerges in the cell it may sustain the turbulence
in the same way as in (2.4). However, even if a mean flow emerges it cannot sustain the
turbulence, since unlike a channel or pipe flow, there is no mean pressure work at the
boundaries of a convection cell that can sustain the mean flow. For the thermal boundary
layer thickness, a hypothesis corresponding to δu ∼ η would be that it scales with the
dissipation scale of thermal fluctuations. Batchelor (1959) argues convincingly that the
dissipation scale of thermal fluctuations is ηB = (νκ2/ε)1/4. The Batchelor scale is formed
under the assumption that the dissipation scale of thermal fluctuations can be estimated as
(κ/ω)1/2, where ω is a characteristic value of the vorticity that in turn can be estimated
as ω ∼ (ε/ν)1/2. Batchelor (1959) only develops the argument in the limit of high Pr. In
the limit of low Pr he finds that the thermal dissipation scale is κ3/4/ε1/4. However, we
find his argument for ηB convincing not only in the high Pr limit but as long as the low
Pr limit is not approached. It is more justified to assume that the thermal boundary layer
width is determined by the Batchelor scale than by the Kolmogorov scale. In the case
Pr > 1, the thermal field can remain fully turbulent within the outer part of the velocity
boundary layer, in spite of the fact that the velocity field is not fully turbulent in the same
region. Conversely, in the case Pr < 1, the velocity field can remain fully turbulent within
the outer part of the thermal boundary layer. Our hypothesis can thus be formulated in the
following way. In the high-Reynolds-number limit, the Kolmogorov and Batchelor scales
of the turbulence outside the boundary layers are the smallest length scales of the flow in a
convection cell, determining both the dissipation length scales outside the boundary layers
and the widths of the boundary layers.
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3. Nusselt–Rayleigh number scaling

The mean temperature equation is

∂〈θ〉
∂t

= − ∂

∂z
〈wθ〉 + κ

∂2〈θ〉
∂z2 , (3.1)

where w is the vertical velocity component. In a stationary state the equation can be
integrated to give

〈wθ〉 = κ
∂〈θ〉
∂z

− κ
∂〈θ〉
∂z

∣∣∣∣
z=0

. (3.2)

At a position well above the thermal boundary layer, the first term on the right-hand side
can be neglected and we have

〈wθ〉 = 	θ
κ

L
Nu. (3.3)

The equation for the mean kinetic energy per unit mass, E = 〈u · u〉/2, can be written as

∂E
∂t

= −1
2

∂

∂z
〈wu · u〉 − 1

ρ

∂

∂z
〈wp〉 + g〈wθ〉 − ε + ν

∂2E
∂z2 , (3.4)

where ε = ν〈∂iuj∂iuj〉 is the mean kinetic energy dissipation per unit mass and the last
term is the viscous transport of mean kinetic energy (see e.g. Pope 2000). The energy
equation (3.4) can be integrated to give (Shraiman & Siggia 1990)

εV = νκ2(Nu − 1)Ra/L4, (3.5)

where εV is the volume-averaged dissipation. Relation (3.5) is an expression of the global
dissipation–production balance. Relation (3.3) shows that production is approximately
independent of wall distance in the central region of the convection cell. Assuming that
both ε and g〈wθ〉 are of leading order above the boundary layers (z > δu, δT ), we obtain

ε ∼ g〈wθ〉 ∼ νκ2

L4 NuRa. (3.6)

The relation (3.6) is the correspondence to the local dissipation–production balance (2.4)
in the log layer of a classical shear boundary layer. There is both experimental and
numerical evidence that the flow reaches a state in which dissipation is independent of
wall distance and approximately equal to production outside the boundary layers already
at Ra ∼ 107. Deardorff & Willis (1966) studied the kinetic energy budget by means of
hot-wire anemometry in a high aspect ratio convection cell filled with air and found
an increasing degree of local dissipation–production balance with increasing Ra, with
almost perfect balance outside the boundary layers at Ra = 107 (see their figures 21–23).
Kerr (1996, figure 10) plots the dissipation/production ratio from a spectral DNS at
Ra = 2 × 107, Pr = 0.7 and aspect ratio Γ = 6. Outside the boundary layers the ratio
is almost perfectly constant and just below unity. Pandey et al. (2022, figure 6b) plots the
dissipation as a function of wall distance from high aspect ratio DNS at Ra = 107 and
different Pr. Again, outside the boundary layers dissipation is almost perfectly constant.
Direct numerical simulations at high Ra (e.g. Iyer et al. 2020, figure 3c) show that
turbulent kinetic energy is uniform above δu, just as in the log layer of a standard shear
boundary layer. This result may seem counterintuitive, since the energy associated with
the vertical velocity must decrease continuously as the wall is approached, even outside
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the boundary layers. However, this decrease is compensated by an increase of the energy
associated with the horizontal component, in such a way that the total kinetic energy is
independent of wall distance (see Kerr 1996, figure 9). If it is assumed that the transport
terms in (3.4) associated with pressure and advection can be accurately modelled by a
simple gradient diffusion expression, just as in the k − ε model (see e.g. Pope 2000), the
dissipation–production balance can be understood from the fact that there is no kinetic
energy gradient. Indeed, there seems to be a close analogy between the log layer and the
central region of a convection cell, but of a different kind than envisioned by Kraichnan
(1962). Turbulent kinetic energy is approximately independent of wall distance, transport
terms are subleading in the turbulent kinetic energy equation and there is an approximate
local dissipation–production balance.

Traditionally, the relation between the Nusselt number and the thermal boundary layer
width is written as

Nu = 1
2

L
δT

. (3.7)

The factor one half has no special significance. The basic assumption behind (3.7) is that
the total temperature drop in the cell takes place over the boundary layers and that the
mean temperature drop close to the wall therefore can be written in the form of a ‘law of
the wall’,

θ0 − 〈θ(z)〉 = 1
2	θ f (z/δT). (3.8)

The Nusselt number is then related to δT as

Nu = 1
2

f ′|z=0
L
δT

, (3.9)

where f ′|z=0, in the absence of an independent definition of δT , can be fixed to unity.
Combining (3.6) and (3.7) with the hypothesis δT ∼ ηB, we obtain

Nu ∼ L
ηB

= ε1/4L
ν1/4κ1/2 ∼ Ra1/4Nu1/4 ⇒ Nu ∼ Ra1/3, (3.10)

independent of Prandtl number. The boundary layer widths scale as

δT

L
∼ Ra−1/3, (3.11)

δu

L
∼ Ra−1/3Pr1/2. (3.12)

The thickness of the thermal boundary layers can be estimated from the prefactor in
Nu = aRa1/3, as δT ≈ 0.5a−3/4ηB. With a ≈ 0.05 (Iyer et al. 2020; Ahlers et al. 2022),
we obtain δT ≈ 5ηB, which seems reasonable. Sun, Cheung & Xia (2008) report δT =
0.58 mm and η = 0.4 mm from an experiment at Ra = 2.5 × 1010 with water (Pr = 4.3).
These numbers give us δT ≈ 3ηB, lending direct experimental support to the hypothesis
that the thermal boundary layer width is of the order of the Batchelor scale. They
also report δT/L ∼ Ra−0.32, in close agreement with (3.11). The results for δu are less
conclusive. Using two different operational definitions of δu, they obtain δu/L ∼ Ra−0.27

and δu/L ∼ Ra−0.37 in each case, respectively. Also when DNS data are analysed, the
scaling of δu displays a large degree of variation. Using five different definitions of δu,
Scheel & Schumacher (2014) obtain a whole range of different scalings, ranging from
δu/L ∼ Ra−0.21 to δu/L ∼ Ra−0.38.
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In case the Prandtl number is far from unity – exactly how far is difficult to say –
the arguments we have developed are probably no longer valid. If Pr � 1, the thermal
boundary layer will be so separated from the turbulence outside the velocity boundary
layer, so its width can probably not be determined by the Batchelor scale of the turbulence
outside the boundary layers. If Pr � 1, the thermal boundary layer will be so thick that
a substantial fraction of the total dissipation will take place within the thermal boundary
layer and δT will probably be decoupled from δu. If we, nevertheless, would assume that the
analysis can be extended beyond the Pr ∼ 1 regime, we would need to use δT ∼ κ3/4ε−1/4

in the low-Prandtl-number limit, in line with the analysis of Batchelor. We then obtain
Nu ∼ Ra1/3Pr1/3 in this limit, which is consistent with the Pr < 0.1 regime of Kraichnan
(1962) at moderate Ra.

To define a Reynolds number, we need a velocity that we take as the turbulent velocity,
u. We also assume that the fundamental scaling law (2.7) of three-dimensional turbulence
holds. Under this assumption it is straightforward to derive the relation

Re ∼ (NuRaPr−2)1/3 = (F(Ra, Pr)RaPr−2)1/3, (3.13)

which must hold in the high-Reynolds-number limit, irrespectively of what form of Nu =
F(Ra, Pr) we assume to be valid. It is worth pointing out that (3.13) also can be formulated
as

u
uf

∼ Nu1/3Ra−1/6Pr−1/6, (3.14)

where uf = √
gL	θ is the free fall velocity. According to (3.14), Nu ∼ Ra1/2Pr1/2 is the

only scaling for which the ratio u/uf looses its dependence on both Ra and Pr. In our case
we find that

Re = ε1/3L4/3

ν
∼ Ra4/9Pr−2/3, (3.15)

u
uf

∼ Ra−1/18Pr−1/6. (3.16)

The relation (3.15) has been derived by a number of other investigators (e.g. Kraichnan
1962; Siggia 1994) under different assumptions and seems to be in quite good agreement
with experimental data. Ashkenazi & Steinberg (1999) give the experimentally determined
dependence Re ∼ Ra0.43Pr−0.75. In this case, the Ra dependence is in very good
agreement with the data while the Pr dependence is deviating a little bit. Grossmann
& Lohse (2000) present a plot of data extracted from Chavanne et al. (1997), in which
Re ∼ Ra1/2Pr−2/3. In this case, on the other hand, the Pr dependence is in exact agreement
with the data while the Ra dependence is deviating.

It is worth pointing out that only (3.6) and (3.7) combined with δT ∼ ηB were used to
derive (3.10) and that the fundamental scaling law (2.7) was not used. In the following
argumentation we will make use of (2.7), which means that Bolgiano scaling is ruled out.
The scaling was originally proposed by Bolgiano (1959) for stratified turbulence and is
derived under the assumption that (2.7) does not hold. Several authors (e.g. Procaccia &
Zeitak 1989; Yakhot 1992) have proposed that Bolgiano scaling should hold for convective
turbulence, but the evidence for this is weak (a review is given by Lohse & Xia 2010).
The issue has been investigated theoretically and numerically by Verma, Kumar & Pandey
(2017) who found that Bolgiano scaling does not hold for convective turbulence. Moreover,
the validity of the fundamental scaling relation (2.7) was numerically investigated by
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Pandey et al. (2022) who found that it is very well satisfied already at Ra ≈ 106, with
the constant on the right-hand side being approximately equal to 0.2.

The assumptions we made to arrive at (3.10)–(3.12) can be expressed as δT ∼
Pr−1/2Re−3/4L and δu ∼ Re−3/4L. Let us fix the Prandtl number to unity and make an
ansatz that is more general with respect to the scaling with Re. We thus set δT ∼ δu ∼
Re−αL, in order to deduce γ in Nu ∼ Raγ in terms of α. Putting Ra ∼ Nu1/γ and κ = ν

in (3.6), we obtain

ε ∼ ν3

L4 Nu(1+γ )/γ ⇒ Nu ∼
( ε

ν3

)γ /(1+γ )

L4γ /(1+γ ). (3.17)

Using δu ∼ δT in (3.7) together with (3.17) and the first equality in (3.15), we find that

δu ∼ Nu−1L ∼
(

ν3

ε

)γ /(1+γ )

L−4γ /(1+γ )L =
( ν

ε1/3L4/3

)3γ /(1+γ )

L = Re−3γ /(γ+1)L.

(3.18)

We therefore have

α = 3γ

γ + 1
⇒ γ = α

3 − α
. (3.19)

For α = 1/2, we have γ = 1/5 and for α = 1, γ = 1/2. The value γ = 2/7 predicted
by Castaing et al. (1989) and Shraiman & Siggia (1990) corresponds to α = 2/3. It is
interesting to note that α = 1/2 is the case when the boundary layer width is equal
to the Taylor microscale of the adjacent turbulence and that α = 2/3 implies that the
boundary layers are thinner than the Taylor microscale but thicker than the Kolmogorov
scale. As a historical curiosity, it is worth mentioning that α = 2/3 corresponds to the
dissipation scale of the direct interaction approximation theory of Kraichnan (1959), which
he subsequently abandoned for the Lagrangian-history approximation theory (Kraichnan
1965), which is consistent with the Kolmogorov theory. In the case α = 1, we would have

δu ∼ (η/L)1/3η, (3.20)

which means that the boundary layer width would be much smaller than the Kolmogorov
scale.

Grossmann & Lohse (2000, 2011) argue that a mean flow, U, develops in a convection
cell and that this can play a crucial role in the development of either classical laminar or
turbulent boundary layers. In the case of a convection cell with a very large aspect ratio
the mean can neither be defined as a spatial mean over a horizontal plane nor as a time
average, since such mean values would be zero. The mean must be defined in some other
way, presumably identifying it with coherent structures with a much longer life time than
the background turbulent eddies. In the authors opinion it seems unlikely that such a mean
flow could determine the scaling properties of the boundary layers. The hypothesis can be
tested by working out the scaling of the mean/turbulent ratio U/u under the assumption
δu ∼ Re−β

U L,

U
u

= ReURe−1 ∼ (δu/L)−1/βRe−1 ∼ Re3γ /β(γ+1)−1 ∼ Ra4(3γ−βγ−β)/9β(γ+1), (3.21)
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where we have used (3.18) and (3.15) and assumed that Pr = 1. If we take γ = 1/3 (close
to some experimental values), we find that

β = 1/2 ⇒ U
u

∼ Ra2/9,

β = 1 ⇒ U
u

∼ Ra−1/9.

⎫⎪⎪⎬
⎪⎪⎭

(3.22)

If we take γ = 2/7 (close to other experimental values), we find that

β = 1/2 ⇒ U
u

∼ Ra4/27,

β = 1 ⇒ U
u

∼ Ra−4/27.

⎫⎪⎪⎬
⎪⎪⎭

(3.23)

With laminar boundary layers (β = 1/2) the mean flow would thus become much stronger
than the turbulence in the limit of large Ra, which seems implausible. With standard
turbulent boundary layers (β = 1, neglecting the logarithmic correction) it would become
much weaker, which leads us into a contradiction. If U/u � 1, there is no good reason in
the first place to assume that δu scales with ReU .

A boundary layer obeying α = 3/4 scaling is laminar/turbulent to the same degree as
the viscous layer of a standard turbulent boundary layer. We may call it a semi-turbulent
boundary layer. As demonstrated in the DNS study by Shi, Emran & Schumacher (2012)
and illustrated by visualisations from DNS data by Iyer et al. (2020), it has a rich
three-dimensional internal structure and bears little resemblance with a laminar boundary
layer. Assuming that the mean flow does not exist, alternatively that it exists and U/u ∼ 1,
we must have γ = 1/5 for laminar, γ = 1/3 for semi-turbulent and γ = 1/2 (with some
logarithmic correction) for standard turbulent boundary layers. The laminar regime is
consistent with the second regime of Grossmann & Lohse (2000) whose analysis in this
case is based on the assumption that the boundary layers scale as if they were laminar.

The horizontal velocity at the top of the boundary layer scales as u ∼ (Lε)1/3.
A characteristic value of the local boundary layer dissipation can thus be estimated as

εbl ∼ ν
u2

η2 ∼ ν−1/2L2/3ε7/6 =
(

L
η

)2/3

ε ∼ Ra2/9ε, (3.24)

implying that εbl � ε, which is intuitively reasonable. On the other hand, the ratio between
the integrated boundary layer dissipation and the total dissipation can be estimated as
(η/L)1/3 ∼ Ra−1/9 ∼ Re−1/4, implying that only a minor fraction of the total dissipation
takes place in the boundary layers. Clearly, it is a consistency requirement of our
hypothesis that this ratio must go to zero in the limit of high Re. The estimate (3.24) is
in quite good agreement with DNS data of Kunnen et al. (2008); see figure 3(a) in Lohse
& Xia (2010). A similar estimate gives us the scaling of the friction velocity based on the
turbulent wall shear stress

uτ ∼ Re−1/8(εL)1/3 ∼ Re−1/8u. (3.25)

The wall shear stress is weaker in a flow with a semi-turbulent boundary layer than it is
according to the shear boundary layer analogy (2.1) of Kraichnan (1962) and stronger than
in a laminar boundary layer where uτ ∼ Re−1/4U.

The prediction Nu ∼ Ra1/3 of the present analysis is consistent with the prediction of
the marginal stability theory of Malkus (1954) and Howard (1966). Obviously, the two
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approaches are very different. The marginal stability theory treats the boundary layer
as a laminar structure whose width is determined by the length scale characteristic of
disturbances that are marginally stable. In the present approach, the boundary layer is
treated as a semi-turbulent structure whose width is determined by the length scale at
which fully developed turbulence cannot survive. It is unclear to the author if the two
approaches can be reconciled. The present approach does not exclude the possibility
that the boundary layers are convectively unstable. In the authors view, it seems more
likely that they are just above than below the threshold of convective instability and
remain there by feedback from the turbulence. In the case RaδT increases far above the
threshold, they become more unstable, resulting in increased seeding of the turbulence
in the middle region. Stronger turbulence will lead to a smaller Batchelor scale, pushing
back the boundary layers, so that RaδT is restored. If, on the other hand, RaδT goes below
the threshold the turbulence in the central region is weakened permitting the boundary
layers to grow since the Batchelor scale will increase with weakened turbulence. In this
way, RaδT is restored above the threshold. The semi-turbulent boundary layer may thus be
marginally unstable rather than marginally stable, which may be helpful in explaining the
origin of thermal plumes.

4. Conclusion

A classical boundary layer is identified as the region close to a wall where a mean flow
is attenuated. In the present paper it is suggested that a boundary layer in a convection
cell should rather be conceived as the region close to a wall where the turbulence is
attenuated. The wide scaling range seen in figure 1 can then be seen as a manifestation
of the scaling of such a boundary layer, which is intermediate to the scalings of a
laminar and a turbulent shear boundary layer. The arguments leading to this conclusion
are based on high-Reynolds-number turbulence phenomenology. It is therefore clear that
these arguments also imply that the Nu ∼ Ra1/3 regime is the ultimate regime. To see that
the laboratory measurements are indeed carried out in a high-Reynolds-number regime,
it is instructive to estimate the Taylor microscale Reynolds number, Reλ = u2√15/(νε),
from the experimental data used in figure 2. Using (3.6) together with Nu = aRa1/3

and ε = βu3/L, we obtain Reλ = β−2/3a1/6
√

15Pr−1/3Ra2/9. Using β = 0.45, as in
isotropic turbulence (Sreenivasan 1998) or β = 0.2, as found in DNS of Rayleigh–Bénard
convection (Pandey et al. 2022), a = 0.05, Pr = 0.8 and Ra > 1012, we obtain Reλ >

2000. Even in the case we would land on the more conservative estimate Reλ > 1000, we
can conclude that the highest Rayleigh number experiments are carried out at some of the
highest Reλ ever obtained in a laboratory flow, to be compared with Reλ = 852 measured
at the centreline of a jet in the experiment by Anselmet et al. (1984), or Reλ = 1450 of
the turbulent boundary layer in the experiment carried out by Saddoughi & Veeravalli
(1994) in the NASA Ames open wind tunnel. As pointed out in the previous section,
the width of the thermal boundary layer can be estimated as δT ≈ 5ηB. A corresponding
estimate for the velocity boundary layer would be δu ≈ 5η. We are thus faced with a wall
bounded turbulent flow at Reλ > 1000, with a viscous wall layer whose width is about five
Kolmogorov scales. It seems unlikely that such a flow could undergo a laminar–turbulent
transition. The flow is already as turbulent as it can be and the boundary layer is already
as thin as it possibly can be. In the author’s interpretation, the upwards bending short tails
in the large Ra end of three of the curves of Ahlers et al. (2022) seen in figure 2 can
therefore not be significant. They are most likely caused by experimental uncertainties and
should therefore be discarded, which is in line with the criticism put forward by Skrbek
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& Urban (2015) and Doering (2020b). In the plots presented by Ahlers et al. (2022) there
is no discernible difference between the data compiled at Pr ≈ 0.8 and Pr ≈ 4.4. This is
consistent with the prediction that Nu is independent of Pr, when Pr is not too far from
unity. It is noteworthy that this prediction is a direct consequence of the assumption that
the thermal boundary layer width is determined by the Batchelor scale.

The Nusselt–Rayleigh problem does not seem to be a hundred percent clean problem
from an experimental point of view. It is likely that different experiments will give slightly
different values of γ also in the future, even if they are conducted with great care.
Direct numerical simulation is a clean complementary method in which the experimental
difficulties are circumvented and a high degree of accuracy is attained. The low aspect
ratio DNS of Iyer et al. (2020) indicate that there is no transition occurring in the range
Ra = 1014–1015. In a not too distant future, it will be possible to confirm this result in
higher aspect ratio simulations and carry out low aspect ratio simulations at even higher
Ra. Another interesting research project would be to investigate whether the hypothesis put
forward in the present paper is correct to leading order at smaller Ra and to systematically
investigate what the sources are of the finite-Rayleigh-number correction to Nu ∼ Ra1/3.
It is the hope of the author that such research will be undertaken in the near future.
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