
10
Lattice gauge theory

Perturbation theory applied to QCD predicts that the normally strong
interactions among quarks and gluons become weak at high temperatures
and densities on account of asymptotic freedom. This leads to a state
known as quark–gluon plasma. The perturbative analysis of QCD was
the subject of the last two chapters. At low temperatures and densities
quarks and gluons are not observed individually but only as color-neutral
objects, hadrons, on account of confinement. Then hadrons are the rel-
evant degrees of freedom, just as atoms and molecules are the relevant
degrees of freedom in biological physics. Nuclear matter and hot hadronic
matter are the subjects of the next two chapters. The standard computa-
tional method for studying QCD in the transitional region is lattice gauge
theory.

Lattice gauge theory is a field of intellectual study in itself. It is not
possible in one chapter to cover it in all detail, not the least reason being
that it is numerically quite involved. We will introduce the basic theoret-
ical ideas and the main numerical results. As the field is evolving owing
to rapid increases in computational power, these results will no doubt be
superseded in the near future. Nevertheless, the main conclusions should
stand the test of time.

The formulation of nonabelian gauge theories on a spacetime lattice in
Euclidean space was introduced by Wilson [1] with the purpose of study-
ing quark confinement. The infinite-dimensional functional integral that
defines a quantum field theory becomes a finite-dimensional integral when
the lattice has a finite extent in space and time and is therefore unam-
biguously defined. It is natural to expect that there is a unique continuum
limit when the lattice spacing a goes to zero, at least for asymptotically
free theories. The argument is that the bare coupling g(a) becomes small
in this limit, and the long-distance properties of the theory should be
insensitive to the details of the ultraviolet cutoff introduced by the lattice.
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196 Lattice gauge theory

After Creutz [2] demonstrated that the functional integral of lattice gauge
theory could be evaluated with the help of Monte Carlo numerical tech-
niques, lattice gauge theory became the method of choice for the calcula-
tion of observables that are beyond the reach of perturbation theory. This
includes most properties of individual hadrons as well as their interactions
at low energies.

It is natural to apply the lattice technique to the study of deconfine-
ment and chiral symmetry restoration at finite temperature. The first
such studies were made by Polyakov [3] and by Susskind [4] using the
Hamiltonian formulation of lattice gauge theory. They could show that
deconfinement disappears at high temperature but were unable to prove
that this phenomenon persists in the continuum limit, nor could they
compute a critical temperature. This was first achieved in SU(2) gauge
theory by means of numerical calculations by McLerran and Svetitsky [5]
and by Kuti, Polónyi, and Szlachányi [6].

10.1 Abelian gauge theory

As a warm-up to full QCD let us consider how to define a Hamiltonian on
a discrete spatial lattice for a pure gauge theory that has Abelian gauge
theory as its continuum limit. The procedure is not unique since one can
always add terms to the discretized theory which vanish in the limit that
the lattice spacing goes to zero. In fact, this arbitrariness can be both a
boon and a bane, as we shall see.

Consider a cubic lattice with spacing a. Label each site of a lattice with
a vector x = (x1, x2, x3). There are six unit lattice vectors: n1, n2, n3,
n−1, n−2, n−3, where n1 points in the positive x1 direction, n−1 points
in the negative x1 direction, and so on. A directed link is defined by the
pair of vectors (x,n); it starts from the site x and goes to the neigh-
boring site x + an (see Figure 10.1). The lattice may be finite or infinite
in extent, meaning that there are either a finite or a countably infinite
number of degrees of freedom. A continuum field theory, by contrast, has
an uncountably infinite number of degrees of freedom no matter whether
the box is finite or infinite in extent.

It is natural to associate links with dynamical degrees of freedom. Let
us define this degree of freedom to be

U(x,n) = exp[iφ(x,n)] (10.1)

Each link has a mate: (x,n) ⇔ (x + an, −n). The link and its mate should
not have independent degrees of freedom associated with them, and so it
is natural to require that

U(x + an, −n) = U †(x,n) (10.2)
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10.1 Abelian gauge theory 197

Fig. 10.1. Neighboring lattice sites i and j connected by a directed link.

and so

φ(x + an, −n) = −φ(x,n) (10.3)

It is also natural to associate each link with an electric flux E(x,n).
Clearly we should require that

E(x + an, −n) = −E(x,n) (10.4)

The theory is quantized by demanding that E be the momentum canon-
ically conjugate to the variable φ:

[φ(x,n), E(x,n)] = i (10.5)

Since φ is an angle, E has integers for its spectrum of eigenvalues. We are
dealing with a compact U(1) gauge theory.

The electric contribution to the Hamiltonian Helectric must be propor-
tional to ∑

links

E2

2a

where the factor 1/a gives the term the proper dimension, and the factor
one-half is inserted for the conventional reasons of normalization.

The magnetic field energy is less obvious. The independent degrees of
freedom have already been defined and so it must be expressed in terms
of them. The coordinate φ is the natural starting point. One defines a
plaquette Γ to be a square made of four links connected head to tail (see
Figure 10.2). The variable U associated with this plaquette is

U(Γ) = U(i)U(j)U(k)U(l) = exp {i[φ(i) + φ(j) + φ(k) + (l)]} (10.6)
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198 Lattice gauge theory

Fig. 10.2. A plaquette.

where the four sides of the plaquette are labeled ijkl, with the head of l
connected to the tail of i. By going around in a closed loop like this, one
will obtain a curl in the limit a → 0.

The Hamiltonian is defined to be

H =
∑
links

g2E2

2a
−

∑
plaquettes

1
2ag2

[
U(Γ) + U †(Γ) − 2

]
(10.7)

Notice that a dimensionless coupling constant g has been used in this
definition of H. The fact that the coefficient of the electric and magnetic
field energies can depend on g2 should not be surprising. It does represent
the strength of interactions because the Hamiltonian is not quadratic in
the independent dynamical variables φ but has terms to all orders in φ.
The particular normalization is chosen, with hindsight, to reproduce the
Abelian theory in the continuum limit.

To calculate the continuum limit of the magnetic energy, consider a
single plaquette with corners labeled abcd. The quantity

Uab = eiφab (10.8)

is associated with the link ab. Define a vector potential Ai via

φab = g(xb − xa)iAi

(
xa + xb

2

)
(10.9)

We do the same for the four links comprising the plaquette, namely, ab,
bc, cd, da. In the limit that the lattice spacing becomes very small we can
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10.1 Abelian gauge theory 199

expand the exponentials in a power series:

Hmagnetic(Γ) = − 1
2ag2

[
U(Γ) + U †(Γ) − 2

]
= − 1

2ag2

[
i(φab + φbc + φcd + φda)

−1
2
(φab + φbc + φcd + φda)2 + · · · + c.c.

]

≈ 1
2a

[
(xb − xa)iAi

(
xa + xb

2

)
+ (xc − xb)iAi

(
xb + xc

2

)
+ (xd − xc)iAi

(
xc + xd

2

)
+ (xa − xd)iAi

(
xa + xd

2

)]2

(10.10)
Now Taylor-expand the vector potentials about the center of the pla-
quette. For example, if the link ab points in the direction n2 and the link
bc points in the direction n1 then

Ai

(
xa + xb

2

)
≈ Ai

(
xa + xb + xc + xd

4

)
− 1

2
a
∂Ai

∂x1

(
xa + xb + xc + xd

4

)
(10.11)

and similarly for the other terms. The result is that the magnetic Hamil-
tonian for this plaquette is

Hmagnetic(Γ) =
1
2
a3

(
∂A1

∂x2
− ∂A2

∂x1

)2

(10.12)

which is proportional to the square of the third component of the curl of
the vector potential, otherwise known as the magnetic field.

Summing over all plaquettes results in the continuum limit for the mag-
netic part of the Hamiltonian,

Hmagnetic =
1
2

∫
d3xB2(x) (10.13)

since a3
∑

x → ∫
d3x in the continuum limit. The physical electric field E

associated with the link ab is defined to be gn2E(xa,n2)/a2, which has
both the correct dimensions and direction. The continuum limit of the
electric part of the Hamiltonian is therefore

Helectric =
1
2

∫
d3xE2(x) (10.14)

The resulting continuum theory is a free-field theory in the absence of
electric charges. Note, however, that the original lattice theory is a fully
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200 Lattice gauge theory

interacting theory with interactions to all orders in the vector potential.
The range of these interactions is of the order of the lattice spacing a.

Since this is a Hamiltonian formulation, only physical states obeying
Gauss’s law should be included when calculating the partition function:

Z(β) =
∑

physical
statesψ

〈ψ|e−βH |ψ〉 (10.15)

These states |ψ〉 should satisfy∑
n

E(x,n)|ψ〉 = 0 (10.16)

for each site x, assuming that there are no electric charges in the system.
To impose Gauss’s law, we insert a factor

δ

(∑
n

E(x,n)

)
=
∫ π

−π

dα(x)
2π

exp

(
iα(x)

∑
n

E(x,n)

)
(10.17)

at each site. This will take care of the restriction to physical states auto-
matically.

Let us study the theory in the strong-coupling limit, g2 � 1. This is the
extreme opposite of the weak-coupling limit, where perturbation theory
can be applied. In strong coupling we can drop the magnetic energy and
keep only the electric. Imposing Gauss’s law by use of the Dirac delta
function leads to the expression

Z =
∏
x

∫ π

−π

dα(x)
2π

∏
links atx

(∑
E

exp
{
−βg2

2a
E2(x,n)

+ i[α(x) − α(x + n)]E(x,n)
})

(10.18)

Here and from now on E represents the eigenvalues (integers) of the oper-
ator. To understand the nature of the strong-coupling phase, insert a pair
of static immobile charges, one of charge g located at x = 0 and the other
of charge −g located at x = R. Then Gauss’s law becomes∑

n

E(0,n) = 1∑
n

E(R,n) = −1 (10.19)∑
n

E(x,n) = 0 for x = 0, R

This leads to an extra factor in Z of eiα(0)e−iα(R):

Z(β,R) = Z(β)
〈
eiα(0)e−iα(R)

〉
(10.20)
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10.1 Abelian gauge theory 201

The free energy of this configuration is

ΔF (β,R) = − [T lnZ(β,R) − T lnZ(β)] = −T ln
〈
eiα(0)e−iα(R)

〉
(10.21)

First consider the low-temperature limit, βg2/2a � 1. Then only the
eigenvalues E = 0,±1 matter and〈

eiα(0)e−iα(R)
〉

=
∏
x

∫ π

−π

dα(x)
2π

∏
links atx

{
ei[α(0)−α(R)] + e−βg2/2aei[α(x)−α(x+n)+α(0)−α(R)]

+ e−βg2/2aei[−α(x)+α(x+n)+α(0)−α(R)]
}

(10.22)

The first of the three exponentials integrates to zero. So do the second and
third, except for those paths that connect the two charges. For simplicity,
choose R to lie on an axis running through the origin. Then〈

eiα(0)e−iα(R)
〉

= 2
(
e−βg2/2a

)Nlinks(0,R)
= 2e−βg2R/2a2

(10.23)

where Nlinks(0, R) = R/a is the number of links connecting the charges.
Therefore

ΔF =
g2

2a2
R (10.24)

The potential energy is linear and thus confining.
The high-temperature limit, βg2/2a � 1, is left as an exercise. It should

be no surprise that the answer is a Coulombic potential,

ΔF = −g2

R
(10.25)

Since the low- and high-temperature limits have completely opposite
behavior, one should expect a phase transition separating them. The crit-
ical temperature is estimated as βcg

2/2a ≈ 1 or

Tc ≈ g2

2a
(10.26)

This depends very strongly on the lattice spacing. In fact, since this
is a quantum field theory, quantum corrections will cause the effective
coupling constant to depend on a, namely, g2(a) will replace g2 in the
estimate for the critical temperature. This being an Abelian theory it
does not have the property of asymptotic freedom. Therefore g2(a) will
grow with decreasing a. Hence Tc will grow without bound as a → 0. The
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202 Lattice gauge theory

low-temperature confining phase does not smoothly extrapolate to the
continuum limit but is separated from it by a phase transition; confine-
ment exists only in the discretized lattice version of the theory. This is
well and good since we know that QED is not a confining theory.

10.2 Nonabelian gauge theory

Both QCD and electroweak theory involve nonabelian gauge groups,
SU(3) in the former case and SU(2) in the latter. Essentially all modern
numerical calculations in these theories use the Lagrangian formulation,
not the Hamiltonian one. Calculations are done on a finite discrete lattice
of volume V = L3, with

L = Nsa (10.27)

where a is the lattice spacing and Ns is the number of sites in each of
the three spatial directions. The imaginary time variable is also discrete:
0 ≤ τ ≤ β as usual with

β =
1
T

= Nτa (10.28)

where Nτ is the number of sites in the imaginary time direction. The unit
directional vectors n in three spatial dimensions must be extended to unit
directional vectors nα in four Euclidean dimensions. It is then convenient
to define x4 = τ . The lattice spacings in the space and time directions
need not be the same, and sometimes they are chosen differently, but
equal spacing is the norm.

The notions of site, link, and plaquette all carry over from the lattice
version of the Abelian theory. The generalization of the link variable from
U(1), as given in (10.1), to SU(N) is straightforward, but for definiteness
we specialize to SU(2) for the rest of this section:

U(x;nα) = exp
[
iaσjA

j
α(x)

]
= u4I + σ · u (10.29)

Here the link begins at the site x = (x, x4) and goes in the direction
nα. The σj with j = 1, 2, 3 are the Pauli matrices while I is the identity
matrix. These link variables are elements of the group SU(2). In the con-
tinuum limit the Aj

α will be identified as 1/g times the four-vector poten-
tial. (It is conventional to factor out the coupling constant.) Compare
with (10.9). By the definition of the link variables there is a constraint

u2
4 + u2 = 1 (10.30)

This is a compact gauge group.
The action should be defined so that (i) it reduces to the continuum

expression, (ii) it is gauge invariant even on the lattice, and (iii) it is as
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10.3 Fermions 203

simple as possible. Requirement (iii) means that an infinite number of
extra terms that all vanish in the continuum limit a → 0 could be added.
Actually it could be advantageous to add such extra terms if it means
that the continuum limit is approached more rapidly and hence more
efficiently in terms of computer time and memory. This goes under the
title of improved actions, and will be discussed in Section 10.4. Motivated
by the lattice action for the Abelian theory, the simplest possible action
for SU(2) is

S(U) =
4
g2

∑
plaquettes abcd

(
1 − 1

2TrUabUbcUcdUda

)
(10.31)

That this reduces to the proper continuum action is left as an exercise.
This action is invariant under the gauge transformation

U(x;nα) → V (x)U(x;nα)V −1(x + anα) (10.32)

where

V (x) = exp[iaσjΛj(x)] (10.33)

This invariance is obvious at a glance.
The functional integral expression for the partition function involves

integration over all possible field configurations:

Z =
∫ ∏

links ab

dUab exp[−S(U)] (10.34)

When integrating over the link variables U it must be remembered that
they are unitary matrices in the group SU(2) and therefore one must use
the appropriate Haar measure. One could integrate over the u0 and u
subject to the constraint (10.30), or one could integrate over three angles
in four-dimensional Euclidean space.

At this point perturbation theory could be used to compute physical
observables on the finite lattice at finite temperature. However, it is much
more interesting to attempt to evaluate the large but finite-dimensional
integral for Z using Monte Carlo techniques. The results of such numerical
work are the subject of Sections 10.4 and 10.5.

10.3 Fermions

Introducing fermionic fields on a lattice has been a challenge. The most
used techniques result in a multiplication of the number of fermion species
in the continuum limit and/or the breaking of chiral symmetry on the
lattice when the fermions are massless. Much technical work has been
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204 Lattice gauge theory

done to overcome these problems. In this section we introduce the reader
to the most commonly used techniques, as originally formulated.

The staggered-fermion approach was invented by Kogut and Susskind
[7]. In order to define Dirac fields ψ with finite derivatives in the contin-
uum limit, they introduced two separate two-component spinors residing
on alternate lattice sites. In the Hamiltonian formalism on a cubic lat-
tice, a lattice site x is defined to be even or odd according to whether
s ≡ (x1 + x2 + x3)/a is an even or odd integer. The upper two compo-
nents of a four-component Dirac field, ψupper, reside on even lattice sites
while the lower two components, ψlower, reside on odd lattice sites. The
Hamiltonian for free fermions is taken to be

H =
1
ia

∑
x,n

ψ†(x)σ · nψ(x + an) + m
∑
x

(−1)sψ†(x)ψ(x) (10.35)

Imposition of the canonical commutation relations{
ψα(x), ψ†

β(x′)
}

= δα,βδx,x′ (10.36)

leads to the equation of motion

i
∂ψ(x)
∂t

= [ψ(x), H]

=
1
ia

∑
n

σ · nψ(x + an) + m(−1)sψ(x)

=
1

2ia

∑
n

σ · n [ψ(x + an) − ψ(x − an)]

+ m(−1)sψ(x) (10.37)

In the continuum limit the finite differences become derivatives. Remem-
bering that the upper and lower components of ψ reside on even and odd
lattice sites, the equation of motion becomes

i
∂ψupper

∂t
= −iσ · ∇ψlower + mψupper

i
∂ψlower

∂t
= −iσ · ∇ψupper −mψlower

(10.38)

This is the Dirac equation for free fermions.
Coupling to the gauge field can be done in such a way as to render

the Hamiltonian gauge invariant. Inspection of (10.35) suggests that we
rotate the Dirac field according to

ψ(x) → V (x)ψ(x) (10.39)

The kinetic energy term in the free Hamiltonian that involves neighboring
sites x and x + anα requires us to use the parallel-transporter or link
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variable U to connect them in a gauge-invariant way:

H =
1
ia

∑
x,n

ψ†(x)σ · nU(x;n)ψ(x + an) + m
∑
x

(−1)sψ†(x)ψ(x)

(10.40)

Recalling (10.32) we see immediately that this Hamiltonian is minimally
coupled and gauge invariant. Taking the zero-lattice-spacing limit in the
usual way reproduces the correct continuum equations.

The staggered-fermion approach of Kogut and Susskind can also be
expressed in Lagrangian form and on a lattice. After some work one finds
the action

SKS
fermion =

1
a

∑
xx′

ψ̄(x)
[
DKS(x, x′) + amδ(x, x′)

]
ψ(x′) (10.41)

where in this expression ψ has only one Dirac component. The matrix is

DKS(x, x′)

=
1
2

3∑
j=1

sign(x, j)
[
δ(x + anj , x

′)U(x;nj) − δ(x, x′ + anj)U †(x′;nj)
]

+
1
2

[
δ(x + an4, x

′)U(x;n4)eaμ − δ(x, x′ + an4)U †(x′;n4)e−aμ
]
(10.42)

and the sign factor is given by

sign(x, j) = (−1)x4/a

⎧⎨⎩
1 if j = 1
(−1)x1/a if j = 2
(−1)(x1+x2)/a if j = 3

(10.43)

The delta functions appearing in (10.42) are Kronecker not Dirac. A chem-
ical potential μ has also been added. Integrating over the fermion field
gives the usual determinant of the operator:

Z =
∫ ∏

links ab

dUab exp[−S(U)] det
[
DKS(U) + am

]
(10.44)

where the action S(U) is due to the gauge fields alone. If one takes the
continuum limit with zero mass one finds not one but four species of
fermion. This is an illustration of the fermion doubling (better to say
multiplication) problem on the lattice. Sometimes the (Nf/4)th root of
the fermion determinant is taken to represent Nf species of fermion; for
example, Nf = 1 for one species.

Wilson [1] introduced fermions on the lattice in a different way. Every
lattice site is associated with a four-component Dirac field. The action is
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taken to be

SW
fermion = − 1

2a

∑
x,nα

ψ̄(x)γα [U(x;nα)ψ(x + anα)

−U †(x− anα;nα)ψ(x− anα)
]

+ m
∑
x

ψ̄(x)ψ(x)

(10.45)

This is gauge invariant and reduces to the correct action in the continuum
limit. For example, for free fermions U = 1 and the term

1
2a

[ψ(x + anα) − ψ(x− anα)] → ∂αψ(x) (10.46)

in the continuum limit. There is a corresponding matrix DW(U) that
replaces DKS(U) in (10.44). In this case one finds that the number of
species increases by 16 in the continuum limit and when the fermion
is massless. The reason is easy to see for free fermions. Instead of the
expression (2.94) for lnZ one finds the replacement (m = 0 and μ = 0)

ω2
n + p2 → 1

a2
sin2 (ap4) +

1
a2

3∑
i=1

sin2 (api) (10.47)

The lattice propagator has poles not only at zero momentum but also at
all the corners of the Brillouin zone, namely, pj = ±π/a, p4 = ±π/a. The
way out of this is to introduce another term in the action proportional to
aψ̄∂2

αψ that vanishes in the a → 0 limit. However, with any finite lattice
spacing chiral symmetry is broken, and so the chiral condensate cannot
serve as an order parameter on the lattice.

Specific calculations with quarks will be reviewed in Section 10.5.

10.4 Phase transitions in pure gauge theory

The best-understood lattice gauge theories are the pure gauge theories
without quarks. Extensive numerical calculations have been done for
SU(2) and SU(3). Results for the equation of state in the vicinity of Tc for
SU(3) are shown in Figure 10.3. The SU(3) theory undergoes a first-order
phase transition. It has been found that any SU(N) theory, with N equal
to or greater than 3, undergoes a first-order transition [8], while SU(2)
undergoes a second-order transition. This was predicted on the basis of
universality arguments [9]. The essential degrees of freedom below Tc may
be thought of as glueballs, while above Tc they may be thought of as glu-
ons. In either region the degrees of freedom certainly do interact amongst
themselves to a greater or lesser extent.

One must ask just how big a lattice ought to be in order to obtain
results that are truly representative of the continuum limit for temper-
atures of the order of one to several hundred MeV. The necessary size
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10.4 Phase transitions in pure gauge theory 207

Fig. 10.3. The equation of state of pure SU(3) gauge theory with no quarks.
The results shown are extrapolations to the continuum limit, with an estimated
uncertainty of order ±0.1. The latent heat is about 1.5T 4

c . The data were taken
from [10].

may be estimated as follows. Hadrons, including glueballs, have a spatial
extent of the order of 1 fm. Thus the size of the system should be at
least 5 to 10 fm on a side in order to contain enough particles that the
thermodynamic limit is approximately attained. Because the boundary
conditions are usually chosen to be periodic in space, the effective size of
the box is somewhat reduced due to surface effects. Therefore we should
be conservative and require a box with sides of length 10 fm. At the other
end of the scale, a hadron has internal structure characterized by a length
of 0.1 fm. If changes in the hadronic structure, such as deconfinement, due
to finite temperature are to be seen then the lattice spacing should be no
larger than about 0.05 fm. Taken together, this implies that the lattice
should be at least 100 to 200 sites per spatial dimension. The temporal
dimension has length β = 1/T . Taking a lattice spacing of 0.05 fm and
a temperature of 200 MeV requires about 20 sites in the temporal direc-
tion. Numerical calculations with lattices of size up to Ns = 64 or 128 and
Nτ = 16 or 32 have been done. Extensive work on scaling with system size
shows that this is probably large enough to obtain reasonable results.

Rather than going to larger lattices, it can be advantageous to add
additional terms to the simplest actions described in the previous sections.
These terms vanish in the continuum limit, being higher order in a, but
can noticeably improve the approach to the continuum. For example,
suppose that the thermal average of some observable has the Taylor series
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expansion in the lattice spacing

〈O〉lattice
〈O〉continuum

= 1 +
∞∑
n=1

c2na
2n (10.48)

for the simplest lattice action. By the addition of judicious terms to the
action it is possible to cancel the term c2a

2, bringing about a faster con-
vergence to the continuum limit. Of course, the remaining coefficients
are likely to be modified as a result, c2n → c′2n. The modified coefficients
may be larger or smaller or even of opposite sign. One approach is to
add six planar link terms to the action, which is then called a tree-level
improved 1 × 2 action. Another approach is to change certain coefficients
in the action to correspond to the renormalization group; the action is
then termed RG-improved. Yet another approach is to recognize that the
coefficients c2n can be expanded in powers of g2. The coefficients in the
action can be adjusted to make c2n equal to zero to some order in g2; this
is the Symanzik improvement program [11].

If there is a deconfinement phase transition then the free energy of a
heavy quark–antiquark pair should grow linearly with separation below
Tc and be Debye screened above. This free energy can be calculated using
the Wilson line

W (x, β) = Tτ exp
(
i

∫ β

0
dτ λaA

a
4(x, τ)

)
(10.49)

and Polyakov loop

L(x) =
1
N

TrW (x, β) (10.50)

Here the λa are the Gell-Mann matrices for SU(3) (for SU(2) they would
be the Pauli matrices), Tr is the trace with respect to the indices of those
matrices, and Tτ denotes time ordering. This is useful because a static,
immovable, quark field evolves in imaginary time according to

ψ(x, τ) = W (x, τ)ψ(x, 0) (10.51)

which solves the Dirac equation. The free energy of a system that contains
one quark with color index c located at x and one antiquark with color
index c′ located at x′ is then determined by

exp(−βFqq̄) =
1
N2

∑
a,a′

∑
s

〈s|ψa(x, 0)ψc
a′(x′, 0)

× exp(−βH)ψ†
a(x, 0)ψc†

a′ (x′, 0)|s〉
=

1
N2

∑
a,a′

∑
s

〈s| exp(−βH)ψa(x, β)ψ†
a(x, 0)

×ψc†
a′ (x′, 0)ψc

a′(x′, 0)|s〉 (10.52)
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where the superscript c indicates the operation of charge conjugation. The
states |s〉 do not include any quarks; these must be created by the field
operators acting on |s〉. This can be expressed in terms of the Polyakov
loop

exp(−βFqq̄) = Tr
[
exp(−βH)L(x)L†(x′)

]
(10.53)

This is the free energy of the entire system of gluons plus quark and anti-
quark. To obtain the free energy ΔFqq̄ associated with the quark and anti-
quark only we must divide by the partition function Z = Tr exp(−βH)
for a system of gluons only, obtaining

exp(−βΔFqq̄) = 〈L(x)L†(x′)〉 (10.54)

The generalization to an assembly of Nq quarks and Nq̄ antiquarks is
straightforward:

exp
(−βΔFNqNq̄

)
= 〈L(x1) · · · L(xNq

)L†(x′
1) · · · L†(x′

Nq̄
)〉 (10.55)

The transcription of the Polyakov loop to the lattice is

L(x) =
1
N

Tr
Nτ−1∏
j=0

U(x, ja;n4) (10.56)

which is the trace of the product of the U matrices along the time axis.
The link variables U are required to be periodic in time, but the class

of allowable gauge transformations is not restricted to those that are peri-
odic. Among them is a special set of gauge transformations that obey

V (x, β) = V (x, 0)ei2πn/N (10.57)

where n is an integer. The action of the pure gauge theory is invariant too.
This is a global Z(N) symmetry. However, the Polyakov loop is changed:

L(x) → L(x) ei2πn/N (10.58)

and so is the free energy of a system of static quarks and antiquarks:

exp
(−βΔFNqNq̄

)→ exp
(−βΔFNqNq̄

)
ei2πn(Nq−Nq̄)/N (10.59)

Unless Nq −Nq̄ is an integral multiple of N , the free energy of this assem-
bly of quarks and antiquarks is infinite. This is one manifestation of quark
confinement. For SU(3) this means that the number of quarks minus anti-
quarks must be an integer multiple of 3, whereas for SU(2) it must be an
integer multiple of 2.

If the Z(N) symmetry of the pure gauge theory is spontaneously broken
then there ought to be N distinct possible values of 〈L〉, with

〈L〉 = ei2πn/NL0 n = 0, 1, . . . , N − 1 (10.60)
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Fig. 10.4. The average value of the renormalized Polyakov loop as a function
of temperature on lattices of spatial size Ns = 32. It is zero below a critical
temperature. Systematic errors are not included. It can go above unity because
it is normalized to the short-distance perturbative result on the lattice. The data
are from [12].

Therefore 〈L〉 is an order parameter analogous to the magnetization in a
Z(N) spin system. Numerical calculations with the latter systems show
a second-order phase transition for N = 2 and a first-order transition for
N ≥ 3, in agreement with explicit calculations for SU(N) gauge theories.
Calculation of the mean value of L as a function of temperature for SU(3)
does indeed show the expected behavior of an order parameter, as may
be seen in Figure 10.4.

The static quark–antiquark free energy has contributions from the color
singlet and octet potentials:

exp(−βΔF1,1(r, T )) = 1
9 exp[−βΔF1(r, T )] + 8

9 exp[−βΔF8(r, T )]

(10.61)

The octet is repulsive and the singlet is attractive. The latter is usually
of most interest. It can be separated out via

exp[−βΔF1(r, T )] = 1
3 Tr〈W (x, β)W †(0, β)〉 (10.62)

This requires us to fix the gauge in order to obtain a physically relevant
observable. Monte Carlo calculations for the color-singlet potential at var-
ious temperatures near Tc are shown in Figure 10.5. At large values of the
separation r the free energy is independent of separation, indicating that
the linear confining potential characteristic of the low-temperature phase
is screened.
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Fig. 10.5. The free energy of a heavy quark–antiquark pair in the color-singlet
state as a function of separation for various temperatures. The calculations were
done for Ns = 32 and Nτ = 4, 8, and 16. The data are from [13]. The dotted line
represents a zero-temperature potential V (r) = −4αs/3r + σr with αs = 0.18.

In the pure gauge theories all physical observables are expressed in
terms of the lattice spacing. The renormalization group relates the cou-
pling, the lattice spacing, and the scale parameter, ΛL. To two-loop order
the relationship is

aΛL =
1

[β0g2(a)]β1/2β2
0

exp
( −1

2β0g2(a)

)
(10.63)

where the coefficients β0 and β1 were given in (8.39). The scale parameter
ΛL can be related to the scale parameters in other schemes, such as Λ̄MS.

The best approach to obtaining physically relevant numbers from lat-
tice calculations is to express the results as dimensionless ratios. Then
the explicit dependence on the lattice spacing drops out, and hopefully
the sensitivity to nonzero a is reduced. For example, pure SU(3) gauge
theory at T = 0 does not have the usual assortment of hadrons, such as
pions and nucleons. It only has glueballs. A relevant ratio then would be
Tc/

√
σ, where σ is the string tension, which may be obtained from the

asymptotic part of the color singlet potential at T = 0. An average of
several existing calculations yields Tc/

√
σ = 0.632 ± 0.002. Now, there is

no absolute argument that says that the string tension in quarkless SU(3)
must be the same as in the real world with its six flavors of quarks with
various masses. Still, one needs some scale to compare with and it might
as well be the string tension. From the phenomenology of heavy quark
systems and from the observed linear Regge trajectories it is known that
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√
σ ≈ 420 MeV. In this case Tc ≈ 265 MeV. If one chose a different com-

parison scheme then one would undoubtedly get a different number for the
critical temperature in MeV because the relationship among observables
depends on the number of quarks and their masses.

10.5 Lattice QCD

Inclusion of quarks on the lattice intensifies the numerical difficulty
tremendously. A straightforward evaluation of the fermion determinant
involves (N3

s Nτ )! terms. Since most entries in the fermion matrix are
zero, clever techniques can be used to reduce this number significantly,
but the task is still formidable. As in the pure gauge theory, additional
terms can be added to the fermion part of the action that quicken the
approach to the continuum, albeit at the expense of computational time.

The quark masses used in lattice calculations to date are not constants
but scale with either the lattice spacing, am = constant, or with the
temperature, m/T = constant. In principle the values of the up, down,
and strange quark masses should be adjusted to yield the experimen-
tally observed values of the pion and kaon masses. Then all other hadron
masses, and all calculations done at finite temperature, would be absolute
predictions of the theory. However, it turns out that the computational
time grows quickly with decreasing quark mass, so that this goal has not
been achieved yet.

Figure 10.6 shows the energy density versus temperature for two flavors
of light quarks, two flavors of light quarks and one heavier quark, and three
flavors of light quarks. Light and heavy mean mlight = 0.4T and mheavy =
T , roughly corresponding to up and down quarks and strange quarks.
There is a big jump in the energy density centered at a temperature
defined to be Tc. Finite size and lattice spacing (Nτ = 4) prevent one
from concluding whether there is a first- or second-order phase transition
or only a very rapid crossover. Extrapolation to the physical value of
the ratios of pion to rho and omega vector meson masses suggests that
Tc = 172 ± 9 MeV for two light quarks, where the quoted uncertainty is
statistical only. The systematic uncertainty is comparable in magnitude.
The value of Tc is reduced by 15 to 20 MeV for a world of three light
quarks.

The Polyakov loop cannot be used as an order parameter when dynami-
cal quarks are included because the quark part of the action is not invari-
ant under Z(3) transformations. This can be understood intuitively by
remembering that the Polyakov loop is used to measure the free energy of
any configuration of static quarks and antiquarks. When a quark and anti-
quark are pulled apart the potential ceases to be linear in the separation,
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Fig. 10.6. Energy density in units of T 4 as a function of T/Tc for two flavors
of light quarks, two flavors of light quarks and one flavor of heavier quark, and
three flavors of light quarks. The lattice size is 163 × 4. The data are from [14].

because the string can break owing to the creation of a light dynami-
cal quark and antiquark. So what then could the order parameter be? If
some of the quarks have zero mass then the theory has chiral symmetry,
and the quark condensate 〈ψ̄ψ〉 serves as an order parameter. Figure 10.7
shows the temperature dependence of this condensate for a sequence of
ever decreasing light quark masses, for two light flavors and one heavier
flavor. The quark condensate goes to zero if the light quark mass is light
enough, but only decreases monotonically without ever reaching zero for
more massive light quarks. This is also reflected in the hysteresis behavior
when the system is numerically cooled and heated and cooled again by
Monte Carlo.

To study the effects of varying the number of quark flavors and their
masses, Pisarski and Wilczek [16] constructed an effective Lagrangian
for an order-parameter field taken to be Φij = f q̄i(1 + γ5)qj , where f
is a constant. The Lagrangian should reflect the symmetries of the
QCD Lagrangian. For Nf flavors of massless quarks the symmetry
group is

Gf = U(1)A × SU(Nf) × SU(Nf) → G′
f = Z(Nf)A × SU(Nf) × SU(Nf)

Here the classical axial U(1)A symmetry is broken to Z(Nf)A symme-
try, owing to the quantum axial anomaly. The form of the effective
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Fig. 10.7. The quark condensate, measured in lattice units, versus temperature.
The strange quark mass is fixed in such a way that the mass of the φ meson takes
its physical value as calculated on the lattice. The lattice size is 163 × 8. The
data are from [15].

(renormalizable) Lagrangian is

Leff = 1
2 Tr

(
∂μΦ†∂μΦ

)
− 1

2m
2
Φ Tr

(
Φ†Φ

)
− 1

3π
2g1

[
Tr
(
Φ†Φ

)]2 − 1
3π

2g2 Tr
[(

Φ†Φ
)2
]

+ c
(
det Φ† + det Φ

)
+ Tr

[
M
(
Φ† + Φ

)]
(10.64)

The determinants originate in the anomaly and are sometimes associated
with instanton effects. In hadronic phenomenology they are necessary to
give the η′ its large observed mass. The last term involving the matrix M
represents the effect of nonzero quark masses. Pisarski and Wilczek then
used universality to infer the behavior of the QCD system from studies
of simpler systems with the same symmetry. Those systems were studied
using an ε expansion in 4 − ε dimensions. Assuming that all quarks are
massless, they found that for Nf = 1 there is no true phase transition, for
Nf = 2 the phase transition may be first or second order depending on
the strength of the anomaly at Tc as reflected in the coefficient c, and for
Nf ≥ 3 the phase transition is first order.

The likely phase diagram in the ms versus mu = md plane is shown in
Figure 10.8. When all quarks are infinitely heavy it is as if they do not
exist at the temperatures of interest, and there is a first-order deconfin-
ing phase transition as in the pure SU(3) gauge theory. When all three
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Fig. 10.8. A possible phase diagram for QCD in the strange quark mass versus
light quark mass plane. The lower left-hand corner exhibits a first-order chiral-
symmetry phase transition, the upper right-hand corner a deconfinement phase
transition. These are separated from an intermediate region of rapid crossover
between phases.

flavors are massless there is a first-order chiral-symmetry-restoring phase
transition. When the strange quark is heavy and the up and down quarks
have zero mass there is a second-order chiral-symmetry-restoring phase
transition. When all three flavors have masses of the order of several hun-
dred MeV, there is no true thermodynamic phase transition but only a
sharp crossover with a jump in the energy density over a small range
of temperatures. A variety of lattice calculations seem to support this
general picture, but it should still be considered merely as a reasonable
conjecture.

The application of lattice QCD to the study of finite-density matter is
in its infancy. The difficulty lies in the fact that the chemical potential
acts as a constant imaginary time component of the vector potential; see
(5.18), (5.19), and (10.42). As such the fermion determinant is complex.
This should not lead to a complex partition function; the imaginary part
must average to zero. However, it does mean that straightforward Monte
Carlo sampling techniques cannot be applied. Two interesting approaches
are (i) a Taylor series expansion in powers of (μB/T )2 and (ii) calculation
with an imaginary chemical potential followed by analytic continuation
to a real baryon chemical potential μB. The latter approach was followed
by de Forcrand and Philipsen. For two flavors of light quarks they found
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Fig. 10.9. A possible critical line for QCD. The solid curve represents a first-
order phase transition terminating at a second-order phase transition at the
critical endpoint labeled CE. The broken line represents a rapid crossover.

the critical line [17]

T

Tc
= 1 − 0.0056 ± 0.0004

(
μB

Tc

)2

(10.65)

and for three flavors of light quarks [18]

T

Tc
= 1 − 0.0068 ± 0.0001

(
μB

Tc

)2

(10.66)

The stated range of validity is |μB| < 500 MeV; the systematic uncertain-
ties are at least as large as the quoted statistical uncertainties. If these
are optimistically extrapolated to zero temperature, then taking Tc ≈ 160
MeV one gets μB ≈ 2 GeV. This is quite reasonable. The above relations
were shown not to be sensitive to the precise numerical value of the quark
mass. The critical line for Nf = 3 is shown in Figure 10.9. The lattice cal-
culations did not establish conclusively whether the critical line represents
a true phase transition or just a rapid crossover between hadronic matter
and quark–gluon plasma. If the quark masses are not small enough to
yield a first-order phase transition at zero baryon density but finite tem-
perature, there may exist a critical point along the critical line. At lower
baryon density there is a rapid crossover and at higher baryon density
there is a first-order phase transition. This would connect nicely with the
color superconductivity analysis; see Figure 8.4. At the present time the
existence of a critical point is not well established.
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10.6 Exercises

10.1 Show that (10.5) leads to the correct commutation relation
between the vector potential and the electric field in the contin-
uum limit.

10.2 Derive the Coulomb potential (10.25) in the high-temperature
limit of the lattice gauge theory.

10.3 Show that (10.31) is gauge invariant.
10.4 Calculate the continuum limit of (10.31).
10.5 Consider a free neutral boson on a N3

s Nτ lattice of spacing a in
all four directions in the limit Ns � Nτ � 1. Since the action is
quadratic, the functional integral expression for the partition func-
tion can be evaluated exactly. Following the analysis in Chapter
2 show that the propagator can be written as

D−1(p, p4) =
4
a2

sin2
(ap4

2

)
+

4
a2

3∑
i=1

sin2
(api

2

)
+ m2

where −π/a ≤ p4 ≤ π/a and −π/a ≤ pi ≤ π/a, which defines the
Brillouin zone. This reduces to the usual scalar propagator in the
a → 0 limit. This propagator has only one minimum, which is
located at p = 0, p4 = 0.

10.6 Using periodic boundary conditions in the spatial directions, and
antiperiodic boundary conditions in the temporal direction, com-
pute the partition function for massless staggered fermions in the
limit of large Ns and Nτ .

10.7 Repeat Exercise 10.5 for Wilson fermions.
10.8 Show formally that the thermodynamic identities are obeyed with

the action (10.42). This implies that the chemical potential in
(10.42) has been implemented correctly.

10.9 Work out the details leading from (10.51) to (10.52).
10.10 Derive the result (10.60), which holds when Z(N) symmetry is

spontaneously broken.
10.11 Construct a function Pfit(T ) that parametrizes the results of the

pure SU(3) lattice results. Be sure to compare with entropy and
energy densities too.

10.12 Are there other terms that could be added to (10.64) for two
flavors of massless quarks? If so, what are they?
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