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Subjects with insulin resistance have been shown to have higher storage levels of intramyocel-
lular lipid (IMCL) than their insulin-sensitive counterparts. It has been proposed that elevated
IMCL stores may be the main cause of insulin resistance. The aim of the present study was to
ascertain whether there is a causal relationship between IMCL storage and insulin resistance.
IMCL storage was assessed using magnetic resonance spectroscopy and insulin sensitivity
was assessed by performing an oral glucose tolerance test. A 4-week intervention of reduction
of dietary glycaemic index was used to manipulate insulin sensitivity in a cohort of healthy vol-
unteers; the effects of this intervention on IMCL were measured after 4 weeks of intervention.
Significant improvements in the insulin sensitivity index occurred following the dietary inter-
vention (baseline 7-8 (SEM 1:-11) v. post-intervention 9-7 (SEM 1-11), P=0-02). However,
there were no changes in IMCL storage levels, suggesting that insulin sensitivity can be
manipulated independently of IMCL. This suggests that in healthy volunteers, insulin sensi-
tivity is independent of IMCL storage and the high storage levels that have been found in insu-
lin-resistant subjects may occur as a consequence rather than a cause of insulin resistance.
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Insulin resistance has been shown to be associated with a
significantly increased risk of CHD, hypertension and
type 2 diabetes (Reaven, 1994). However, the underlying
mechanism associated with the development of insulin
resistance is not fully understood.

Recent clinical and animal research has shown a signifi-
cant positive correlation between insulin resistance and
levels of intramyocellular lipid (IMCL) (Falholt et al.
1988; Phillips et al. 1996; Pan et al. 1997; Forouhi et al.
1999; Jacob et al. 1999; Krssak et al. 1999). Studies in
rodents have also shown that high-fat feeding results in a
parallel increase in insulin resistance and IMCL storage
(Kraegen et al. 1991; Storlien et al. 1991) In addition, it
has been found recently that troglitazone, a member of
the thiazolidinedione group of insulin-sensitising drugs,
reduces IMCL storage while improving insulin sensitivity
in rodents (Sreenan et al. 1999). This, and other published
work, has given renewed impetus to the concept that
IMCL may be pivotal, through the Randle cycle, in the

development of insulin resistance (Randle et al. 1963).
However, it remains unclear whether IMCL stores in
muscle are a cause or an effect of insulin resistance.

It is estimated that 25 % of the population are insulin
resistant (Reaven, 1995) and this incidence is likely to
increase with the rise in obesity; this makes effective life-
style management an important public health issue. Life-
style factors, such as dietary modification, have been
demonstrated to improve insulin sensitivity (Tremblay,
1995; Torjesen et al. 1997; Saris et al. 1998). Evidence sup-
ports the role of carbohydrates in influencing insulin sensi-
tivity (Jenkins et al. 1988; Wolever et al. 1992; Daly et al.
1997; Roche, 1999). Frost et al. (1996) found, using the
short insulin tolerance test, that in vivo insulin sensitivity
improves following a low-glyaemic-index (GI) diet;
this has yet to be investigated using the ‘gold standard’
clamp procedure for assessing insulin sensitivity. In vitro
experiments also show that insulin-stimulated glucose
uptake by adipocytes improves following a low-GI diet

Abbreviations: GI, glycaemic index; iAUC, incremental area under the curve; IMCL, intramyocellular lipid; NEFA, non-esterified fatty acid; OGTT, oral

glucose tolerance test.
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(Frost et al. 1996, 1998). In addition, Salmeron et al.
(1997a,b) found that high-GI diets were positively associ-
ated with a greater risk of type 2 diabetes than any type of
fat intake. However, evidence from large prospective
studies is conflicting: Liu et al. (2000) and Frost et al.
(1999) found dietary glycaemic load and/or GI to be directly
associated with CHD risk whilst van Dam et al. (2000)
report no such association. A possible mechanism by
which low-GI diets are protective against CHD is that
they improve insulin sensitivity by suppressing non-esteri-
fied fatty acid (NEFA) release (Wolever et al. 1995;
Stears & Byrne, 2001). This affects the Randle cycle, pro-
moting glucose utilisation and possibly affecting storage
of IMCL.

The hypothesis investigated in the present study was that
a low-GI dietary manipulation would improve insulin sen-
sitivity through reducing IMCL storage in a group of
healthy male subjects.

Subjects and methods
Study sample

Twenty-one healthy white European males without a his-
tory of diabetes or chronic disease were recruited. The
mean age of the subjects was 40-8 (SEM 2-50) years and
the mean BMI was 27-2 (SEM 0-99) kg/mz. Exclusion cri-
teria included diabetes, CHD and any metabolic disorder
or drug treatment known to affect carbohydrate or lipid
metabolism. Subjects were also excluded if they had diet-
ary restrictions that would prevent them from adhering to
the study protocol or if they had contra-indications for a
magnetic resonance scan, such as claustrophobia or metal
prostheses. All subjects gave informed written consent
and the protocol was approved by the Imperial College
School of Medicine, Hammersmith Campus Research
Ethics Committee (reference 99/5567).

Methods

The study consisted of a baseline period of 7 d, followed by
an intervention period of 3—4 weeks.

Dietary intake

Prospective food diaries (7 d) were collected from the sub-
jects. Portion sizes were assessed and validated using a
photographic aid (Nelson et al. 1997). Diaries were ana-
lysed for macro- and micronutrient composition using the
DietPlan 5™ (Forestfield Software Ltd, Horsham, Surrey,
UK) computer package. The GI of the subjects’ diets
were calculated using published tables of GI for individual
foods (Foster & Miller, 1995) and using the formula
derived by Wolever & Jenkins (1986) for calculating the
GI of mixed meals. The dietary assessments were validated
using the subjects’ estimated energy requirement, calcu-
lated using the Schofield equation (Schofield et al. 1985)
and Department of Health (1991) recommendations for
activity requirements. Dietary assessments that varied
from the estimated energy requirement by =2000kJ/d
were rejected.

Anthropometry

Weight (kg), height (m) and BMI (kg/mz) were measured
for each subject in the morning period during a visit to
the study centre. Body fat (%) and waist:hip ratio were
measured using the InBody 3-0 (Biospace Co., Ltd, Seoul,
South Korea) system, which is a multifrequency segmental
bioeletrical impedance method (Thomas et al. 2001).

Oral glucose tolerance test

Postprandial lipid and carbohydrate metabolism were
assessed by means of the oral glucose tolerance test
(OGTT). Subjects underwent an overnight fast (minimum
10h) and refrained from alcohol ingestion and strenuous
exercise in the 24h preceding the test. On arrival, each
subject had a cannula placed in an ante-cubital fossa vein
in the non-dominant arm. At time point 0, within a
2 min period, subjects consumed a 75 g oral glucose load
(Lucozade; SmithKline Beecham, Welwyn, Herts., UK).
Blood (10ml) was taken into lithium heparin tubes con-
taining aprotinin (4000kIU; Bayer, Newbury, Berks.,
UK) at time points —20, —10, 0, 30, 60, 90, 120,
180 min. Flushes of NaCl solution (9 g/l, 5ml) were used
to keep the cannula patent throughout the test period.
The samples were immediately centrifuged for 10 min at
3000 rpm at 4°C and plasma separated and stored in ali-
quots at —20°C.

Fasting biochemistry

Fasting glucose, cholesterol, cholesterol particles, triacyl-
glycerol, NEFA and insulin concentrations were measured
in the samples from the OGTT.

Plasma glucose concentrations were determined using a
glucose-oxidase-based autoanalyser (Technicon; Axon
Bayer Diagnostic, Newbury, Berks., UK). Insulin concen-
trations were determined using a radioimmunoassay
(Albano et al. 1972). The inter- and intra-assay CV for
this assay were <10% and the detection limit of the
assay was 2 pmol/l with 95 % CI. To minimise inter-assay
variation, all samples were included in one assay and
were analysed on the first freeze-thaw. NEFA concen-
trations were determined at each time point using the
Wako NEFA test kit (Wako Chemicals, Alpha Laboratories
Ltd, Eastleigh, Hants., UK) that utilises an enzymatic calori-
metric method. Fasting and postprandial plasma triacyl-
glyerol concentrations were determined using Boehringer
Mannheim test kits (Boehringer Mannheim, Lewes,
E. Sussex, UK). Total fasting cholesterol, LDL-cholesterol
and HDL-cholesterol concentrations were determined
using an Olympus AU 600 analyser and Olympus reagents
(Olympus Diagnostic Systems, Southall, London, UK).

The trapezoidal rule was used to calculate the glucose,
insulin, NEFA and triacylglycerol integrated area under
the curve (iIAUC). This method of calculation is derived
from the summation of the mean plasma concentration
for each time period subtracted from the mean basal
value, multiplied by the number of minutes in the time
period. The iAUC derived expresses both the duration
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and magnitude of the plasma response, while correcting for
baseline values.

An insulin sensitivity index was calculated according
to the formula derived by Matsuda & DeFronzo (1999).
This uses the following equation to estimate insulin sensi-
tivity using the OGTT: 10000 /((fasting glucose X fasting
insulin) X (mean glucose X mean insulin) during OGTT).

Magnetic resonance spectroscopy

'"H-Magnetic resonance spectroscopy was used to assess
IMCL storage; in brief (as we have previously published
detailed methodology elsewhere: Rico-Sanz et al. 1998;
Forouhi et al. 1999), spectra were acquired using a 1.5 T
Marconi Medical Eclipse system (Marconi Medical Sys-
tems, Cleveland, OH, USA) from the soleus (predomi-
nantly oxidative muscle fibres), tibialis (predominantly
glycolytic fibres) and gastrocnemius (mixed fibre type)
muscles of the left lower leg. Subjects lay in a supine pos-
ition with the left leg immobilised in a 300 mm diameter
quadrature birdcage coil. A clamp device was used to
immobilise and measure the positioning and orientation
of the leg to ensure that the leg was in an identical position
for follow-up scans. Transverse T;-weighted magnetic
resonance images (repetition time 600, echo time 16 ms)
were acquired for placement of the 'H-magnetic resonance
spectroscopy voxel, with a slice thickness of Smm, a
200 mm field of view and 192 X 256 data matrix. Spectra
were obtained without water suppression using a sta-
ndard PRESS sequence with echo time/repetition time =
135/1500 ms, 8000 mm® voxel and 256 averages. Spectra
were analysed using the MRUI software package (van den
Boogaart er al. 1996; Magnetic Resonance User Interface,
2002). Peak areas for each signal were obtained and lipid
resonances were quantified with reference to total creatine
after correcting for T; and T, (Rico-Sanz et al. 1998).
The reproducibility of this technique has previously been
calculated by our group; the inter-examination CV is
13-6 (SEM 3-5) % (Rico-Sanz et al. 1998).

Dietary intervention

After the 7d baseline period was completed, subjects
began the 4-week intervention period of a low-GI diet.
The aim of the dietary intervention was to change only
the GI of the diet without affecting other macronutrients.
Each subject received written and verbal advice on how
to achieve a low-GI diet. The information centred on the
basic principal that the starchy carbohydrate at each meal
time should consist of a low-GI carbohydrate, for example
pasta, rice, wholegrain bread, oats, beans or pulses. All of
the foods advised for inclusion in the diet were commonly
available in supermarkets. Subjects were not given any
specific information or advice on portion sizes; they were
advised to eat to appetite and to maintain their body
weight throughout the study. The subjects were also
requested to maintain a constant level of physical activity
throughout the study period.

During the first week of the intervention period the sub-
jects completed a 3d food diary that was used to assess
appropriateness of changes and to give further advice if

required. Advice and encouragement was given throughout
the intervention period by regular telephone consultations.

During the fourth week of the intervention, each subject
revisited the study centre for anthropometric measurements
to be repeated and a further OGTT and magnetic resonance
scan. A 7d food diary was completed at this time to ensure
compliance throughout the whole study period and this
record was used for overall assessment of the dietary
intervention.

Statistical analysis

Statistical analyses were performed using SPSS Release
9.0 for Windows (SPSS Inc., Chicago, IL, USA).

The results in tabular and graphical form are shown as
mean values with their standard errors. Data were tested
for normality using the Shapiro—Wilk W test. The paired
Student’s ¢ test and Pearson’s correlation coefficient were
used for statistical analysis. Statistical significance was
taken as P<<0-05.

Results

Eighteen subjects completed the protocol; two subjects
were unable to tolerate the cannulation procedure and
therefore withdrew from the study and one subject was
excluded due to self-prescribing a substantial fatty acid
supplement during the manipulation period.

Dietary findings

The mean duration of intervention was 25 d. The subjects’
baseline and post-intervention macronutrient intakes, as
assessed through the 7d dietary records, are shown in
Table 1. All dietary assessments were within % 2000kJ
of the subjects’ estimated energy requirements and there-
fore believed to be a valid estimation of their dietary
intake. The subjects were requested to maintain usual
activity levels during the intervention. All subjects reported
complying with this request on follow-up. The subjects
achieved a significant reduction in the GI of their diets
(baseline 80 (seM 1-9) v. post-intervention 70 (SEM 1-7),
P=0-002) without significant changes to other macronutri-
ents in their diets.

Anthropometry

The subjects’ anthropometric characteristics at baseline
and post-intervention are shown in Table 2. The subjects’
mean BMI (27-3 (sem 1-03) kg/mz) indicates that the
group were, on average, overweight but not obese
(BMI<25, n 8; BMI 25-30, n 6; BMI>30, n 4). After
intervention, there were non-significant changes in BMI,
% body fat and waist:hip ratio, although the mean body
weight had decreased by 0-6 kg (P=0-04).

Metabolic findings

Due to the small but significant weight reduction (P<<0-05)
that occurred in the subjects, statistical analyses of the bio-
chemical results were performed in three groups: whole
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Table 1. Baseline and post-intervention macronutrient intakes of the study population*
(Mean values with their standard errors)

Baseline (n 18) Post-intervention (n 18)

Statistical significance

Mean SEM Mean SEM of effect (Student’s t test):P
Energy (MJ/d) 13-2 0-5 12-9 0-5 0-51
CHO (% energy) 46 1.6 46 21 0-98
Fat (% energy) 34 1.5 32 1.6 0-15
Protein (% energy) 15 0.6 16 0-6 0.22
NSP (g) 20 1.6 21 1-9 0-50
Gl 80 1.9 70* 1.7 0-002

CHO, carbohydrate; Gl, glycaemic index.
*For details of subjects and procedures, see p. 366.

population (Table 3); weight-reducers (Table 4); weight-
increasers and no change (Table 4). This sub-analysis
was performed to determine whether biochemical changes
were due to the dietary intervention per se or the weight-
reducing effect of the dietary intervention. The results
showed that biochemical changes between groups (A
change) were not significantly different. However, the
effects of weight loss on the biochemical outcomes
cannot be dismissed, as the within-group comparison anal-
ysis (between baseline and post-intervention periods)
shows significant decreases in the glucose (P<<0-05) and
insulin iAUC (P<0-05) in the weight-decreaser group.
This did not occur in the weight increaser and no change
group. The biochemical results are shown for the group
as a whole (Table 3).

The fasting metabolic variables at baseline and post-
intervention are shown in Table 2. There was a trend
towards a decrease in total serum cholesterol in the
group (baseline 4-5 (SEM 0-2) v. post-intervention 4-3
(seM 0-2) mmol/l, P=0-07) and a significant decrease in
fasting LDL-cholesterol following the intervention (base-
line 3-2 (SsEm 0-2) v. post-intervention 2-8 (SEM 0-2)
mmol/l, P=0-01). There were no other significant changes
in fasting biochemical variables.

The results of the OGTT indicated that the dietary inter-
vention produced significant improvements in the subjects’
insulin sensitivity (Table 3). The insulin sensitivity index
increased significantly post-intervention (baseline 7-8
(SEM 1-1) v. post-intervention 9-7 (SEM 1-1), P=0-02). In
addition, there was a significant decrease in the insulin
iAUC (baseline 30-8 (SEM 4-2) v. post-intervention 23-7
(SEM 3-3) nmol/min per litre, P<<0-01). Further analysis
showed that the early insulin secretion appeared to be
most affected by the intervention, seen through significant
reductions in the insulin concentrations at 30 min (baseline
319-0 (seM 30-7) v. post-intervention 262-9 (SEM 35-2)
pmol/l, P=0-03) and 60 min (baseline 331-3 (SEM 36-3)
v. post-intervention 280-0 (SEM 39:5) pmol/l, P=0-02).
The insulin concentration at 2h of the OGTT showed a
trend towards reduction post-intervention, but this did not
reach statistical significance (baseline 204-7 (SEM 43-3) v.
post-intervention 156-9 (SEM 27-4) pmol/l, P=0-08).

The glucose iAUC was reduced by the intervention, but
this did not reach statistical significance (baseline 257-1
(SEM 44-5) v. post-intervention 215-1 (SEM 33-6) mmol/
min per litre, P=0-08). In accordance with the insulin
changes, it was the early glucose uptake that was most
affected by the intervention with the 30min glucose

Table 2. Baseline and post-intervention anthropometric and biochemical characteristics of the study populationt
(Mean values with their standard errors)

Baseline (n 18) Post-intervention (n 18)

Statistical significance

Mean SEM Mean SEM

of effect (Student’s t test):P
Age (years) 399 2-50 399 2.50 Constant
Weight (kg) 87-3 3.08 86-7¢ 312 0-04
Height (m) 1-80 0-02 1-80 0-02 Constant
BMI (kg/m?) 27-3 1.03 271 1.06 0-09
Body fat (%) 20-4 1.35 20-3 1.45 0-78
Waist : hip ratio 0-9 0-02 0-9 0-02 0-38
Total cholesterol (mmol/l) 4.5 0.2 4.3 0-2 0.07
HDL-cholesterol (mmol/l) 0-8 0-03 0-8 0-03 0-43
LDL-cholesterol (mmol/l) 32 0-2 2.8* 0-2 0-01
Fasting glucose (mmol/l) 51 0.2 51 02 0-55
Fasting TG (mmol/l) 1.0 0-1 11 0-2 0-81
Fasting insulin (pmol/l) 62-4 10-0 59-8 12.2 0-68
Fasting NEFA (mmol/l) 0-5 0-05 0-5 0-03 0-84

TG, triacylglycerol; NEFA, non-esterified fatty acid.
Mean values were significantly different from those at baseline: *P<0-05.
1 For details of subjects and procedures, see p. 366.
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Table 3. Baseline and post-intervention oral glucose tolerance test results of the study populationt
(Mean values with their standard errors)

Baseline (n 18)

Post-intervention (n 18)
Statistical significance

Mean SEM Mean SEM of effect (Student’s t test): P
Glucose iAUC (mmol/min per litre) 2571 44.5 2151 33-6 0-08
Insulin iIAUC (nmol/min per litre) 30-8 4.2 23.7* 3-3 0-003
NEFA iAUC (mmol/min per litre) 48-9 6-5 51.8 4.4 0-6
TG iAUC (mmol/min per litre) 16-5 4.0 8.7* 35 0-01
ISI 7-8 11 9.7* 11 0-02

iAUC, incremental area under the curve (calculated using the trapezoidal rule); NEFA, non-esterified fatty acid; TG, triacylglycerol; ISI, insulin

sensitivity index.

Mean values were significantly different from those at baseline : *P<<0-05.

1 For details of subjects and procedures, see p. 366.

concentration being considerably reduced post-intervention
(baseline 8-3 (SEM 0-4) v. post-intervention 7-8 (SEM 0-4)
mmol/l, P=0-09).

Plasma triacylglycerol concentrations were significantly
lower following the intervention (baseline 16-5 (SEM 4-0)
v. post-intervention 8.7 (SEM 3-5) mmol/min per litre,
P=0-01), although there were no significant changes in
NEFA concentrations post-intervention (baseline 48-9
(SEM 6-5) v. post-intervention 51-8 (SEM 4-4) mmol/min
per litre, P=0-63).

Muscle triacylglycerol

A representative spectrum from the soleus muscle of one of
the subjects is shown in Fig. 1. The subjects’ IMCL storage
levels are shown in Table 5. There were no significant
associations (Pearson’s correlation) found between IMCL
storage and BMI, or IMCL and insulin sensitivity. Follow-
ing 4-weeks low-GI diet intervention, IMCL concen-
trations showed no significant changes in any of the three
muscle groups (Table 5).

Discussion

Insulin resistance is a state that predisposes to CHD and
type 2 diabetes, and is the common factor that links
these two diseases. A number of studies, using biopsy
and in vivo magnetic resonance spectroscopy, have
shown that insulin resistance is strongly correlated with
muscle IMCL content (Forouhi er al. 1999). Similar
relationships have been reported in animal studies
(Koyama et al. 1997; Laybutt et al. 1997; Oakes et al.
1997). Moreover, in several of these studies, IMCL was
shown to correlate more strongly with insulin resistance
than other measurements of body adiposity, including visc-
eral fat. There is, however, an interesting paradox to these
findings: trained athletes are found to have relatively high
IMCL storage and insulin sensitivity compared with
untrained subjects (Goodpaster et al. 2001). The published
results on IMCL storage and insulin resistance would pre-
dict that athletes would have low IMCL storage because
they are highly insulin sensitive. In the present study, we
have failed to find any significant correlations between
either IMCL and insulin sensitivity or IMCL and BMI.
This discrepancy in results between the present study and

the previously published reports may be due to methodo-
logical errors. Previously, correlational analysis has been
performed on populations consisting of two groups (insulin
resistant and controls) rather than a continuum of results
from one group. Performing correlational analysis on popu-
lations consisting of two distinctly different groups pro-
duces falsely significant associations.

Despite the wealth of published correlative studies, there
is a paucity of interventional research that can help to
establish cause and effect, especially in human subjects.
In the present study we have shown that, using a 4-week
low-GI diet intervention, insulin sensitivity can be posi-
tively altered independently of IMCL storage. The present
results suggest that IMCL levels per se may not be the
prime determinant of insulin sensitivity in healthy human
subjects. Indeed the work of Voshol et al. (2001) appears
to support our present findings by showing that over-
expression of human lipoprotein lipase in muscle increases
IMCL accumulation, but does not affect whole-body or
muscle-specific insulin-mediated uptake.

At present, although the relationship between IMCL and
insulin sensitivity is well established, intervention studies
are both limited and relatively inconclusive. Evidence
from rodent studies shows that rats made insulin resistant,
using a high-fat diet, increase their IMCL storage (Kraegen
et al. 1991), while treatment with an insulin-sensitising
pharmaceutial agent leads to a reduction in IMCL storage
(Sreenan et al. 1999). However, marked reduction in
other fat depots, including liver and pancreas were also
observed, making it difficult to separate the contribution
of IMCL to the overall changes in insulin sensitivity.
This appears to be also true in animal studies, where
food restriction led to a reduction in IMCL and improve-
ment in insulin sensitivity (Man et al. 2002; Ohneda et al.
2002). Thus, the changes in insulin sensitivity reported in
these studies may in part arise from modulations in fat con-
tent (or related components) in depots others than IMCL,
including hepatic and pancreatic lipids.

Intervention studies aimed at manipulating IMCL and
insulin sensitivity in human volunteers are rather limited.
Goodpaster et al. (2000) have shown a significant decrease
in IMCL in obese subjects, following weight loss, while
Mingrone et al. (2001), using muscle biopsies, found a
reversal of insulin resistance and a reduction in IMCL in
subjects with morbid obesity following significant weight
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3:0 2.0 10
Chemical shift (ppm)

Fig. 1. "H-Magnetic resonance spectrum of the soleus muscle: a
typial proton spectrum from the soleus muscle. For details of pro-
cedures, see p. 366. The lipid resonances are shown between 0-9
and 1-5ppm. Peaks 1 and 3 refer to extramyocellular lipid; peaks 2
and 4 refer to intramyocellular lipid (IMCL); peaks 5 and 6 have
been assigned to choline-containing metabolites (principally carni-
tine) and total creatine (Cr) (phosphocreatine and creatine) respect-
ively (Schik et al. 1993); peak 6 refers total creatine resonance
(8-02ppm) that is used for quantification of the lipid peaks
(IMCL : Criptg ratio).

loss. However, as with animal studies, decreases in IMCL
were accompanied by changes in other fat depots, and pre-
sumably adipose-tissue-related factors, which in turn may
independently influence insulin sensitivity. The study of
Malenfant et al. (2001) showed no significant effect on
either insulin sensitivity or IMCL storage using similar
weight loss interventions in obese subjects. However, they
did report a trend towards improved insulin sensitivity with
no significant changes in IMCL (Malenfant et al. 2001).
Other human interventional studies have concentrated on
alterations in insulin sensitivity through the use of artifi-
cially increased circulating NEFA levels (Roden er al.
1996; Boden et al. 2001; Brechtel et al. 2001). Significant
changes in insulin sensitivity and IMCL levels were
observed following Intralipid infusion. However, decreases
in circulating NEFA did not lead to significant changes in
IMCL (Brechtel et al. 2001). Furthermore, Krssak et al.
(2000) have reported that elevation of circulating NEFA
without hyperinsulaemia did not alter IMCL levels. This
suggests that changes in IMCL may only arise as a conse-
quence of altered insulin status (or other adipose tissue and

lipid factors) rather than being the cause. This may explain
in part the delay in IMCL accumulation observed in many
Intralipid infusion studies, where hyperinsulinaemia may
lead to changes in some circulating factor, which in turn
may lead to changes in lipid uptake in skeletal muscle
(Furler et al. 2001).

In the present study, we used a 4-week low-GI-diet inter-
vention to induce an increase in insulin sensitivity, as
shown by reduced insulin and glucose iAUC, and increased
insulin sensitivity index. The dietary intervention also sig-
nificantly improved the subjects’ fasting lipid profiles and
postprandial triacylglycerol metabolism, but did not alter
NEFA. A critical observation in the insulin resistance
model is the relationship between NEFA and tissue insulin
sensitivity, while the work of Brechtel er al. (2001) also
suggests a relationship between NEFA and IMCL. Pre-
viously, Wolever et al. (1995) have suggested that
low-GI diets improve insulin sensitivity by reducing post-
prandial NEFA rebounding. This is believed to be due to
the lower and attenuated glucose and insulin responses
that occur after ingesting low-GI carbohydrates as opposed
to high-GI carbohydrates. By attenuating the glucose and
insulin responses, NEFA suppression is extended and
rebounding levels are substantially reduced (Wolever et al.
1995). In our present study, we saw no significant changes
in fasting or postprandial NEFA metabolism, probably
because our subjects had normal physiology and therefore
did not experience significant NEFA rebounding. NEFA
play a central role in the theory by which IMCL storage
may be a cause of insulin resistance (Randle et al. 1963).
However, in the current study we failed to detect any altera-
tions in NEFA, and this may partly explain why we did not
detect any significant changes in IMCL storage.

We also must consider the possibility that an aspect of the
study protocol may be responsible for the lack of change in
IMCL concentrations, for example the suitability of the
length or intensity of the intervention. However, we are con-
fident that these factors do not impact on the results of our
present study. Several studies have shown positive effects
on insulin sensitivity from the same duration (3 weeks) of
low-GI manipulation, even though the changes in GI were
much larger (20-30 % reduction) compared with the 15 %
achieved by our present subjects (Wolever et al. 1992;
Frost et al. 1998). This attenuated change in GI is not
surprising given that our present subject group had rela-
tively low-GI diets at baseline and that one of the aims of
the protocol was that the manipulation was achievable
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Table 5. Baseline and post-intervention intramyocellular lipid storage levels of the study population*t
(Mean values with their standard errors)

Post-intervention

Baseline (n 18) (n18)
- — Statistical significance
Mean SEM Mean SEM of effect (Student's t test): P
Soleus 17-1 1.62 159 2.02 0-51
Tibialis 6-5 0-72 6-6 0-73 0-78
Gastrocnemius 12.0 1.56 124 1.81 0-70

* For details of subjects and procedures, see p. 366.
1 Muscle triacylglycerol values are expressed as intramyocellular lipid:total creatine ratios for three muscle groups.
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within the habitual diet. To achieve greater reductions in GI
would have necessitated using foods outside of the proposed
protocol. It is important to point out that even with this rela-
tively smaller reduction in GI, the present increase in insulin
sensitivity (21 %) is comparable with the 23 % increase
reported by Frost et al. (1998) following a 20 % reduction
in GI. This suggests that the more intense manipulation
achieved by Frost et al. (1998) had no greater effect on insu-
lin sensitivity, and raises the possibility of a plateau
occurring in which no greater improvements in insulin sen-
sitivity occur. In addition, related to the study protocol, con-
sideration must be given to the methods that were used to
assess the subjects’ insulin sensitivity. The OGTT-based
insulin sensitivity index is a general assessment of whole-
body glucose disposal: it does not allow for specific assess-
ment of muscle insulin sensitivity. A more precise assess-
ment of muscular glucose disposal in the current study
may have identified changes in muscle insulin sensitivity
that were not recognised with the current techniques.

We propose that the effects on insulin sensitivity
induced by the dietary intervention may be through effects
on factors other than IMCL, which are capable of affecting
whole-body insulin sensitivity. Thorburn et al. (1993)
found that highly fermentable carbohydrates improved gly-
caemia in healthy subjects through reducing hepatic glu-
cose production and, in general, low-GI foods are high in
fermentable carbohydrate. Therefore, this dietary manipu-
lation may have had its insulin-sensitising effects on the
liver and have resulted in reduced hepatic gluconeogenesis.
Enhanced suppression of hepatic gluconeogenesis during
an OGTT would be expected to result in reduced glucose
and insulin iAUC as found in our present study. Similarly,
Abel et al. (2001) have provided evidence for an internal
communication pathway between adipose tissue, liver
and muscle in rodents. Mice with GLUT4 deficiency and
insulin resistance selectively in the adipose tissue have
additional loss of insulin sensitivity in their muscle and
liver even though GLUT4 expression was preserved in
these tissues. It was proposed that these indirect changes
in insulin sensitivity occurred through an unidentified
adipocyte-derived molecule that affects insulin action in
other tissues. This inter-tissue communication pathway is
an alternative possible mode of action by which the
low-GI dietary manipulation improved insulin sensitivity.

In conclusion, we have provided evidence for a dietary
manipulation of insulin sensitivity independently of
IMCL storage in a healthy male cohort. Further work is
required to ascertain whether these findings also occur in
other subject groups, particularly insulin-resistant subjects
such as those with type 2 diabetes or CHD. These individ-
uals would be expected to have elevated IMCL concen-
trations at baseline. This may alter the reaction to a
manipulation of insulin sensitivity, such that there is a
possible threshold for which IMCL impact on insulin
sensitivity.
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