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Octonion Algebras over Rings Are Not
Determined by their Norms
Philippe Gille

Abstract. Answering a question of H. Petersson, we provide a class of examples of a pair of octonion
algebras over a ring having isometric norms.

1 Introduction

If Q is a quaternion algebra over a field k, we know from Witt that Q is determined
by its norm [12, §1.7]. This result has been extended over rings by Knus–Ojanguren–
Sridharan [7, prop. 4.4] , [6, V.4.3.2] and holds over an arbitrary base (§2).

If C is an octonion algebra over k, we know from van der Blij–Springer that it is
determined by its norm form [14, claim 2.3] (see also [12, §1.7]); more generally it
is true over local rings (Bix, [1, lemma 1.1]). In his Lens lecture (May 21–25, 2012),
H. Petersson raised the question whether it remains true over arbitrary commutative
rings.

The goal of this note is to produce a counterexample to this question, namely an
example of two non-isomorphic octonion algebras over some commutative ring R
having isometric norms. Our argument is based on the study of fibrations of group
schemes and uses topological fibrations, which makes clear why it holds for quater-
nion algebras and not for octonions.

For the theory of reductive group schemes and related objects (e.g., Lie algebra
sheaves, homogeneous spaces, quadratic spaces, etc.) we refer to SGA3 [11] and to
the book by Demazure–Gabriel [3]. The sheaves in sets or groups are denoted as F
and are for the fppf (also called flat) topology over a base scheme S.

2 Quaternion Algebras and Norms

Let S be a scheme. By a quaternion1 algebra over S, we mean a rank 4 Azumaya
OS-algebraQ. Equivalently, it is an étale S-form of the matrix algebra M2(OS), namely
the twist of M2(OS) by the PGL2-torsor E = Isomalg(M2(OS),Q).

By descent, it follows that isomorphism classes of quaternion S-algebras corre-
spond to the étale cohomology set H1(S,PGL2). The reduced norm (resp. trace)
Nrd : Q → OS (resp. Trd) is the twist by E of the determinant map M2(OS) → OS

(resp. the trace), it is a quadratic (resp. linear) form over S.
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1Knus’ definition requests fewer conditions [6, 1.3.7], so here we deal with “separable quaternion alge-
bras”.
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Furthermore the canonical involution X 7→ tr(X) − X on M2(OS) induces by
descent the canonical involution of Q. The S-group scheme SL1(Q) (resp. PGL2(Q),
SO(Q,NQ)) is the twist by E of SL2/S (resp. PGL2/S, SO(M2, det)/S). The point is
that the semisimple group scheme SO(Q,NQ) is of type A1 × A1 and its universal
cover is SL1(Q)× SL1(Q).

Lemma 2.1 We have an exact sequence of group schemes

1 −→ µ2 −→ SL1(Q)× SL1(Q)
f−→ SO(Q,NQ) −→ 1

where f (x, y).q = xq y−1 for every q ∈ Q.

Proof We first prove the case of S = Spec(Z) and Q = M2(Z). We have µ2 ⊂ ker( f ),
and let us show the converse inclusion. Let R be a ring and pick (x, y) ∈ ker( f )(R).
Such an element satisfies xAy−1 = A for each A ∈ M2(R). By taking A = y, we see
that x = y so that xAx−1 = A for each A ∈ M2(R). By taking the canonical R-basis of
M2(R), it follows that x ∈ Gm(R). Since x ∈ SL2(R), we conclude that (x, y) ∈ µ2(R).
Thus µ2 = ker( f ).

Since µ2 is a central subgroup of SL2×R SL2, we can mod out by µ2 [11, XXII.4.3]

and get a monomorphism f̃ : (SL2 ×R SL2)/µ2 → SO(M2, det) of semisimple group
schemes. According to [11, XVI.1.5.a], it is a closed immersion. On both sides, each
Q-fiber is smooth connected of dimension 6. It follows that f̃Q is an isomorphism.
Since SO(M2, det) is flat over Z, we conclude that f̃ is an isomorphism.

The general case follows again by twisting everything by the PGL2-torsor E.

The adjoint map Ad: PGL2 → GL(M2) gives rise to the closed S-immersion
PGL2 → O(M2, det), where O(M2, det) stands for the orthogonal group scheme
of the nonsingular quadratic form det [3, III.5.2]. It is equipped with the Dickson
map D: O(M2, det) → Z/2Z whose kernel is by definition the special linear group
SO(M2, det).

By twisting by the torsor E, it provides a closed S-immersion

Ad: PGL1(Q) −→ O(Q,Nrd), q 7−→ Ad(q)

where PGL1(Q) stands for the group scheme GL1(Q)/Gm of projective units.
On the other hand, the orthogonal S-group O(Q,Nrd) acts on

SL1(Q) = Ker(GL1(Q)) −→ Gm)

by the action induced from the standard action of GL1(Q) on Q.

Proposition 2.2 (i) The S-scheme SL1(Q) is a left homogeneous space (with respect
to the flat topology) under the action of SO(Q,Nrd) and a fortiori under the action
of O(Q,Nrd).

(ii) The orbit map

u : SO(Q,Nrd) −→ SL1(Q), g 7−→ g.1

is a split PGL1(Q)-torsor.
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Proof We put G/S = SO(Q,Nrd), H/S = PGL1(Q), and X/S = SL1(Q).

(i) We have to check the definition [11, IV.6.7], namely to establish the following
properties:

(a) the map G ×S X → X ×S X, (g, x) 7→ (x, g.x) is an epimorphism of flat
sheaves;

(b) f : X → S has sections locally with respect to the flat topology.

The condition (b) is obvious in our case, since f has a global section given by
the unit of X = SL1(Q). Condition (a) will follow from the following stronger
condition:

(c) X(T) is homogeneous over G(T) for each S-scheme T.

We are given T/S and a couple of quaternions q1, q2 ∈ X(T) of reduced norm
one. We put q = q2 q−1

1 ∈ X(T). The left translation Lq is an element of G(T)
that satisfies Lq.q1 = q2. This shows (c).

(ii) The map u ◦ f : SL1(Q) × SL1(Q) → SL1(Q) reads as follows: (u ◦ f )(x, y) =
xy−1. Therefore SL1(Q) ×S SL1(Q)/SL1(Q)

∼→ SL1(Q), where SL1(Q) acts on
SL1(Q)×S SL1(Q) by z.(x, y) = (x z, z−1 x). After modding out by the diagonal
µ2 of SL1(Q)×S SL1(Q), we get an isomorphism of flat sheaves

SO(Q,Nrd)/PGL1(Q)
∼
−→ SL1(Q),

where PGL1(Q) embeds by h in SO(Q,Nrd).

Lemma 2.3 O(Q,Nrd) = SO(Q,Nrd) ×S Z/2Z, where Z/2Z is the S-subgroup
O(Nrd) defined by the canonical involution.

Proof We have to show that the Dickson map D: O(Q,Nrd) → Z/2Z is split by
applying 1 to the canonical involution. To check that the Dickson invariant of the
canonical involution is 1, we can reason étale locally; that is, we check it for each
strict henselization Osh

S,s, where s is a point of S. In particular, it enables us to assume
that Q is the split quaternion algebra that is defined over Z.

We can then deal with S = Spec(Z) and Q = M2(Z), and it remains to show that
D(σ) = 1, where σ is the canonical involution of M2(Z). It is enough to check it over
Q , and then the Dickson invariant is nothing but the determinant by means of the
identification (Z/2Z)Q

∼= µ2,Q [3, III.5.2.6]. The basis[
1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 −1
1 0

]
of M2(Q) is a diagonalization basis for σ whose eigenvalues are 1,−1,−1,−1. The
determinant of σ is then−1, as desired.

If follows that we have an isomorphism of homogeneous O(Q,Nrd)-spaces

O(Q,Nrd)/(PGL1(Q)×S Z/2Z)
∼
−→ SL1(Q).

Theorem 2.4 Let Q ′ be a OS-quaternion algebra. Then Q ′ is isomorphic to Q if and
only if the quadratic S-form Nrd and Nrd ′ are isometric.
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Proof Since H1(S,PGL1(Q)) classifies S-quaternion algebras and H1(S,O(Q,Nrd))
classifies the isometry classes of nonsingular quadratic forms of dimension 4, it fol-
lows that the kernel of the map

Ad∗ : H1
(

S,PGL1(Q)
)
−→ H1

(
S,O(Q,Nrd)

)
classifies the isomorphism classes of quaternion S-algebras Q ′ such that the quadratic
S-form Nrd and Nrd ′ are isometric. By applying [4, III.3.2.2] to the isomorphism

O(Q,Nrd)/(PGL1(Q)×S Z/2Z)
∼
−→ SL1(Q),

we get an exact sequence of pointed sets

O(Q,Nrd)(S)
f
−→ SL1(Q)(S) −→ H1

(
S,PGL1(Q)×S Z/2Z

)
−→ H1(S,O(Q,Nrd)).

By Proposition 2.2, the map f admits a retraction so that the kernel of

H1
(

S,PGL1(Q)×S Z/2Z
)
−→ H1

(
S,O(Q,Nrd)

)
is trivial. A fortiori, the kernel of H1(S,PGL1(Q)) → H1(S,O(Q,Nrd)) is trivial, as
desired.

Remark 2.5 Knus–Ojanguren–Sridharan’s proof uses the even Clifford algebra of
the norm forms to encode the algebra. Somehow we also use the Clifford algebra
by means of the Dickson invariant, which is, in this case, related to the fact that the
simply connected cover of SO(Q,NQ) is SL1(Q)×S SL1(Q).

3 Octonion Algebras and Norms

Let R be a commutative ring (with unit). From [8, §4], a non-associative algebra C
over R is called an octonion R-algebra2 if it is a finitely generated projective R-module
of rank 8, contains an identity element 1C , and admits a norm, i.e., a map nC : C → R
satisfying the two following conditions:

(a) nC is a nonsingular quadratic form;
(b) nC (xy) = nC (x) nC (y) for all x, y ∈ C .

This notion is stable under base extension and descends under faithfully flat base
change of rings.

The basic example of an octonion algebra is the split octonion algebra (ibid, 4.2)
denoted C0 and called the algebra of Zorn vector matrices, which is defined over Z.
There is another description of this algebra in [12, §1.8] over fields by the “doubling
process”. It actually works over Z; we take

C ′0 = M2(Z)⊕M2(Z)

with multiplication law (x, y).(u.v) = (x u + v σ(y), σ(x)v + u y) (σ is the canonical
involution of M2(Z)) and norm nC ′

0
(x, y) = det(x) − det(y). We know that the

fppf Z-group sheaf Aut(C0) ∼= Aut(C ′0) is representable by an affine smooth group
Z-scheme Aut(C0) [8, 4.10].

2One can of course globalize this definition, see [10].
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Proposition 3.1 The Z-group scheme Aut(C0) is the Chevalley group of type G2.

Proof Let us first show that Aut(C0) is a semisimple group scheme of type G2 that is
by definition a smooth affine group scheme whose geometrical fibers are semisimple
groups of type G2 [11, XIX].

The fibers of the affine smooth group Z-scheme Aut(C0) are indeed semisimple
groups of type G2 according to [12, theorem 2.3.5]. Hence Aut(C0) is a semisimple
group scheme of type G2. By Demazure’s unicity theorem [11, cor. 5.5] the Chevalley
group of type G2 is the unique split semisimple group scheme of type G2, that is, the
unique semisimple group scheme of type G2 admitting a split torus of rank two.
Since PGL2 × PGL2 embeds in Aut(C ′0), Aut(C ′0) contains a two dimensional split
torus. Thus Aut(C0) ∼= Aut(C ′0) is the Chevalley group of type G2.

We come now to the question of whether an octonion algebra is determined by its
norm. Let C be an octonion algebra over R. We have natural closed group embed-
dings of group schemes

Aut(C)
j
−→ O(nC ) ⊂ GL(C).

We get a map in cohomology

j∗ : H1
(

R,Aut(C)
)
−→ H1

(
R,O(nC )

)
.

The left-hand side classifies octonion algebras over R while the right-hand side clas-
sifies 8-dimensional nonsingular quadratic R-forms. By descent, we have j∗([C ′]) =
[nC ′] for each octonion R-algebra C ′. It follows that the kernel of j∗ classifies the
octonion algebras over R whose norm form is isometric to nC .

Lemma 3.2 The fppf quotient O(nC )/Aut(C) is representable by an affine scheme of
finite presentation over R.

Proof According to [2, 6.12], the fppf quotient GL(C)/Aut(C) is representable by an
affine scheme of finite type over R. It is of finite presentation over R by the standard
limit argument [11, VIB.10.2]. On the other hand, the fppf sheaf GL(C)/O(nC ) is
representable by an affine scheme of finite presentation over R [13, lemme 2.26].
Therefore the “kernel” O(nC )/Aut(C) of the natural map

GL(C)/Aut(C)→ GL(C)/O(nC )

is representable by an affine scheme of finite type.

We denote by A(C) the coordinate ring of the affine scheme O(nC )/Aut(C).

Theorem 3.3 Assume that R is a nontrivial Q-ring. Then the Aut(C)-torsor
O(nC )→ Spec(A(C)) is not trivial, so that ker( j∗,A(C)) is not trivial.

Remark 3.4 By inspection of the proof, the result holds also for

SO(nC ) −→ SO(nC )/Aut(C).

If R = C, then it provides a counterexample over a connected smooth complex affine
variety.
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Let us consider first a special case.

Proposition 3.5 Let C/R be the “compact” Cayley octonion algebra. Then Theo-
rem 3.3 holds is this case.

Proof In this case G = Aut(C)/R is the anisotropic real form of G2, and we consider
its embedding in the “compact” O8. We reason by contradiction assuming that the
G-torsor O8 → O8/G is split. It follows that there is a G-equivariant isomorphism
O8
∼= O8/G ×R G over O8/G. Hence the map G → O8 admits a section. Taking

the real points, it follows that the map G(R) → O8(R) admits a continuous section,
hence the homotopy group πn(G(R), · ) is a direct summand of πn(O8(R), · ) for all
n ≥ 1.

From the tables [9, p. 970], we have π6(G(R), · ) ∼= Z/3Z and π6(O8(R), · ) =
π6(SO8(R), · ) = 0, hence a contradiction.

We can proceed to the proof of Theorem 3.3.

Proof We claim that the above counterexample survives when extending the scalars
to C. According to the Cartan decomposition, there are homomeorphisms G(C) ∼=
G(R) × Rm and O8(C) ∼= O8(R) × Rn. Hence π6(G(C), · ) = Z/3Z and does not
inject in π6(O8(C), · ) = 0.

In other words, Theorem 3.3 holds for the case R = Spec(C) and C = C0. It holds
over Q and over an arbitrary algebraically closed field of characteristic zero.

For the general case, we consider a morphism R → F, where F is an algebraically
closed field. Since the Aut(C)F-torsor O(nC )F → O(nC )F/Aut(C)F is not split, it
follows that the Aut(C)F-torsor O(nC )→ O(nC )/Aut(C) is not split.

Concluding Remarks (1) The rings occuring in the examples are of dimension
14. The next question is to determine the minimal dimension for the counterex-
amples. M. Brion has communicated to us a smaller example, say over the complex
numbers. Since the action of map G2 on the complex octonions C preserves 1C and
the octonions of trace 0, the map G2 → SO8 takes value in SO7 ⊂ SO8. A fortiori
the G2-torsor SO7 → SO7/G2 = Spec(B) provides an example of a nontrivial oc-
tonion algebra over B having trivial norm. The dimension of B is then 7. Also the
homogeneous space SO7/G2 occurs as the complement of a smooth quadric in P7.
Let us explain this geometric fact. First the map G2 → SO7 lifts in G2 → Spin7.
The spinorial action of Spin7 on C7 has been investigated by Igusa [5, prop. 4]. The
Spin7-orbits in C7 are 0, the orbit of a vector of highest weight and a one parameter
family of closed orbits with stabilizers G2, defined by an equation g(x) = t , where g
is an invariant quadratic form. It follows that the induced action of SO7 on the pro-
jective space P7 has two orbits, one open SO7/G2 and one closed which is a smooth
projective quadric.

(2) For the ring Z, van der Blij–Springer showed that there are only two octonions
algebras and having distinct norm forms [14, §4]. Hence octonion algebras over Z
are determined by their norms. For other rings of integers, it seems to be an open
question.
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