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ABSTRACT

We propose practical solutions for the determination of optimal retentions in
a stop-loss reinsurance. We develop two new optimization criteria for deriving
the optimal retentions by, respectively, minimizing the value-at-risk (VaR) and
the conditional tail expectation (CTE) of the total risks of an insurer. We estab-
lish necessary and sufficient conditions for the existence of the optimal retentions
for two risk models: individual risk model and collective risk model. The result-
ing optimal solution of our optimization criterion has several important char-
acteristics: (i) the optimal retention has a very simple analytic form; (ii) the opti-
mal retention depends only on the assumed loss distribution and the reinsurer’s
safety loading factor; (iii) the CTE criterion is more applicable than the VaR
criterion in the sense that the optimal condition for the former is less restrictive
than the latter; (iv) if optimal solutions exist, then both VaR- and CTE-based
optimization criteria yield the same optimal retentions. In terms of applications,
we extend the results to the individual risk models with dependent risks and
use multivariate phase type distribution, multivariate Pareto distribution and
multivariate Bernoulli distribution to illustrate the effect of dependence on
optimal retentions. We also use the compound Poisson distribution and the
compound negative binomial distribution to illustrate the optimal retentions
in a collective risk model.

KEYWORDS
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at-risk (VaR); conditional tail expectation (CTE); multivariate phase type dis-
tribution; multivariate Pareto distribution; individual risk model; collective risk
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INTRODUCTION

Reinsurance is a mechanism of transferring risk from an insurer to a second
insurance carrier. The former party is referred to as the cedent (or simply the
insurer) while the latter is the reinsurer. Reinsurance provides an opportunity
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for the insurer to reduce the underwriting risk and hence leads to a more effec-
tive management of risk. The stop-loss, the excess-of-loss, and the quota-share
are some examples of reinsurance designs. For a fixed reinsurance premium,
it is well-known that the stop-loss contract is the optimal solution among a wide
arrays of reinsurance in the sense that it gives the smallest variance of the
insurer’s retained risk. See, for example, Bowers, et al. (1997), Daykin, et al.
(1994), and Kaas, et al. (2001). This paper contributes to the optimal reinsur-
ance research by proposing new optimization criteria using recently proposed
risk measures. Analytical solutions to the retention limit of a stop-loss rein-
surance are derived.

We now introduce some notations and provide the necessary background.
Let X be the (aggregate) loss for an insurance portfolio or an insurer. We assume
that X is a nonnegative random variable with cumulative distribution function
FX(x) = Pr{X ≤ x}, survival function SX (x) = Pr{X > x}, and mean E[X ] > 0.
Furthermore, we let XI and XR be, respectively, the loss random variables of the
cedent and the reinsurer in the presence of a stop-loss reinsurance. Then XI and
XR are related to X as follows:

,

, >

X X d

d X d
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=X ) = X / d
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, >

X d

X d X d
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X * = (X – d )+,

where the parameter d > 0 is known as the retention, a / b = min{a, b}, and
(a)+ = max{a, 0}. Under stop-loss agreement, the reinsurer pays part of X that
exceeds the retention limit. This implies the reinsurer absorbs the risk that exceeds
the retention limit while the insurer is effectively protected from a potential large
loss by limiting the liability to the retention level.

In exchange of undertaking the risk, the reinsurer charges a reinsurance pre-
mium to the cedent. A number of premium principles have been proposed for
determining the appropriate level of the premium. One of the commonly used
principles is the expected value principle in which the reinsurance premium, d(d),
is determined by d (d ) = (1 + r)p(d ), where r > 0 is known as the relative safety
loading and

p(d ) = E[XR ] = E[(X – d )+] = x dxX
d

3

S# ^ h (1.1)

is the (net) stop-loss premium. See, for example, Cai (2004) and Klugman et al.
(2004). Naturally, the reinsurance premium d(d ) is a decreasing function of d.
By T we denote the total cost of the insurer in the presence of the stop-loss
reinsurance. The total cost T is captured by two components: the retained loss
and the reinsurance premium; that is,

T = XI + d(d ). (1.2)
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The relation above demonstrates the classic trade-off between the risk assumed
by the insurer and the risk transferred to the reinsurer. If the retention d is
small, then the retained liability to the cedent is expected to be low but at the
expense of the higher premium payable to the reinsurer. On the other hand, if
the cedent were to reduce the cost of the reinsurance premium by raising d, then
the cedent is exposed to a potentially large liability. Consequently, determining
an optimal level of retention d is important to the cedent. There are many ways
of determining the optimal retention d depending on the chosen criterion. For
example, we can select d that optimally minimizes ruin probability of an insurer
or optimally maximizes utility of an insurer. See, for instance, Centeno (2002,
2004). By exploiting the recently introduced value-at-risk (VaR) and conditional
tail expectation (CTE) risk measures, this paper proposes a framework that
optimally determines the retention limit of the stop-loss reinsurance.

Risk measures such as VaR and CTE have generated tremendous interests
among practitioners and academicians. They are used extensively within bank-
ing and insurance sectors for quantifying market risks, portfolio optimization,
setting capital adequacy, etc.; see for example, Jorion (2000), Krokhmal,
Palmquist and Uryasev (2002), Cai and Li (2005a).

Formally, the VaR of a random variable X at a confidence level 1 – a, 0 <
a< 1, is defined as VaRX(a) = inf{x : Pr{X > x} ≤ a} = inf{x : Pr{X ≤ x} ≥ 1 – a}.
Equivalently, it corresponds to the 100(1 – a)th percentile of X. Hence, Pr{X >
VaRX(a)} ≤ a while for any x < VaRX(a), Pr{X > x} > a.

If X has a one-to-one continuous distribution function on [0, 3), then
VaRX(a) is the unique solution to either of the following two equations

Pr{X > VaRX(a)} = a, (1.3)

Pr{X ≤ VaRX(a)} = 1 – a, (1.4)

or more compactly as VaRX(a) = SX
–1(a) = FX

–1(1 – a), where SX
–1 and FX

–1 are
the inverse functions of SX and FX, respectively.

The VaR measure has the advantage of its simplicity. If we know the cor-
responding VaR of a risk, then we are assured that the probability of the risk
exceeding such a value is no greater than a. In this regard, the parameter a can
be interpreted as the risk tolerance probability. In practice, a is often selected
to be a small value such as less than 5%. The downside of this measure is that
it provides no information on the severity of the shortfall for the risk beyond the
threshold. Furthermore, some researchers advocate the importance of a coherent
risk measure and the VaR is one that fails to satisfy the axiomatic properties
of coherence.

We now turn to another risk measure known as the conditional tail expecta-
tion (CTE). According to Artzner et al. (1999) and Wirch and Hardy (1999),
the CTE of a random variable X at its VaRX(a) is formally defined as 

CTEX(a) = E[X |X > VaRX(a)] (1.5) 
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or 

CTEX(a) = E[X |X ≥ VaRX(a)]. (1.6) 

Note that when X is a continuous random variable, both (1.5) and (1.6) are
identical. Furthermore, it is easy to see that CTEX(a) ≥ VaRX(a) holds for either
(1.5) and (1.6). The CTE is intuitively appealing in that it captures the expected
magnitude of loss given that risk exceeds or equal to its VaR. More importantly
under suitable conditions, say that risks are continuous, CTE is a coherent risk
measure.

Analogously, we can define VaR and CTE in terms of the insurer’s retained
loss XI and the insurer’s total cost T. For VaR, we have VaRXI

(d,a) = inf{x :
Pr{XI > x} ≤ a} and VaRT(d,a) = inf{x : Pr{T > x} ≤ a}. Similarly for CTE, we
have 

CTEXI
(d,a) = E[XI | XI ≥ VaRXI

(d,a)] (1.7)

and 

CTET(d,a) = E[T |T ≥ VaRT (d,a)]. (1.8)

Note that we have explicitly introduced an argument d to the above VaR and
CTE notations to emphasize that these risk measures are functions of the
retention limit d. Also for d > 0, we use only (1.6) to define the CTE counter-
parts for XI and T. We will demonstrate later that some values of d, (1.5) is not
be appropriate for T and XI .

From an insurer’s point of view, a prudent risk management is to ensure that
the risk measures associated with T are as small as possible. This motivates us
to consider the following two optimization criteria for seeking the optimal level
of retention. The first approach determines the optimal retention d by mini-
mizing the corresponding VaR; i.e.,

VaR-optimization: VaRT (d *,a) = min
>d 0

{VaRT (d,a)}. (1.9) 

The resulting optimal retention d* ensures that the VaR of the total cost is min-
imized for a given risk tolerance level a. We refer this method as the VaR-opti-
mization. The second approach, which we denote as the CTE-optimization, is
to determine the optimal retention d that minimizes the CTE as shown below:

CTE-optimization: CTET(d,a) = min
>d 0

{CTET(d,a)}. (1.10) 

The optimal retention d from the above optimization has the appealing feature
that focuses on the right tail risk by minimizing the expected loss of the extreme
events.

We now provide an alternate justification of the VaR-based optimization
from the point of view of a minimum capital requirement. By assuming risk X,
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the insurer charges an insurance premium pX to the insured and at the same
time sets aside a minimum capital rX so that the insurer’s probability of insol-
vency is at most a. In other words, given a and pX, the minimum capital rX is
the solution to the following inequality:

Pr{T > rX + pX} ≤ a. (1.11)

In practice insurer prefers to set aside as little capital as possible while satis-
fying the insolvency constraint. From the definition of VaRT (d,a), we imme-
diately have the following relationship:

rX = VaRT (d,a) – pX. (1.12)

The linear relation between rX and VaRT (d,a) implies that if d* is the optimal
solution to (1.9), then the capital requirement is also minimized at the insol-
vency constraint.

In this paper, we also extend our results by considering two classes of risk
models: the individual risk models and the collective risk models. In an individ-
ual risk model, the aggregate loss is given by X = X1 + ··· + Xn, where Xj cor-
responds to the loss in subportfolio j or event j, for j =1, ...,n. In a collective
risk model, the aggregate loss is denoted by ,jj 1=X X= N! where the random
variable N denotes the number of losses and Xj is the severity of the jth loss,
for j = 1,2,…

To encompass these two models, we assume throughout this paper that X has
a one-to-one continuous distribution function on (0,3) with a possible jump at
0 and SX

–1(x) exists for 0 < x < SX(0). Furthermore, we denote SX
–1(0) =3 and

SX
–1(x) = 0 for SX(0) ≤ x ≤ 1. We also enforce the condition 0 < a< SX(0); other-

wise for a ≥ SX(0), we have a trivial case since VaRX(a) = 0 and VaRXI
(d,a) = 0.

Note that SX(0) = 1 when the distribution function of X is continuous at 0.
The rest of the paper is organized as follows. Sections 2 and 3 present,

respectively, the optimal solutions as well as the conditions for which the opti-
mal retention exists for the VaR- and CTE-optimization. Section 4 applies the
general results of Sections 2 and 3 to individual risk models with dependent
risks. The optimal retentions and the effect of dependence on the optimal
retentions are analyzed by examining three special cases: a multivariate phase-
type distribution, a multivariate Pareto distribution and a multivariate Bernoulli
distribution. Section 5 applies the general results to a collective risk model by
considering two special cases: compound Poisson and compound negative
binomial distributions. Section 6 concludes the paper and Appendix collects
the proofs of our main results.

2. OPTIMAL RETENTION: VAR-OPTIMIZATION

In this section, we analyze the optimal solution to the VaR-optimization (1.9).
First note that the survival function of the retained loss XI is given by 
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S
S ^

^
h

h
* (2.1)

From the above results, if 0 < a ≤ SX(d ) or equivalently 0 < d ≤ SX
–1(a), then

VaRXI
(d,a) = d ; if a> SX(d) or equivalently d > SX

–1(a), then VaRXI
(d,a) = SX

–1(a).
Hence, the VaR of the retained loss XI can be represented as 

VaRXI
(d,a) =

X

X X

, < ,

, > .

a

a a

d d S

S d S

0 1

1 1

#
-

- -

^

^ ^

h

h h

* (2.2)

We point out that given d > 0, VaRXI
(d,a) = d is the same for all a! (0,SX(d )]

since XI is a bounded random variable with 0 ≤ XI ≤ d .
It follows immediately from (1.2) that there exists we a simple relationship

between the VaR of the total cost and the VaR of the retained risk:

VaRT (d,a) = VaRXI
(d,a) + d (d ). (2.3) 

Observe that VaRXI
(d,a) is an increasing function of d while d(d) is a decreasing

function of d. By combining both (2.2) and (2.3), we obtain an expression for
VaRT (d,a) which we summarize in the following proposition:

Proposition 2.1 For each d > 0 and 0 < a< SX(0),

VaRT (d,a) =
X

X X

, < ,

, > .

a

a a

d d d S

S d d S

d

d

0 1

1 1

#+

+

-

- -

^ ^

^ ^ ^

h h

h h h

* (2.4)

Note that similar to VaRXI
(d,a), the VaR of T, for a given d > 0, is the same

for all a ! (0,SX(d )].
We now present the key result of this section. It is convenient to first define

r* = ,r1
1
+

which plays a critical role in the solutions to our optimization problems. The fol-
lowing theorem states the necessary and sufficient conditions for the existence
of the optimal retention of the VaR-optimization (1.9):

Theorem 2.1 (a) The optimal retention d* > 0 in (1.9) exists if and only if both 

a < r* < SX(0) (2.5)
and 

SX
–1(a) ≥ SX

–1(r*) + d (SX
–1(r*)) (2.6)

hold.
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(b) When the optimal retention d* in (1.9) exists, then d* is given by 

d* = SX
–1(r*) (2.7) 

and the minimum VaR of T is given by 

VaRT (d*,a) = d* + d(d*). (2.8)

¡

See Appendix for the proof of the above theorem.

Remark 2.1 We emphasize some practical significance of the above results.
First, conditions (2.5) and (2.6) are relatively easy to verify. Second, the optimal
retention is explicit and easy to compute. Third, it is of interest to note that the
optimal retention, if it exists, depends only on the assumed loss distribution and
the reinsurer’s loading factor.

The following corollary gives the sufficient condition for the existence of
the optimal retention in (1.9). See Appendix for the proof. This result provides
a simple way of verifying if the optimal retention in VaR-optimization (1.9)
exists.

Corollary 2.1 The optimal retention d* > 0 in (1.9) exists if both (2.5) and 

SX
–1(a) ≥ (1 + r)E[X ] (2.9)

hold; and the optimal retention d* and the minimum VaR are given by (2.7) and
(2.8), respectively. ¡

We now provide two examples to illustrate the results we just established.

Example 2.1 Assume a= 0.1, r = 0.2 and X is exponentially distributed with
mean E[X ] = 1,000. Note that SX(x) = e–0.001x, x ≥ 0; SX

–1(x) = –1,000logx, 0 <
x < 1; and SX(0) = 1. Furthermore, both conditions (2.5) and (2.9) are satisfied
since r* = 0.83̂ > a= 0.1 and SX

–1(a) = –1,000loga= 2302.59 > (1 + r)E[X] = 1,200.
By Corollary 2.1, the optimal retention d* exists and equals to d* = SX

–1(r*) =
1,000 log(1 + r) = 182.32.

Example 2.2 Similar to Example 2.1, we consider a= 0.1 and r = 0.2 except
that X has a Pareto distribution with SX(x) = ,

,
x 2 000

2 000 3

+b l , x ≥ 0. Then SX
–1(x) =

2,000x–1/3 – 2,000, 0 < x < 1, so that r* = 0.83̂> a= 0.1 and SX
–1(a) = 2,000a–1/3 –

2,000 = 2308.87 > (1 + r)E[X ] = 1,200. Hence conditions (2.5) and (2.9) are
satisfied with the optimal retention equals to d* = SX

–1(r*) = 125.32.

Remark 2.2 Note that the parameter values in the above two examples are selected
so that the risks X in both cases have the same mean. The Pareto distribution,
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on the other hand, is heavy-tailed. This implies that larger loss is more likely
with the Pareto distribution than with the exponential distribution. Consequently,
the optimal retention for the Pareto case should be smaller than the exponential
case, as confirmed by our examples.

3. OPTIMAL RETENTION: CTE-OPTIMIZATION

We now consider the optimal retention for the CTE-optimization (1.10). It fol-
lows from (1.2), (1.8) and (2.3) that the CTE of the total cost T can be decom-
posed as:

CTET (d,a) = E[XI + d(d) | XI + d(d) ≥ VaRT (d,a)] = CTEXI
(d,a) + d(d). (3.1) 

Furthermore, (1.7) implies that 

CTEXI
(d,a) = E[VaRXI

(d,a) + XI – VaRXI
(d,a) | XI ≥ VaRXI

(d,a)]

(3.2)
= VaRXI

(d,a) +
I

I

I

I
X

X

X ,
.

Pr aX d

x dx
, ad

$

3

VaR
VaR

S#

^

^
]

h

h
g

# -

It follows from 0 < VaRXI
(d,a) ≤ d, (2.1) and (2.2) that 
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(3.3)

and

Pr{XI ≥ VaRXI
(d,a)} = Pr{XI = VaRXI

(d,a)} + SXI
(VaRXI

(d,a))  

I

I
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(3.4)
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Thus, by combining (3.1)-(3.4) and (2.4), we derive an expression for CTET (d,a)
as follows:
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Proposition 3.1 For each d > 0 and 0 < a< SX (0),

CTET (d,a) =
X

X X
X

, < ,

, > .

a

a a

d d d S

S d x dx d S

d

d

0

a
a

X
S

d
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1 1 1
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-

- -
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S#

^ ^

^ ^ ^ ^
]

h h

h h h h
g

Z

[

\

]]

]]

(3.5)

¡

Remark 3.1 Similar to the observation we made earlier, given d > 0 the CTET (d,a)
is the same for all a ! (0,SX(d )].

We also remark that if 0 < d ≤ SX
–1(a), then VaRXI

(d,a) = d and VaRT (d,a) =
d + d(d ). Hence, in this case, XI > VaRXI

(d,a) and T > VaRT (d,a) do not hold
since 0 ≤ XI ≤ d and 0 ≤ T ≤ d + d(d). Therefore, (1.5) is not appropriate for T and
XI in this case. This is why we adopt (1.6) for T and XI in this paper. Note that
for 0 < d ≤ SX

–1(a), CTET (d,a) = VaRT (d,a) while for d > SX
–1(a), CTET (d,a) >

VaRT (d,a).
Now, we are ready to discuss the existence of the optimal retention for the

optimization problem (1.10) based on the CTE of the total cost. The follow-
ing theorem (with the proof in the Appendix) states the necessary and sufficient
conditions for the existence of the optimal retention to the CTE-optimization
(1.10).

Theorem 3.1 (a) The optimal retention d > 0 in (1.10) exists if and only if

0 < a ≤ r* < SX(0). (3.6)

(b) When the optimal retention d > 0 in (1.10) exists, then

d = SX
–1(r*) if a < r*, (3.7)

and

d ≥ SX
–1(r*) if a= r*, (3.8)

¡

Because the total cost T is also bounded from above by d + d(d) (see Remark 3.1),
the observations that we made in Remark 2.1 for the VaR-optimization are
equally applicable to the present model.

Comparing to the VaR-optimization, the optimality condition for the opti-
mization based on CTE is less restrictive. However, it is of interest to note that
both optimization criteria yield the same optimal retentions. This provides an
added advantage of adopting the CTE criterion over the VaR criterion for
determining the optimal retention. This point is further elaborated in the exam-
ples below.

Note also that as the reinsurer begins to charge excessively by increasing
the loading factor r, this becomes progressively more expensive for the cedent
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to transfer its risk to the reinsurer. Consequently, this discourages reinsurance
and forces the cedent to undertake more and more risk by raising retention
level. In the limit as r " 3, we have d = SX

–1(r*) " 3 so that the insurer will
not reinsure its risk.

We now use the following two examples to illustrate the results we just
established.

Example 3.1 Assume a= 0.1, r = 2.7 and X has the same exponential distri-
bution as in Example 2.1. Then,

X X
X

X . < .*aS S S x dxr r1 5 75 0
*S r

1 1
1

- + + = -
3- -

-
#^ ^ ^ ^

]
dh h h h

g
n

Hence, the optimal retention d* does not exist since the condition (2.6) is not
satisfied. However, the optimal retention d exists since r* = 0.27 > a= 0.1. Con-
sequently by Theorem 3.1, we have d = SX

–1(r*) = 1308.33.

Example 3.2 Similar to Example 3.1, by reconsidering Example 2.2 with a= 0.1,
r = 2.7, it is easy to verify that d* does not exist but d exists. In this case, d =
SX

–1(r*) = 1093.36, which is smaller than corresponding value in Example 3.1,
as to be expected.

4. INDIVIDUAL RISK MODEL WITH DEPENDENT RISKS

We now consider an individual risk model consists of n dependent losses (risks)
X1, ..., Xn. The aggregate loss of the portfolio is the sum of these losses, i.e.,
X = X1 + ··· + Xn. A stop loss reinsurance with retention d can similarly be writ-
ten on the aggregated loss. If the distribution of X is known, then the results
established in the previous two sections can be used to determine the optimal
retention limit.

There are several dependent models in which the distribution X = X1 + ··· +
Xn can be expressed analytically. We consider three particular types: a multi-
variate phase type distribution, a multivariate Pareto (II) distribution and a multi-
variate Bernoulli distribution. The effect of dependence on the optimal reten-
tions is also analyzed.

4.1. Dependent risks with multivariate phase type distributions

Let {X(t), t ≥ 0} be a continuous-time and finite-state Markov chain with a
finite state space E , initial distribution vector b = (0, aa), and sub-generator

,Q
Ae A
0 0

=
-
< F

where the first state in E denotes the absorbing state and e is a column vector
of 1’s.
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Let X = inf{t ≥ 0 : X(t) = 0} be the time to the absorbing state in the Markov
chain. Then the distribution of the random variable X is said to be of phase
type (PH) with representation (aa,A,|E | – 1). Denote the survival function of X
by SX(x) = Pr{X > x}. Then X is of phase type with representation (aa,A,|E | – 1)
if and only if SX(x) = aaexAe, x ≥ 0.

A subset of the state space is said to be a closed or an absorbing subset if
once the process {X(t), t ≥ 0} enters the subset, {X(t), t ≥ 0} never leaves. Let
E i, i = 1,…,n, be n closed or absorbing subsets of E and Xi be the time to the
absorbing subset E i, i.e. Xi = inf{t ≥ 0 : X(t) ! E i}, i = 1,…, n. Then the joint
distribution of (X1, …, Xn) is called a multivariate phase type distribution
(MPH) with representation (aa, A, E, E1,…,En), and (X1,…,Xn) is called a phase
type random vector. See, Assaf et al. (1984), Cai and Li (2005a, 2005b).

Examples of MPH distributions include, among many others, the well-known
Marshall-Olkin distribution (Marshall and Olkin, 1967). As in the univariate
case, MPH distributions (and their densities, Laplace transforms and moments)
can be expressed in a closed form.

The set of n-dimensional MPH distributions is dense in the set of all dis-
tributions on [0,3)n. Hence, any multivariate nonnegative distribution, such as
multivariate lognormal distribution and multivariate Pareto distribution, can
be approximated by a sequence of MPH distributions.

The distribution of the convolution of a phase type random vector is derived
by Cai and Li (2005b) as follows.

Lemma 4.1 Let (X1,…,Xn ) be a PH type vector with representation (aa, A, E ,
E i, i = 1,…,n), where A = (ai, j). Then ii 1=

n X! has a phase type distribution with
representation (aa, B, |E | – 1), where B = (bi, j) is given by,

,b
k i
a

,
,

i j
i j

=
^ h

(4.1)

where k(i ) = number of indexes in { j : i " Ej , 1 ≤ j ≤ n}. ¡

Example 4.1 Consider a two-dimensional phase type distribution with the state
space E = {12, 2, 1}, the absorbing subsets E j = {12, j}, j = 1,2, the initial prob-
ability vector aa= (0,0,1), and the sub-generator A

.A
l l

l
l l

l l l l
0

0 0
0

12 1

2

12 2

1 12 1 2

=
- -

- -
- - -
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S
S
S

V

X

W
W
W

From Lemma 4.1, the matrix B is given by 

.B

l l
l l0

0 0
0

l l l l l

1 12

2

2 12

2 2
2 1 12 1 2

=

- -
- -

-
+ +

R

T
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V

X

W
W
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OPTIMAL RETENTION FOR A STOP-LOSS REINSURANCE 103

9784-07_Astin37/1_05  30-05-2007  14:53  Pagina 103

https://doi.org/10.2143/AST.37.1.2020800 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020800


Let X1 and X2 be the times to the absorbing subset E1 and E2, respectively. Thus,
(X1,X2) is a phase type random vector and the survival function of X1 + X2 is
given by SX(x) = aaexBe, where aa= (0,0,1) and e = (1,1,1)�.

This two-dimensional phase type distribution is also refereed as to a two-
dimensional Marshall-Olkin distribution (Marshall and Olkin, 1967) or the dis-
tribution of the joint-life status in a common shock model (Bowers et al., 1997).

To discuss the effect of the dependence on the optimal retentions, we assume
a= 0.1 and r = 0.2 as in Examples 2.1-2.2 and consider the following three
cases.

Case 1: l12 = 0, l1 = l2 = 0.002. In this case, X1 and X2 are independent, and
SX (x) = (1 + 0.002x)e–0.002x, x ≥ 0 is a gamma distribution. The optimal
retention limit is d = 365.53.

Case 2: l12 = 0.001, l1 = l2 = 0.001. In this case, X1 and X2 are positively depen-
dent, and SX(x) = 3e–0.0015x – 2e–0.002x, x ≥ 0 is a hyperexponential survival
function. The optimal retention limit is d = 273.13.

Case 3: l12 = 0.002, l1 = l2 = 0. This is the comonotone case where X1 = X2,
and so X1 and X2 have the strongest positive dependence. In this case,
SX(x) = e–0.001x, x ≥ 0 is an exponential survival function as that in Exam-
ple 2.1. The optimal retention limit is d = 182.32.

Remark 4.1 In all three cases, (X1, X2) has the same marginal exponential dis-
tribution each with mean 500. The only difference among them is the magnitude
of the correlation between X1 and X2. It can be verified that the correlation
coefficient between X1 and X2 in Case 1 is the smallest while in Case 3 is the
largest. Table 1 illustrates the effect of dependence on the optimal limit d. As
correlation increases; i.e. the portfolio becomes more risky, the insurer is pro-
tected by reinsuring the risk with a lower optimal retention level.
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TABLE 1

EFFECTS OF DEPENDENCE ON d – MULTIVARIATE PHASE TYPE DISTRIBUTION:
IN ALL CASES, WE HAVE E[X1] = E[X2] = 1000 WITH a= 0.1 AND r = 0.2 

Case 1 Case 2 Case 3

d 365.53 273.13 182.32

4.2. Dependent risks with multivariate Pareto distributions

Let (X1, ...,Xn) be a nonnegative random vector with the following joint sur-
vival function 

S(x1,...,xn) = Pr{X1 > x1, ..., Xn > xn} = ,s1 i

i

n l

1

+
=

-
x

!e o x1 ≥ 0,..., xn ≥ 0, (4.2)
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where l > 0 and s > 0 are constants. This distribution is known as the multi-
variate Pareto (II) distribution. See, for example, Arnold (1983). It is easy to ver-
ify that the density function X = X1 + ··· + Xn has the following representation:

,
, ,x

B n
x x x

s l s s
1 1 0X

n nl1

$= +
- - +

f ^
^

d d

]

h
h

n n

g

(4.3)

where B (l,n) is the beta function. The density function (4.3) is known as the
Feller-Pareto distribution (Arnold 1983).

Example 4.2 Consider a two-dimensional Pareto random vector (X1, X2) which
has a joint survival function of the form (4.2) with n = 2 and l > 2. Hence,
by (4.3), we know that X = X1 + X2 has the following density function fX (x) =

, .x1 0
,B

x x
s l s s

l

2
1 2

$+
- +

]
a a

]

g
k k

g
Furthermore, X1 and X2 have the same mar-

ginal Pareto distributions with E[X1] = E[X2] = l
s

1- and Var[X1] = Var[X2] =

l l

ls

1 2
2

2

- -] ]g g
. Equation (6.1.29) of Arnold (1983) yields

1

2
2
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Consequently, the correlation coefficient between X1 and X2 simplifies to

1

1
2

,
.

X X

X X

Var Var
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r l
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2
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= =
6 6
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@

Table 2 depicts the optimal retention limits for the bivariate Pareto risks over
three sets of parameter values. In all these cases, we assume a= 0.1, r = 0.2 and
(X1, X2) have the same marginal Pareto distributions with mean 500. The cor-
relation between X1 and X2 is the lowest for Case 1 and the highest for Case 3.
Consistent with our observations in Example 4.1, the optimal retention levels
with bivariate Pareto risks decrease with increasing correlation.

The above observation can be justified formally by first noticing that B(l,2) =
G(l) G(2) / G(l + 2) = 1 / [l (l + 1)] and that the survival function of X is

X ,
.x

B
y y

dy x x x
s l s s s s l s2

1 1 1 1
x

l l2 1

= + = + + +
3

- + - +

S #^
^

d d

]

d

]

dh
h

n n

g

n

g

n

Furthermore, observe that y < (1 + y) ln(1 + y) for any y > 0. Thus, for any fixed

x > 0, SX (x) is decreasing in l since ( )
q

q x
l

XS < 0 and consequently the optimal
retention levels with bivariate Pareto risks decrease in l.
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Note also that the optimal retentions in this example are larger than that
in Example 2.2. To understand this, let us first point out that the ratio of the
density function in Example 2.2 to the density function in any of the three cases
in this example goes to infinity as x goes to infinity. This implies that the Pareto
distribution in Example 2.2 asymptotically has a heavier tail than any of the
three cases in this example. This again is consistent with the earlier observations
that the more dangerous the risk is, the smaller the optimal retention in a stop-
loss reinsurance.

4.3. Dependent risks associated with a multivariate Bernoulli distribution

Let (X1, ...,Xn) be a nonnegative random vector with 

Xi = Ii Bi, i = 1,...,n, (4.4)

where B1,...,Bn are independent positive random variables denoting the amounts
of claims and (I1, ...,In) is a multivariate Bernoulli random vector describing
occurrences of claims. Furthermore, the random variables {B1, ...,Bn} are inde-
pendent of the random variable {I1, ...,In}. This is a traditional individual risk
model. Another version of model (4.4) can be found in Cossette, et al. (2002).
We illustrate the effects of dependence on the optimal retention in this model
by setting n = 2 in the following example.

Example 4.3 Let n = 2 in (4.4). Assume that B1 and B2 are independent positive
random variables with common distribution G, mean m, and variance s2. Fur-
thermore, the bivariate Bernoulli random vector (I1, I2) is distributed as

Pr{I1 = 1, I2 = 1} = a, Pr{I1 = 1, I2 = 0} = b,

Pr{I1 = 0, I2 = 1} = c, Pr{I1 = 0, I2 = 0} = d,

where 0 < a,b,c,d < 1 and a + b + c + d = 1.

106 J. CAI AND K.S. TAN

TABLE 2

EFFECTS OF DEPENDENCE ON d – MULTIVARIATE PARETO DISTRIBUTION:
IN ALL CASES, WE HAVE E[X1] = E[X2] = 500 WITH a= 0.1 AND r = 0.2 

Case 1 Case 2 Case 3

l 10 5 2.5
s 4,500 2,000 750

rX1,X2
0.1 0.2 0.4

d = SX
–1(r*) 324.95 285.89 211.09
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Thus, the survival function of X = X1 + X2 is, for x ≥ 0,

SX(x) = Pr{X1 + X2 > x | I1 = 1, I2 = 1} a + Pr{X1 + X2 > x | I1 = 1, I2 = 0} b

+ Pr{X1 + X2 > x | I1 = 0, I2 = 1} c + Pr{X1 + X2 > x | I1 = 0, I2 = 0} d

= aG(2)(x) + (b + c)G(x),

where G(x) = 1 – G(x), G(2)(x) = 1 – G (2)(x), and G (2)(x) is the 2-fold convolution
of G(x) with itself.

It is easy to see that E [X1] = m(a + b), E [X2] = m(a + c), E [X1 X2] = am2,
Var[X1] = (a + b) E[B1

2 ] – [ m(a + b)]2 = (a + b) [s2 + m2(1 – (a + b))], and Var[X2] =
(a + c) [s2 + m2(1 – (a + c))]. Hence,

Cov[X1,X2] = m2[a – (a + b) (a + c)]

and the correlation coefficient between X1 and X2 is

rX1
,X2

= .
a b a c a b a c

a a b a c

s m s m

m

1 12 2 2 2

2

+ + + - + + - +

- + +

^ ^ ^_ ^_

^ ^

h h hi hi

h h

8 8

7

B B

A

We now consider a special case of the above model. We assume G has an expo-
nential distribution with mean m = 1000 (and hence s2 = 2m2). We further set
a= 0.1, r = 0.2 and a + b = a + c = 0.5 so that E[X1] = E[X2] = 500 as in Exam-
ples 4.1 and 2.2. By considering three combinations of a and b, the resulting opti-
mal retentions are shown in Table 3. Note again that the higher the correlation
coefficient, the lower the retention level, which is consistent with our earlier
examples.
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TABLE 3

EFFECTS OF DEPENDENCE ON d – MULTIVARIATE BERNOULLI MODEL:
IN ALL CASES, WE HAVE E[X1] = E[X2] = 500 WITH a= 0.1 AND r = 0.2 

Case 1 Case 2 Case 3

(a,b) (0.05, 0.45) (0.1, 0.4) (0.15, 0.35)
rX1,X2

– 0.16 – 0.12 – 0.08

d = SX
–1(r*) 138.28 86.53 24.04

5. OPTIMAL RETENTION IN A COLLECTIVE RISK MODEL

In this section, we illustrate the results of Sections 2 and 3 by considering
the collective risk model. We assume that N, X1, X2, ... are independent and
X1,X2,... are identically distributed. The survival function of the aggregate loss

jj 1=X = N X! can be computed via 
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,x xFX n
n

n 1

=
3

=

pS !^
]

^h
g

h x ≥ 0, (5.1)

where {pn = Pr{N = n}, n = 0,1,2, ...} is the probability function of N; F(n)(x) =
1 – F (n)(x); and F (n)(x) is the n-fold convolution of the distribution function
F (x) = Pr{Xj ≤ x}.

We now provide two examples to illustrate our results. The first example is
a compound Poisson model and the other example is a compound negative
binomial model.

Example 5.1 (Compound Poisson-Exponential Model) Suppose N has a Pois-
son distribution with mean l > 0 and the severities of claims {Xj ; j =1,2,…}
are i.i.d. exponential random variables with mean m > 0, then

0 / ,x e e I xs dsm2/
X

x sm l

0
=

- -S #^ `h j x ≥ 0, (5.2)

where I0(z) = j 0= !

/

j

z 2
j

2

2

3!
]

]

g

g is a modified Bessel function of the first kind. See, for

example, Seal (1969).
Now assume that a= 0.1, r = 0.2, l = 10, and m =100. These parameter values

yield E[X ] = lm = 1,000, SX(0) = 1 – e–l = 0.9999546, and SX
–1(0.1) = 1598.27 (using

standard mathematical software), hence satisfying conditions 0 < a= 0.1 <
SX(0) = 0.9999546, r* = 0.83̂ > a= 0.1, and SX

–1(a) = 1598.27 > (1 + r)E[X ] = 1200.
By Corollary 2.1 and Theorem 3.1, the optimal solution exists for both VaR
and CTE optimization criteria and both yield the same optimal retention of
SX

–1(r*) = 569.54.

Example 5.2 (Compound Negative Binomial-Exponential Model) Now assume
that the severity distributions are the same as in the last example except that the
frequency distribution N follows a negative binomial with parameters r and b.
It can be shown (see Klugman et al. (2004)) that if r is positive integer, then 

! .x r
n j

x e

b
b

b
b m b
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r n r n
j

x

j

n
m b

1
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+
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S ! !^ c d d

^
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h m n n

h
g

: D

(5.3)

Furthermore, SX (0) = 1 – (1 + b )–r and E[X ] = rbm. Using parameter values
a= 0.1, r = 0.2, r = 50, b = 0.2, and m = 100, we obtain E[X ] = 1000, r* = 0.83̂ >
a= 0.1, SX (0) = 0.99989 > 0.1, and SX

–1(0.1) = 1628.37 > (1 + r) E[X ] = 1200.
It follows from Corollary 2.1 and Theorem 3.1 that an optimal solution exists
for both optimizations, with the optimal retention of SX

–1(r*) = 549.02. Note
that the optimal retention value in this case is smaller than that in the com-
pound Poisson model. This is again to be expected since both models have the
same expected number of losses and the same expected aggregated loss, which
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implies that the compound negative binomial is ‘‘more risky” than the com-
pound Poisson in the sense that the former has a larger variance.

Remark 5.1 If we were to consider the optimal retention at a= 0.35, we would
have obtained SX

–1(0.35) = 1127.22 for the compound Poisson example and
SX

–1(0.35) = 1130.79 for the compound negative binomial example. These values
fail to satisfy condition (2.9) and hence we can no longer use Corollary 2.1 to
establish the existence of an optimal solution for the VaR-optimization. How-
ever, condition (3.6) is still valid. This implies that the optimal retentions as
calculated in Examples 5.1 and 5.2 are still the corresponding optimal retentions
at a= 0.35 under the CTE criterion.

To end this section, we remark that simple analytical formula for the sur-
vival function of the aggregate claims S = X1 + ... + Xn or S = X1 + ... XN often
does not exist. We need to resort to numerical procedure for determining the
optimal retention. For instance in the above two examples, even though the sur-
vival function can be expressed in closed-form (see (5.2) and (5.3)), the optimal
retentions were obtained numerically. In situation where the survival functions
cannot be expressed in closed-form, one possible solution is to use normal or
translated gamma approximations to approximate the survival function and then
determine the optimal retention levels accordingly. See for example, Daykin et
al. (1994) and Klugman et al. (2004).

6. CONCLUSIONS

This paper addressed the important question of determining an optimal level
of retention in a stop-loss reinsurance. The proposed optimization is simple and
intuitive. More importantly, the optimal retention is explicit, and can easily be
calculated. If the solution exists, both CTE-optimization and VaR-optimization
yield the same optimal solution. However, we argued that, in general, the CTE
criterion is preferred to that based on VaR since the optimality condition is less
restrictive in the former optimization framework.

We also pointed out that the safety loading and the assumed loss model are
critical factors for determining the optimal retentions. If the optimal solution
exists, the optimal retention as well as the minimum risk measure are the same
regardless of the risk tolerance probability. We applied the results to the individual
risk models with dependent risks and classical collective risk models. The effect
of correlation on optimal retention was assessed. In general, the more risky the
underlying risk, the lower the optimal retention.

APPENDIX

Proof of Theorem 2.1. (a) Observe that from (2.4), VaRT(d,a) is continuous on
d ! (0, 3) and decreasing on d ! (SX

–1(a), 3) with the limit SX
–1(a) as d " 3.

Furthermore, when r* < SX(0), the function d + d(d) is decreasing for d ! (0, d0)
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FIGURE 1: A typical graph of VaRT(d,a) if optimal retention exists.

and increasing for d ! (d0, 3), where d0 = SX
–1(r*) > 0, and hence the function

d + d(d ) attains its minimum value at d0 with minimum value d0 + d(d0). Con-
sequently, if both (2.5) and (2.6) hold, then 0 < d0 < SX

–1(a) and the minimum
value d0 + d(d0) is also the global minimum value of VaRT(d,a) on d ! (0,3).
Therefore, d0 > 0 is the optimal retention. See Figure 1 for a graphical repre-
sentation of VaRT(d,a).

110 J. CAI AND K.S. TAN

Conversely, if (2.5) does not hold with a ≥ r*, then d0 ≥ SX
–1(a) and VaRT(d,a)

is decreasing on d ! (0, 3) with a limiting value of SX
–1(a) as d "3, hence the

optimal retention d* does not exist; if (2.5) does not hold with r* ≥ SX(0), then
d0 = 0 and again VaRT(d,a) is decreasing on d ! (0, 3) with a limiting value of
SX

–1(a) as d "3, hence the optimal retention d* does not exist; if (2.5) holds
but (2.6) does not hold, then infd > 0VaRT (d,a) = SX

–1(a), however, no such a
d* > 0 so that VaRT(d*,a) = SX

–1(a). Therefore, both (2.5) and (2.6) are neces-
sary for the optimal retention d* > 0 to exist.

(b) When the optimal retention d* > 0 exists, from the proof of (a), we have
d* = d0 so that the minimum value of the VaR on (0, 3) is d0 + d (d0). Hence,
(2.7) and (2.8) hold. ¡

Proof of Corollary 2.1. It is sufficient to verify that (2.9) implies (2.6). It follows
from (2.9) that

X X
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Hence (2.6) is satisfied. ¡
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Proof of Theorem 3.1. (a) Observe that from (3.5), CTET(d,a) is continuous
on d ! (0,3). Furthermore, when r* < SX(0), the function d + d(d ) is decreas-
ing on d ! (0, d0) and increasing on d ! (d0, 3), where d0 = SX

–1(r*) > 0. Taking
the partial differentiation with respect to d, we get

X
X

X X .a
a ad S d S x dx S dd r
1 1 1

aS

d1
12

2
+ + = - +

-

-
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]
e ^d ^h h h

g
o hn h

Consequently, (3.6) implies that 0 < d0 ≤ SX
–1(a) and that the function SX

–1(a) +

d(d ) +
S

S x dxa a

d1
1-# ^
]

h
g

is increasing in d if a < r* and a constant if a= r*.

Therefore, if a< r*, CTET(d,a) attains its minimum value at d0 = d = SX
–1(r*)

with minimum value of d0 + d(d0) and hence d0 > 0 is the optimal retention. Fur-
thermore, if a= r*, CTET(d,a) attains its minimum value at any d = d ≥ SX

–1(r*)
with minimum value of d0 + d(d0). Consequently any d ≥ d0 ≥ 0 is the optimal
retention in this case.

Conversely, if (3.6) does not hold with a> r*, then d0 > SX
–1(a) and the

function SX
–1(a) + d(d ) +

X
X x dxa

aS

d1
1-

S# ^
]

h
g

is decreasing. Hence, CTET(d,a) is 

decreasing on d ! (0,3) with a limiting minimum SX
–1(a) +

X
X x dxa

aS

d1
1-

S# ^
]

h
g

.

The optimal retention in (1.9), therefore, does not exist; if (3.6) does not hold
with r* ≥ SX(0), then d0 = 0, there is no d > 0 so that the optimal retention in
(1.10) exists. This completes the proof of Theorem 3.1(a).

(b) When the optimal retention d in (1.10) exists, it follows from the proof
of (a) that d = d0 = SX

–1(r*) if a< r*, and d ≥ SX
–1(r*) if a= r*. ¡
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