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Abstract

We study the heat equation on a homogeneous bundle over a compact Lie group. The trace of the heat
kernel is explicitly calculated. By comparing this with the formula constructed from the eigenvalues
(with multiplicities) of the Laplacian we obtain an unusual formula involving the Clebsch-Gordan
numbers. The main method is to use invariance under conjugation to pass from the group to its
maximal torus, where a direct calculation can be carried out.

1980 Mathematics subject classification (Amer. Math. Soc): 58 G 11.

1. Introduction

The link between the spectrum of differential operators on a compact manifold
and the geometry of the manifold is well known. Here we content ourselves with a
reference to [5]. In [5] Patodi studied the Laplacian acting on forms, that is on
sections of exterior powers of the cotangent space. We note that he used the
Hodge Laplacian defined by

(1.1) A = dd* + d*d.

Our Laplacian is defined on a homogeneous bundle as in [6].
If we consider the case of the trivial bundle the work of this paper reduces to

the heat equation on scalar valued functions. This has been extensively studied.
The reader should note that in this case the Laplacian used here is double the
usual Laplacian of functions on a Lie group.
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In this paper the heat equation is studied. As is shown in [4] this is essentially
the same as studying spectral invariants for the Laplacian itself. It happens that
the heat equation provides a more convenient approach than studying the
spectrum. However, the basic information is the same in both cases.

This paper is divided into six sections. In Section 2 is described the basic theory
of the heat equation on sections of a homogeneous bundle over G with the basic
definitions taken from [6] and additional material from [5]. Section 3 is concerned
with the case of bundles over the circle S1. This provides both an example of the
theory in Section 2 and the results of a basic calculation for later use. The next
section, 4, describes the passage between solutions on G and solutions of the flat
heat equation on the maximal torus T. Then in Section 5 we consider traces.
There are several general technical lemmas. Then we put all the results together.
The fundamental solution is transferred to the maximal torus. The torus is then
regarded as a collection of circles and the calculation of Section 3 is used. This
gives the result of Theorem 1.1.

THEOREM 1.1. The trace of the heat equation is

There is a large amount of notation in Theorem 1.1 which needs explaining.
The sum is over all weights a and X of the Lie group G, T is a dominant weight
defining an irreducible representation TTT and a homogeneous bundle ET (see
Section 2 or [6] for more details). The symbol mT(a) denotes the multiplicity of
the weight a in the representation r. It is zero except for a finite number of a
when it is a positive integer. We use || ||2 for the norm squared of the negative
Killing form, and p is half the sum of the positive roots. The function d is the
polynomial such that d{r + p) = dimwT, in the case when T is dominant and \W\
is the order of the Weyl group.

In the final section, 6, we give an application of Theorem 1.1. In a previous
paper [2] the Laplacian on forms was studied and a representation theoretic
description of the spectrum given. The results there extend in an obvious way to
any homogeneous bundle. Thus we can write down Z(t) in terms of eigenvalues
and their multiplicities. Comparing the result with Theorem 1.1 yields the formula

(1.2) LmXT.(ji)</(M + P)2 = ^ Z m T ( A - M)rf(X + p)d{lx + p).

Here WXT»(JH) are the Clebsch-Gordan numbers; in both sums ||\ + p||2 +
HJU. + p\\2 = n, a fixed constant; in the first sum A and jn are dominant weights,
but in the second they are just weights.
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Finally we draw particular attention to one result in Section 5. The fundamen-
tal solution of the heat equation is defined as an operator in (2.8). It can be
interpreted as the section

(1.3) H(x,t) = J:<j>x(x)e-x',

which in the case of the trivial bundle is the convolution kernel. We observe that
the trace of the operator is given by

(1.4) UH(t)= f (H(x,t),H(x,0))dx.

This leads us to define the trace of any solution, Ha, as

(1.5) txHa(t) = j (Ha(x,t),Ha(x,0))dx

(see equation (5.1)). The reason this is important to us is that in passing from the
group to the torus the fundamental solution goes to a solution which is not the
fundamental one. Thus we need to extend the notion of trace to solutions other
than the fundamental one.

The author would like to thank the many mathematicians who contributed to
his understanding of this material, and in particular Peter Gilkey for helpful
discussions concerning differential operators on bundles.

2. The heat equation on a homogeneous bundle

Let G be a compact, semisimple and simply connected Lie group which is
simple modulo its center. Let m7 be an irreducible representation on G with
highest weight T, SO

(2.1) wT: G -> Aut E.

Most of the results still hold in the analogous situation when the representation is
not irreducible. Let G = G X G, and define the homogeneous vector bundle ET

by requiring that the following diagram commutes:

GxE -> GXTE = ET

(2.2) i i

G -> G/d iagG=G.

Here the bundle G X E is trivial and so has a Laplacian A on it defined by

(2-3) A(L/,e,) = E(A/,),,,
where {e,} is a basis of E. Notice that (2.3) only holds because the bundle is
trivial. The Laplacian on ET is defined by

(2.4)
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fo r /a section of ET,/ the lifting of / to a section of G X E and (A/)~ the lifting
of A/. A section of G X E is called invariant if

(2.5) Kx8,y0) = vT(0)g(x,y).

There is a one-to-one correspondence between invariant sections of G X E and
sections of ET. If we need to describe a section of ET we shall usually do this by
giving an invariant section of G X E\ this is the lifting of the section. To describe
such a section as a function on G, rather than G, is done by using the splitting

(2.6) * - » ( J C , 1 )

of the last line of diagram (2.2). This splitting is not natural and so will only be
used occasionally. Given any section/of G X E, not necessarily invariant, we can
project it onto an invariant section/, by

Let ( , ) denote a G- in variant inner product on E, {^} a complete set of
eigenvalues, and {</>x} a complete orthonormal set of eigensections of ET. The
fundamental solution of the heat equation on ET is then

(2.8) H{x,y,t

which is regarded as an operator

(2.9) H(x, y, t)v(y) =

Notice that H(x, y, t)v(y) does not depend on y; the variable y is a dummy
variable inserted to indicate the domains of the various functions. The function
Hp(x, t) = H(x, y, t)v(y) is the solution of the heat equation on ET with initial
data v(y). Taking v(y) = Y.<t>\(y\ which is a delta distribution, we obtain the
fundamental solution of the heat equation as a section of ET:

(2.10) H(x,t) = Z<>x(x)e-x'-

and for v(y) = Y.ax<j>x(y) we obtain the solution

(2.11) Ha(x,t) = Y,ax*x(x)e-*'.

It is convenient to recover the operator form of the fundamental solution (2.8)
from the section form (2.10). To do this we define the operator associated to the
solution (2.11) to be

(2.12) Ha(x, y, 0* - I > A < K ( * Wx(.F)*e-A'-

The trace of a solution is then the trace of the associated operator. This is
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which in the case of the fundamental solution becomes

(2.14) Z(t) = trH*(t) = '£e-x'.

Throughout this discussion each eigenvalue is repeated as often as its multiplicity.

3. The heat equation on bundles over S1

We start by identifying the circle Sl as Sl = {(COS2TTX, sin27rx): x e R/Z)
and taking a second copy: S1 = {(cos2wy, sinl'ny)}. Then the product Sl = S1

X Sl is formed. Let ITT: Sl -* Aut ET be a representation of S1 on a vector space
ET. We form the bundle ET as in Diagram (2.2). The non-trivial irreducible
representations of S1 are, for each integer k, the two dimensional representations:

( 3 1 ) ""W ~ [sinlvke cos 2**0 J'
where E = C2 and 8 = (cos 2ird, sin 2w6), with the group action x + y = (x + y).
For the time being we shall only use irreducible mk. A section of Sl X E is just a
vector valued map / : S1 -» E. If this map is invariant, that is if /(x + 8,
y + 8) = 7ryt(8)/(x, y), then /defines a section of Ek. The splitting (2.6) is now
x-»(x,0) .

Let hx(x, t) be the solution of the heat equation on functions on S1. Then if

( 3 ' 2 ) _ n ' - y )

is a section of S1 X £ the section

is a solution of the heat equation. Here "h{x, y, t) = h^x, t)hx{y, t), and *
denotes convolution in the variables x and y. We let

<»> " * • > • • > -

and write (3.3) as if(;c, y, t)* f(x, y). A straightforward calculation shows that if
/ i s invariant, then

(3.5) H(x, y, t)*f(x, y) = Hk(x, y, t)*f(x, y).

We shall regard the section H(x,0, t) as the fundamental solution of the heat
equation on the bundle Ek over S1.

To calculate Hk(x,0, t) we first observe that
00

(3.6) hx(x, t)= £
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Thus

(3.7)

H. D. Fegan [ 6 |

H(x,y,t) =

where both the sums are over all pairs of integers m > 0, n Ss 0. We now calculate

(3.8) Hk(x, y, t) = f1 7rk(eylH(x + 6,y + 0, t) dO,

and find after an elementary, but lengthy calculation that
(3.9)

H (x t) = J- T
4

T l
n_0\

l(cos2v(mx-(m ~

-4ir2(2m2-2mk + k2

n_01

— (m — k)y)

k)y)

-(m - k)y))\
—(m - k)y)) J

-(m + k)y))\

— (m + k)y)) J

Setting y = 0 yields the following expression for the fundamental solution of the
heat equation E^ over S1:
(3.10)

m_o mkt + sin277-wjcsinh8w wA:?

We further observe that we can carry out an analogous calculation starting with
other initial data. We replace the solution hx in equation (3.6) by

(3.11) h(x, 0 = L ancos2irnxe-^2"2',

where an are just constants giving initial data v. The corresponding solution
Hv(x, 0, t) on ET over S1 is then:

(3.12) Hr(x,0, r) = i l ame-4^2ml + k2)l

+ a Icos27rmx + sin2irmx\ -$*2k
m~k\cos2'jTmx — sin 2 irmx J

Here we have extended the notation so that when r is negative the constant
ar = a_r. We let Hv be the resulting solution on E^ of h.
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4. Reduction to the maximal torus

We start with vector valued functions
(4.1) / : G - E.

If/is invariant under conjugation, then

(4.2)

where
(4.3)

withy the usual denominator function on T: j(x) = na>02/sin2Tra(.x;). Notice
that our conventions have introduced a factor 2w with each root and a factor 4TT2

with ||p||2. The other notation is that A is the Laplacian on G, Ar is the flat
Laplacian on T, and p is half the sum of the positive roots of G, so that
||p||2 = 2||p||2. This result is due to Harish-Chandra and its use is discussed in [2].
Using equation (4.2) we make the following definition.

DEFINITION 4.1. If H(x, y, t) is a solution of the heat equation on G, then the
associated solution is HT{x, y, t) = e8"2||pl|2'7(x, y)H(x, y, t) for (x, y) e f.

THEOREM 4.2. The associated solution is a solution of the flat heat equation on f,
ATu - du/dt = 0.

PROOF. This is essentially the same as in [1], the only difference being that we
are working on G rather than G.

We denote with abuse of notation, the initial data of H(x, y, t) by H(x, y, 0).
Then we wish to relate the initial data of H with that of HT, the associated
solution. In terms of Fourier series the result is as follows.

THEOREM 4.3. / / H(x, y, 0) = E aXliXx(x)x»(y) then HT(x, y, 0) =
1 where

0 if either a or ft is singular.
Here the first sum is over \, p. dominant weights and the second is over all weights a,

REMARK. If both a and /? are regular, that is if neither is in a wall of the Weyl
diagram, then there are unique a and T such that aa - p and T/? - p are
dominant. Points y in the walls have the property that wy = y for some « in the
Weyl group with (-l)w = - 1 , in which case ay — p is never dominant.
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PROOF. This result is a straightforward calculation. The Weyl character formula

(4.4) X x(x) = E (- l)V™<x +»V./(x)

is substituted into the expression for H{x, y, 0). Rearranging the sums then gives
the result. Note that ax and bap are both elements of the vector space E.

THEOREM 4.4. If H(x, t) is the fundamental solution on the trivial bundle G X E
over G then Hfr — HTf.

PROOF. Let ex,...,em be an orthonormal basis for E. Then

(4.5) #(*,*) = *(*>')£*,.,
where h(x, t) is the fundamental solution of the heat equation for functions on G.
Equation (4.5) just states that on a trivial bundle we can work component by
component. Now we calculate

(4.6) Tr j
•'diag T

and

(4.7) HTt=e-*"2">>"2'Xx)(
•'diag G

In both of these equations the action of 6 is understood to be multiplication by
(8, 6) in the diagonal subgroup of either G or t. Observe that both HfT and HTf
satisfy the flat heat equation on t and from (4.6) and (4.7) both have

[ , jc£diag7\
( 4 ' 8 ) ( * )

as initial data. Since these sections have the same initial data and satisfy the same
equation they are equal. This completes the proof.

5. The trace of a solution of the heat equation

We are interested in the case of the fundamental solution. To compute this we
shall pass to the associated solution on the maximal torus T, which is different
from the fundamental solution on T. So we interpret (2.13) independently of
eigensection expansions. The trace of the solution is

(5.1) tiHa(t) = f (Ha(x, t), Ha(x,0))dx.
Jr.
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We now consider the associated solution on the maximal torus f of G:

(5.2) HT(x, y, t) = e 8 ' 2 M 2 ' 7 ( x , y)H{x, y, t).

Let ZT(t) = trHT(t) and Z{t) = trH(t) be the traces of the associated solution
and the solution, respectively, and let \W\ denote the order of the Weyl group.

LEMMA 5.1. The traces are related by

ZT(t) = e^2^2'Z(t)/\W\.

PROOF. Calculate ZT and use the Weyl integration formula.

We note that the trace Z on G is related to the trace Z on G.

LEMMA 5.2. The traces are related by

Z(/) = vol(G)Z(0.

PROOF. This is a straightforward calculation:

(5.3) Z(t)= f f (H(x,y,t),H(x,y,O))dxdy

( 5 ' 4 )

(5.5) = j j (H(x,l,t),H(x,l,O))dxdy

(5.6) =VO1G/" (H(x,l,t),H(x,l,O))dx.

The step to equation (5.4) uses the invariance of the solution, (5.5) uses the
invariance of both the inner product and Haar measure. The final equation (5.6)
is the result in the lemma.

We now calculate the trace of a solution of the heat equation on S1. Let

(5.7) h(x, t) = Y,ancos(2Trnx)e-*"7"2'

be a solution of the heat equation for functions on S1 giving rise to the solution
Hp(x,0, t) of equations (3.12). The trace of Hr is then given by the following
result.

LEMMA 5.3. The trace of Hv is

- t l a \ a Zn2mkt , 2 -Sn2mkt\ -47r2(2m2 + A2)/
+ am-ke )e
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PROOF. This is a straightforward calculation with equation (3.12) substituted
into equation (5.1).

The situation on the maximal torus T is analogous. Let a be a weight of the
representation T which defines the bundle ET. Then a is a two-dimensional
representation of T:

lcoslira(x) -sin2ira(x) \
( 5 8 ) a ( X ) \ ) cos2,ra(*)j"

The solution for functions over T becomes h(x, t) = £aAcos27rX(x)e~4'7"l|A" '
where the sum is over A e f , the lattice of weights of G. The resulting trace is
then given in the next lemma.

LEMMA 5.4. The trace of the resulting solution in Ea is

(5.9) Za(t) = Wx(aL

PROOF. This lemma is proved in the same way as the previous lemma. The main
changes in the calculation are that m is replace by X, k by a, m2 by ||X||2, k2 by
||a||2, and mk by the inner product (A, a) .

To calculate the trace of the fundamental solution of the heat equation on ET

we need to identify the coefficients ax. First consider the case of the solution for
functions, that is T = 0. Define the polynomial d by

(5.10) d(\)= I ! (Ka)/(p,a);
a>0

then the fundamental solution of the heat equation is

(5.11) H(x,t)= £ d(X + p)xA(x)e-»x + <"'2 + '">»2'.
Aefnfl

The associated solution on T is HT(x, t) = j{x)e~M^'H(x, t); that is, using the
Weyl character formula we have

(5.12) HT(X,t)= £
XePnD

As in [1] we can use the skew invariance of d under the Weyl group to write this
as

(5.13) HT{x,t)= £ rf(X)e2"/X(x)e-nx»\
AeP

where the shift by p has been removed. If we start with the solution

(5.14) H{x, t) = £axcos2vr\(jc)e-| |A|12',
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and if we form the product solution h(x, t)h{y, t) on T and make this invariant,
then the resulting solution on T is

2-2wiX(x)

(5.15) hr(x,t) = j : ^ - i e-^\

Thus the associated fundamental solution is the resulting solution with the choice
of coefficients

(5.16) ax = ]/2d{XJ.

Returning to the case when T is no longer trivial we observe that the same result
still holds.

LEMMA 5.5. Let ax = Jld{\). Then the resulting solution ofZaxe
2"Mx)e-mh

is the associated fundamental solution.

PROOF. Since both the resulting solution and the associated solution satisfy the
heat equation, it is sufficient to check that they have the same initial data. The
initial data is supported at the identity element of the group, and so we can work
locally. Since the bundle ET is locally trivial, the result now follows from the result
for functions.

The trace of the fundamental solution can now be calculated.

THEOREM 5.6. Let Z(t) be the trace of the fundamental solution of the heat
equation on the bundle ET over G. Then

Z ( / ) \W\ Lmr(
where mT(a) is the multiplicity of weight a in the representation T and the sum is
over all weights aofr and all weights X.

PROOF. By Lemma 5.1, we have

(5.17) Z{t) = e-g"2"»"2'ZT(t)/\W\.

Now the bundle ET over T decomposes as a direct sum

(5.18) E T | r = 0 E a

over all the weights a. Thus

(5-19) Z r ( 0 = I > T ( a ) Z a ( 0 ,
and the result follows by substituting

(5.20) a2
x = 2d(X)

in Lemma 5.4 and noticing that the multiplicity mT(a) is the same as mT{-a), so
that there is cancellation when we sum over a.
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6. The Clebsch-Gordan numbers

By the natural extension of the result in [2] we can calculate the eigenvalues of
A and their multiplicities.

LEMMA 6.1. (a) The eigenvalues of the Laplacian on ET are 4T72(C(X) + c{\i))
where c(X) = ||X + p||2 — ||p||2 and \i is the highest weight of an irreducible
representation in the decomposition

(b) The multiplicity of this eigenvalue is mXi.»(ju)(dim T^)2.

Now dim w^ = d(n + p), and so substituting into (2.14) gives

(6.1) Z(() = e - « ' W ' E %

If we set a = A - n in Theorem 5.6 and equate coefficients, we obtain the
formula

(6.2) E»IXT.(M)«/(/I + pf = pr, E^T(X - M)^(X + P)d(f* + P),

where in both sums ||X + p||2 + ||ju + p||2 = n, a fixed constant, and where, in the
first sum, X and ju are dominant weights, but in the second they are just weights.
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