On the Canonical Form of a Rational Integral Function of a Matrix

By D. E. Rutherford, St Andrews University.

(Received 14th May, 1932. Read 4th June, 1932.)

Introduction.

It is well known that the square matrix, of rank $n-k+1$,

which we shall denote by B where any element to the left of, or below the nonzero diagonal $b_{1, k}, b_{2, k+1}, \ldots, b_{n-k+1, n}$ is zero, can be resolved into factors $Z^{-1} D Z$; where D is a square matrix of order n having the elements $d_{1, k}, d_{2, k+1}, \ldots, d_{n-k+1, n}$ all unity and all the other elements zero, and where Z is a non-singular matrix. In this paper we shall show in a particular case that this is so, and in the case in question we shall exhibit the matrix Z explicitly. Application of this is made to find the classical canonical form of a rational integral function of a square matrix A. When this has been found, it is easy to find the conditions for the existence of a solution of the matrix equation $\phi(X)=A$, where ϕ is a rational integral function of X, and then to give explicitly the canonical form of such solutions if they exist. In this last problem we shall follow the methods of R. Weitzenböck ${ }^{1}$ who has recently discussed the matrix equation ${ }^{2} X^{2}=A$. I have to thank Professor H. W. Turnbull for suggesting the problem and for discussing it with me.
§ 1. Let I_{n} be the unit matrix of order n, and let U_{n} be the auxiliary unit matrix of order n; that is to say, U_{n} is the square matrix of

[^0]order n all of whose, elements are zero save those on the overdiagonal which are unity. Thus
\[

I_{4}=\left[$$
\begin{array}{cccc}
1 & . & . & . \\
. & 1 & . & . \\
. & . & 1 & . \\
\cdot & . & . & 1
\end{array}
$$\right] and U_{4}=\left\lvert\, $$
\begin{array}{cccc}
. & 1 & . & . \\
. & . & 1 & . \\
. & \cdot & . & 1 \\
. & . & . & \cdot
\end{array}
$$\right.
\]

Now by the rules of matrix multiplication

$$
U_{4}^{2}=\left[\begin{array}{cccc}
. & \cdot & 1 & . \\
. & . & . & 1 \\
. & . & . & . \\
. & . & . & .
\end{array}\right], U_{4}^{3}=\left[\begin{array}{cccc}
. & . & . & 1 \\
. & . & . & . \\
. & . & . & . \\
. & . & . & .
\end{array}\right] \text { and } U_{4}{ }^{4}=\left[\begin{array}{cccc}
. & . & . & . \\
. & . & . & . \\
. & . & . & . \\
. & . & . & .
\end{array}\right]
$$

In general, if $m<n, U_{n}{ }^{m}$ is a matrix of order n, all of whose elements are zero with the exception of a diagonal of units beginning at the $(1, m+1)$ th position. If $m \geqq n$, then U_{n}^{m} is the zero matrix of order n.

A matrix of the form $\lambda I_{n}+U_{n}$, where λ is a scalar, is called a simple Jordan ciassical matrix, or for brevity a simple C-matrix. We denote this matrix conveniently by $C_{n}(\lambda)$. A matrix which has square submatrices $M_{1}, M_{2}, \ldots, M_{r}$ on the leading matrix diagonal and which has zeros everywhere else, is usefully denoted by

$$
\operatorname{diag}\left(M_{1}, M_{2}, \ldots, M_{r}\right)
$$

for example,

$$
\operatorname{diag}\left(U_{3}, 2 I_{2}\right)=\left[\begin{array}{cc:ccc}
\cdot & 1 & & & \\
& \cdot & 1 & & \\
& & \cdot & & \\
\hdashline & & 2 & & \\
& & & 2 & -
\end{array}\right]
$$

If $M_{1}, M_{2}, \ldots, M_{r}$ are all simple C-matrices, then the matrix $\operatorname{diag}\left(M_{1}, M_{2}, \ldots, M_{r}\right)$, which we shall denote by M, is called a compound C-matrix or merely a C-matrix; and $M_{1}, M_{2}, \ldots, M_{r}$ are called the latent submatrices of the matrix M.
§2. Theorem: If $a_{k} \neq 0$, then there will exist a square non-singular matrix Z, such that

$$
\begin{equation*}
Z\left(\alpha_{k} U^{k}+\alpha_{k+1} U^{k+1}+\ldots+\alpha_{n-1} U^{n-1}\right)=U_{n}^{k} Z \tag{1}
\end{equation*}
$$

Proof. If for convenience we write

$$
\begin{equation*}
0=a_{k-1}=a_{k-2}=\ldots=a_{1-n} \tag{2}
\end{equation*}
$$

Canonical Form of Rational Integral Function of a Matrix 137

then equation (1) may be written as follows

Hence, the equations for the elements $z_{i j}$ are

$$
\begin{cases}\alpha_{j-1} z_{i, 1}+\alpha_{j-2} z_{i, 2}+\ldots+\alpha_{j-n} z_{i, n}=z_{i+k,,}, & {\left[\begin{array}{l}
i \leqq n-k \\
j=1, \ldots, n
\end{array}\right]} \tag{3}\\
\alpha_{j-1} z_{i, 1}+\alpha_{j-2} z_{i, 2}+\ldots+\alpha_{j-n} z_{i, n}=0, & {\left[\begin{array}{l}
i>n-k \\
j=1, \ldots, n
\end{array}\right]}\end{cases}
$$

By examining equations (3), we see that if we give $z_{i, j}(i \leqq k, j=1, \ldots, n)$ any values whatever we can always find values for the other elements of Z such that equations (3) are satisfied. If, in addition, equation (4) is satisfied for all values of the elements of the matrix Z so obtained, then Z must satisfy equation (1). Let us choose therefore the following values of $z_{i, j}$. Let

$$
\begin{array}{ll}
z_{i, i}=1 & (i \leqq k) \\
z_{i, j}=0 & (i \leqq k, i \neq j) . \tag{5}
\end{array}
$$

We shall now show that equations (4) are satisfied identically by the values of $z_{i, j}$ given in (5). In virtue of the relations (2), (3), and (5)

$$
\begin{equation*}
z_{i, i}=0 \text { if } i>j \quad(i=1, \ldots, n) \tag{6}
\end{equation*}
$$

hence in view of (6), the equations (4) immediately reduce to

$$
\alpha_{j-i} z_{i, i}+\ldots+\alpha_{j-n} z_{i, n}=0, \quad\left[\begin{array}{l}
i>n-k \\
j=1, \ldots, n
\end{array}\right] .
$$

In this last equation, the maximum value for

$$
j-i \text { is } n-n+k-1=k-1
$$

that is to say

$$
\alpha_{j-i}=\ldots=\alpha_{j-n}=0
$$

so that equations (4) are identically satisfied by the values given in (5). It has now been shown that a Z exists which satisfies equation (1). It remains to be shown that Z is non-singular. If we put $i+k=j$ in equation (3), we have, by equations (2) and (6),

$$
\begin{equation*}
z_{i j}=a_{k} z_{j-k, j-k}, \quad(j=k+1, \ldots, n) \tag{7}
\end{equation*}
$$

consequently from (5), (6) and (7), the value of $|Z|$ is a power of α_{k} and so Z is non-singular. This concludes the proof of the theorem.

We now find it convenient to rewrite equation (l) as

$$
\begin{equation*}
Z\left(a_{k} U_{n}^{k}+a_{k+1} U_{n}^{k+1}+\ldots+a_{n-1} U_{n}^{n-1}\right) Z^{-1}=U_{n}^{k} \tag{la}
\end{equation*}
$$

§3. We next wish to show that the form of the matrix Z can be given explicitly. The difference equation (3) can be written

$$
z_{l k+p, i}=\sum_{q_{1}=1}^{n} a_{i-q_{1}} z_{(g-1) k+j_{1}, q_{1}} \quad\left[\begin{array}{c}
r \leqq k \\
m>0
\end{array}\right]
$$

By a repeated application of this formula we obtain

$$
\begin{aligned}
z_{g k+p, j} & =\sum_{q_{1}, q_{z}=1}^{n} \alpha_{j-q_{1}} a_{q_{1}-q_{2}} z_{(g-2) k+p, q_{z}} \\
& =\ldots \ldots \ldots \ldots \ldots \ldots \\
& =\sum_{q_{1}, \ldots, q_{g}=1}^{n} a_{i-q_{1}} a_{q_{1}-q_{2}} \ldots \ldots a_{q_{q-1}-q_{q}} z_{p_{1}, q_{g}}
\end{aligned}
$$

hence substituting the values of $z_{i, q_{g}}$ given in (5), we have

$$
z_{g k+p, i}=\sum_{q_{1}, \ldots, q_{g-1}=1}^{n} a_{j-q_{1}} \alpha_{q_{1}-q_{2}} \ldots \alpha_{q_{g-1}-p}
$$

Thus $z_{g k+p, i}$ is a homogeneous function of degree g in the α 's and the weight of each term is $j-p$, where we define the weight of any term as the sum of the suffixes of the a's. It only remains to find the numerical coefficient of a term such as $\alpha_{k}^{s k} a_{k+1}^{s_{k+1}} \ldots \ldots a_{n-1}^{s n-1}$. A little consideration will show that the numerical coefficient is just the number of permutations of $s_{k}+s_{k+1}+\ldots+s_{n-1}$ things, s_{k} of which are alike of one kind, $s_{k_{+1}}$ of which are alike of a second kind,, and s_{n-1} of which are alike; so that the numerical coefficient is

$$
\frac{\left(s_{k}+s_{k+1}+\ldots+s_{n-1}\right)!}{s_{k}!s_{k+1}!\ldots} s_{n-1}!
$$

As an example we shall find the value of $z_{9,13}$ in the case where $k=2$. Now $z_{9,13}=z_{4,2+1,13}$; hence $z_{9,13}$ is a sum of products of the a 's of degree 4 and of weight $13-1=12$. Since $a_{1}=0, a_{2} \neq 0$, the products are

$$
a_{2}^{3} \alpha_{6}, a_{2}^{2} \alpha_{3} a_{j}, a_{2}^{2} \alpha_{4}^{2}, a_{2} a_{3}^{2} a_{4}, a_{3}^{4} .
$$

Supplying in each case the appropriate numerical factor, we find that

$$
z_{9,13}=4!\left(\frac{a_{2}^{3} a_{6}}{3!}+\frac{\alpha_{2}^{2} \alpha_{3} \alpha_{5}}{2!}+\frac{a_{2}^{2} \alpha_{4}^{2}}{2!2!}+\frac{a_{2} a_{3}^{2} a_{4}}{2!}+\frac{a_{3}^{4}}{4!}\right) .
$$

As a second example, if $k=2, n=7$, then

$$
Z=\left[\begin{array}{cccccc}
1 & & & & & \\
\\
& 1 & & & & \\
\\
& & a_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} \\
& & & a_{2} & a_{3} & a_{4} \\
& & & & a_{2}^{2} & 2 a_{1} a_{3} \\
& & & & & \alpha_{5}^{2} \\
& 2 a_{2} \alpha_{4}+\alpha_{3}^{2} \\
2 \alpha_{1} \alpha_{3} \\
& & & & & \\
a_{2}^{3}
\end{array}\right]
$$

§4. It is obvious from equation (1a) that Z satisfies the relation

$$
\begin{equation*}
Z\left(\alpha I_{n}+\alpha_{k} U_{n}^{k}+\alpha_{k+1} U_{n}^{k+1}+\ldots+\alpha_{n-1} U_{n}^{n-1}\right) Z^{-1}=\alpha I_{n}+U_{n}^{k} \tag{8}
\end{equation*}
$$

Further ${ }^{1}$ the canonical form of the matrix $a I_{n}+U_{n}^{k}$ is known to be

$$
\operatorname{diag}\left(\alpha I_{n_{1}}+U_{n_{1}}, a I_{n_{2}}+U_{n_{2}}, \ldots, a I_{n_{k}}+U_{n_{k}}\right)
$$

where, if $n \equiv p k+q, q<k$, then $n_{1}=n_{2}=\ldots=n_{q}=p+1$ and $n_{q+1}=\ldots=n_{k}=p$. This result is obtained, in fact, merely through the interchange of suitable rows and columns in the matrix $a I_{n}+U_{n}{ }^{k}$. Let us denote a compound C-matrix of this sort by $C_{n}(\alpha)_{k}$. Thus, for example, the canonical form of $\alpha I_{5}+U_{5}{ }^{3}$ is $C_{5}(a)_{3}$ where

${ }^{1}$ See Canonical Matrices, 67.

The interchanges required are indicated by the small dotted lines. The nonzero elements of a simple C-matrix in $C_{5}(\alpha)_{3}$ are connected together by a dotted line in $a I_{5}+U_{5}{ }^{3}$. It follows from the above that the canonical form of $a I_{n}+\alpha_{k} U_{n}^{k}+\ldots+\alpha_{n-1} U_{n}^{n-1}$ is $C_{n}(\alpha)_{k}$.
§5. If $K A K^{-1}=\Lambda$, where K is a non-singular matrix, then $K \phi(A) K^{-1}=\phi(\Lambda)$, where ϕ is a rational integral function of its argument. Let Λ be the canonical form of A, that is to say, Λ is a C-matrix which can be represented as

$$
\operatorname{diag}\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{r}\right)
$$

where each sub-matrix Λ_{h} is a simple C-matrix of order t_{h}; it follows that $\phi(\Lambda)$ is the matrix

$$
\operatorname{diag}\left(\phi\left(\Lambda_{1}\right), \phi\left(\Lambda_{2}\right), \ldots, \phi\left(\Lambda_{r}\right)\right)
$$

Suppose, then, that

$$
\Lambda_{h}=\lambda_{h} I_{t_{h}}+U_{t_{h}}
$$

therefore, on expanding by Taylor's Theorem, we have

$$
\phi\left(\Lambda_{h}\right)=\phi\left(\lambda_{h} I_{t_{h}}+U_{t_{h}}\right)=\phi\left(\lambda_{h}\right) I_{t_{h}}+\frac{\phi^{\prime}\left(\lambda_{h}\right)}{1!} U_{t_{h}}+\ldots+\frac{\phi^{\left.\prime t_{h}-1\right)}\left(\lambda_{h}\right)}{\left(t_{h}-1\right)!} U_{t_{h}^{t_{h}}}^{t_{h}-1}
$$

Now, let $\phi^{\left(k_{k}\right)}\left(\lambda_{k}\right)$ be the first of the derivatives $\phi^{\prime}\left(\lambda_{k}\right), \phi^{\prime \prime}\left(\lambda_{h}\right), \ldots$ which does not vanish: then, if we put

$$
\alpha_{c}=\phi^{(c)}\left(\lambda_{k}\right) / c!
$$

in equation (8), we see that there exists a non-singular matrix Z_{h}, such that

$$
Z_{h} \cdot \phi\left(\Lambda_{h}\right) \cdot Z_{h}^{-1}=\phi\left(\lambda_{h}\right) I_{t_{h}}+U_{t_{h}}^{k_{h}}
$$

The right hand side can, in turn, be reduced to the canonical form $C_{t_{k}}\left(\phi\left(\lambda_{h}\right)\right)_{k_{h}} ;$ there exists, then, a non-singular matrix T_{h}, such that

$$
T_{h} \cdot \phi\left(\Lambda_{h}\right) \cdot T_{h}^{-1}=C_{t_{h}}\left(\phi\left(\lambda_{k}\right)\right)_{k_{h}}
$$

It follows that

$$
\begin{aligned}
& \operatorname{diag}\left(T_{1}, T_{2}, \ldots, T_{r}\right) \cdot \phi(\Lambda) \cdot \operatorname{diag}\left(T_{1}^{-1}, T_{2}^{-1}, \ldots, T_{r}^{-1}\right) \\
& =\operatorname{diag}\left(C_{t_{1}}\left(\phi\left(\lambda_{1}\right)\right)_{k_{1}}, \ldots, C_{t_{r}}\left(\phi\left(\lambda_{r}\right)\right)_{k_{r}}\right)
\end{aligned}
$$

Hence if $H=K \cdot \operatorname{diag}\left(T_{1}, T_{£}, \ldots, T_{r}\right)$, then

$$
H \cdot \phi(A) \cdot H^{-1}=\operatorname{diag}\left(C_{t_{1}}\left(\phi\left(\lambda_{1}\right)\right)_{k_{1}}, \ldots, C_{t_{r}}\left(\phi\left(\lambda_{r}\right)\right)_{k_{r}}\right) ;
$$

further H is a non-singular matrix and hence we have found the canonical form of $\phi(A)$ where ϕ is a rational integral function of the matrix A.
§6. Let Λ be the canonical form of the matrix A. Then, as before, $A=K^{-1} \Lambda K$, where K is non-singular. Now Λ is a C-matrix. Suppose that

$$
\Lambda=\operatorname{diag}\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{r}\right)
$$

where each sub-matrix Λ_{h} is a simple C-matrix of order t_{n} with latent root λ_{h}. All the latent matrices do not necessarily have different latent roots.

Suppose that $\Lambda_{h_{1}}, \Lambda_{h_{2}}, \ldots, \Lambda_{h_{r}}$ are the only latent matrices with latent root λ_{h} and consider the matrix

$$
V_{h}=\operatorname{diag}\left(\Lambda_{h_{1}}, \Lambda_{h_{2}}, \ldots, \Lambda_{h_{r}}\right)
$$

We can write this alternatively as

$$
V_{h}=\operatorname{diag}\left(C_{t_{h_{1}}}\left(\lambda_{h}\right), \ldots, C_{t_{h_{r}}}\left(\lambda_{\hat{h}}\right)\right)
$$

It is frequently possible to group several of these simple C-matrices together in the following manner

$$
V_{h}=\operatorname{diag}\left(C_{\tau_{1}}\left(\lambda_{h}\right)_{\sigma_{1}}, \ldots, C_{\tau_{\mu}}\left(\lambda_{h}\right)_{\sigma_{\mu}}\right)
$$

This can usually be accomplished in a number of ways. Thus, for example,

$$
\begin{aligned}
\operatorname{diag} & \left(C_{4}(\lambda), C_{4}(\lambda), C_{3}(\lambda), C_{2}(\lambda)\right) \\
& =\operatorname{diag}\left(C_{8}(\lambda)_{2}, C_{5}(\lambda)_{2}\right) \\
& =\operatorname{diag}\left(C_{8}(\lambda)_{2}, C_{3}(\lambda), C_{2}(\lambda)\right) \\
& =\operatorname{diag}\left(C_{4}(\lambda), C_{4}(\lambda), C_{5}(\lambda)_{2}\right) \\
= & \operatorname{diag}\left(C_{11}(\lambda)_{3}, C_{2}(\lambda)\right) \\
& =\operatorname{diag}\left(C_{4}(\lambda), C_{7}(\lambda)_{2}, C_{2}(\lambda)\right) .
\end{aligned}
$$

It is thus possible, in general, by pursuing this method to arrange the whole matrix Λ in a number of different ways in the form

$$
\Lambda=\operatorname{diag}\left(N_{1}, \ldots, N_{\rho}\right)
$$

where each N_{h} is of the form $C_{\xi_{h}}\left(\nu_{h}\right)_{\theta_{h}}$.
Now if there exist a θ_{h}-fold repeated root β_{h} of the equation

$$
\begin{equation*}
\phi(x)-\nu_{h}=0, \tag{9}
\end{equation*}
$$

then

$$
\phi\left(\beta_{h}\right)=\nu_{h}, \phi^{\prime}\left(\beta_{h}\right)=0, \ldots, \phi^{\left(\theta_{h}-1\right)}\left(\beta_{h}\right)=0, \phi^{\left(\theta_{h}\right)}\left(\beta_{h}\right) \neq 0
$$

and the canonical form of $\phi\left(\beta_{h} I_{\xi_{h}}+U_{\xi_{h}}\right)$ is $C_{\xi_{h}}\left(\nu_{h}\right)_{e_{h}}$. Hence, if, for any arrangement

$$
\begin{equation*}
\Lambda=\operatorname{diag}\left(N_{1}, \ldots, N_{\rho}\right) \tag{10}
\end{equation*}
$$

there exist for every value of h, a θ_{h}-fold repeated root β_{h} of the equation (9), then a solution of the matrix equation $\phi(X)=A$ will exist. For let

$$
Y=\operatorname{diag}\left(C_{\xi_{1}}\left(\beta_{1}\right), \ldots, C_{\xi_{\rho}}\left(\beta_{\rho}\right)\right)
$$

then Y is a solution of the equation

$$
\phi(Y)=F \Lambda F^{-1}
$$

where F is a non-singular matrix; hence $K^{-1} F^{-1} Y F K$ is a solution of $\phi(X)=A$.

Since several arrangements (10) are generally possible and since equation (9) may have several θ_{h}-fold repeated roots, we find in general that there are several solutions of the matrix equation

$$
\phi(X)=A
$$

A little consideration will show that the above conditions are both necessary and sufficient.
§7. We shall conclude this paper by the solution of an example: to find the canonical form Y of a matrix X which satisfies the equation

$$
\phi(X)=X^{3}-X^{2}-X-I=A
$$

where the canonical form Λ of A is given by

$$
\left.\Lambda=\left\lvert\, \begin{array}{rrrrrrr}
-2 & 1 & & & & & \\
& -2 & 1 & & & & \\
& & -2 & & & & \\
& & & -2 & 1 & & \\
& & & & -2 & & \\
& & & & & -1 & 1 \\
& & & & & & -1
\end{array}\right.\right]
$$

Here
or

$$
\begin{aligned}
& \Lambda=\operatorname{diag}\left(C_{3}(-2), \quad C_{2}(-2), C_{2}(-1)\right) \\
& \Lambda=\operatorname{diag}\left(C_{5}(-2)_{2}, C_{2}(-1)\right)
\end{aligned}
$$

Now $\phi(x)-(-2)=x^{3}-x^{2}-x+1=(x-1)^{2}(x+1)$, hence both $\phi\left(C_{5}(1)\right)$ and $\phi\left(\operatorname{diag}\left(C_{3}(-1), C_{2}(-1)\right)\right)$ are equivalent to $C_{5}(-2)_{2}$. Further,

$$
\phi(x)-(-1)=x^{3}-x^{2}-x=x\left(x-\frac{1+\sqrt{5}}{2}\right)\left(x-\frac{1-\sqrt{5}}{2}\right),
$$

hence $\phi\left(C_{2}(0)\right), \phi\left(C_{2}\left(\frac{1+\sqrt{5}}{2}\right)\right), \phi\left(C_{2}\left(\frac{1-\sqrt{5}}{2}\right)\right)$ are all equivalent to $C_{2}(-1)$. We thus obtain the following six values for Y

$$
\begin{aligned}
& Y_{1}=\operatorname{diag}\left(C_{5}(1), C_{2}(0)\right), \\
& Y_{2}=\operatorname{diag}\left(C_{5}(1), C_{2}\left(\frac{1+\sqrt{5}}{2}\right)\right), \\
& Y_{3}=\operatorname{diag}\left(C_{5}(1), C_{2}\left(\frac{1-\sqrt{5}}{2}\right)\right), \\
& Y_{4}=\operatorname{diag}\left(C_{3}(-1), C_{2}(-1), C_{2}(0)\right), \\
& Y_{5}=\operatorname{diag}\left(C_{3}(-1), C_{2}(-1), C_{2}\left(\frac{1+\sqrt{5}}{2}\right)\right), \\
& Y_{6}=\operatorname{diag}\left(C_{3}(-1), C_{2}(-1), C_{2}\left(\frac{1-\sqrt{5}}{2}\right)\right) .
\end{aligned}
$$

[^0]: ${ }^{1}$ Proc. Alad. Amsterdam, 35 (1932), 157.
 ${ }^{2}$ References to the original investigation by Frobenius, and to others, are given by Turnbull and Aitken, Canonical Matrices (Glasgow, 1932), 81.

