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The supersymmetry algebra

4.1 Rotations

In classical mechanics, rotations of three-vectors can be represented by a rotation

matrix R acting upon vectors such as x = (x, y, z) as

xi → x ′
i = Ri j x j . (4.1)

In quantum mechanics, rotation transformations are represented by unitary op-

erators U (θ) acting upon state vectors |ψ〉 such that

|ψ〉 → |ψ ′〉 = U (θ)|ψ〉, (4.2)

where the direction of θ is along the axis about which the rotation occurs, and its

magnitude is the rotation angle. For infinitesimal rotations, the operator U (θ) can

be written as U (θ) � 1 + iθ · J, where the Hermitian operators J are the rotation

generators. For spinless states, Ji can be represented as differential operators (Jk =
1
2
εi jk Ji j , with Ji j = −i(xi∂ j − x j∂i )), it is easy to check that the commutation

relations

[Ji , Jj ] = iεi jk Jk (4.3)

are satisfied for i, j = 1, 2, 3 ↔ x, y, z. Finite rotations can be built up from an

infinite product of infinitesimal ones, so that the operator U (θ) = exp(iθ · J). The

operators U (θ) form a representation of the Lie group SU (2), for which the Ji are

the group generators, and where Eq. (4.3) defines the Lie algebra associated with

the group SU (2). Since the parameters θi each run over a compact domain 0 to 2π ,

we say that SU (2) is a compact Lie group.

A Casimir operator is an operator that commutes with all of the group generators.

The eigenvalues of a Casimir operator are unchanged under group transformations,

so they serve as a useful tool to classify group representations. The representations of

SU (2) can be labelled according to the eigenvalues of the quadratic Casimir operator
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42 The supersymmetry algebra

J 2 = J · J, for which J 2| jm〉 = j( j + 1)| jm〉, with j = 0, 1/2, 1, 3/2, 2, . . . For

the j = 1/2 representation, the operators Ji can be represented by the Pauli spin

matrices Ji = σi/2, and the state vectors can be represented by 2-component

spinors. Higher j representations can be constructed by taking direct products

of lower j representations. For higher j representations of SU (2), the Ji ’s can be

represented by (2 j + 1) × (2 j + 1) matrices, and the corresponding state vectors

by 2 j + 1 component column matrices.

4.2 The Lorentz group

We want to build a quantum theory that is invariant under Lorentz transforma-

tions. We restrict our discussion to proper, orthochronous Lorentz transformations,

i.e. boosts and rotations, and neglect parity and time reversal. In addition to rota-

tions which mix the spatial coordinates amongst themselves, we now have boost

transformations which mix the time co-ordinate x0 with the spatial co-ordinates;

e.g. a boost along the x1 direction can be written as x ′0 = x0 cosh φ + x1 sinh φ,

x ′1 = x0 sinh φ + x1 cosh φ, x ′2 = x2 and x ′3 = x3. The usual velocity parameter

β that characterizes the boost is given in terms of the rapidity φ by β = tanh φ. The

infinitesimal transformation matrix U that transforms quantum mechanical states

can then be augmented to,

U (θ,φ) � 1 + iθ · J + iφ · K, (4.4)

where Ki are the boost generators and φ points along the direction of the boost.1 A

Lorentz transformation is thus characterized by the six parameters (θi , φ j ). Since

the parameters φ j are not restricted to a compact interval, the Lorentz group, unlike

the rotation group, is not compact.

The Lorentz group generators satisfy

[Ji , Jj ] = iεi jk Jk, [Ki , Jj ] = iεi jk Kk, [Ki , K j ] = −iεi jk Jk . (4.5)

The first of these relations shows that rotation generators form a closed sub-algebra,

so that the rotation group forms a subgroup of the Lorentz group. The commutator of

two boost generators is a rotation generator (this is the origin of Thomas precession)

so that the boosts, by themselves, do not form a sub-algebra.

The Lorentz algebra that we have introduced above can be written in a manifestly

covariant form by writing the generators as the six components of an antisymmetric

second rank tensor generator Mμν , with Mi j = εi jk Jk and M0i = −Mi0 = −Ki .

The commutators for the Lorentz group generators can then be recast into covariant

1 For infinitesimal boosts, notice that |φ| = |β|.
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4.2 The Lorentz group 43

form

[Mμν, Mρσ ] = −i(gμρ Mνσ − gμσ Mνρ − gνρ Mμσ + gνσ Mμρ). (4.6)

To find the finite-dimensional unitary representations of the Lorentz group,

the generators can be alternatively written by defining Si = 1
2
(Ji + iKi ) and

Ti = 1
2
(Ji − iKi ). In this case, it is easy to check that the commutators of the

generators become

[Si , Sj ] = iεi jk Sk, [Ti , Tj ] = iεi jk Tk, [Si , Tj ] = 0, (4.7)

i.e. the algebra decomposes into the product of two independent SU (2) groups,

for which we know the representations. For the Lorentz group, there are thus two
Casimir operators, S2 and T 2, with eigenvalues s(s + 1) and t(t + 1), again with

s, t = 0, 1/2, 1, . . . (Note that J 2 is no longer a Casimir operator since it no longer

commutes with all the group generators, e.g. [J 2, K1] �= 0.) The irreducible rep-

resentations can be categorized according to values of (s, t). A Lorentz scalar

transforms as the (0, 0) representation while a four-vector transforms as (1/2, 1/2)

representation. There are two distinct fundamental representations (1/2, 0) and

(0, 1/2), each of which corresponds to two-spinors. The (1/2, 0) object, as we

will soon see, transforms as a left-handed Weyl two-spinor whose components are

usually denoted by ψL A, with A = 1, 2. The (0, 1/2) object transforms as a right-

handed two-spinor with components ψ Ȧ
R , where the dot on the index calls attention

to the fact that the spinor transforms under the second of the two SU (2) groups.

Exercise Verify that the boost transformation for a state transforming as the
(1/2, 0) and (0, 1/2) representations of the Lorentz group are respectively given by
ψ ′

L,R = (cosh φ

2
∓ σ · p̂ sinh φ

2
)ψL,R, where p̂ is a unit vector along the direction

of p. Recalling that tanh φ = β, show that the spinors for states with momentum p
can be obtained from the corresponding rest frame states as,

ψL,R(p) = E + m ∓ σ · p√
2m(E + m)

ψL,R(0).

Noting that ψL(0) = ψR(0) because there is no preferred direction in the rest frame
to define the particle’s handedness, show that

(E ± σ · p)ψL,R(p) = mψR,L (p).

This is just the Dirac equation in two-component notation. Notice that for m = 0,
we have (σ · p̂)ψL,R(p) = ∓ψL,R(p), which justifies the use of our labels left and
right for the states transforming as the (1/2, 0) and (0, 1/2) representations of the
Lorentz group.
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A four-component Dirac spinor can be built out of the direct sum of two-

component spinors (1/2, 0) ⊕ (0, 1/2) so that

ψ D
a =

(
ψL A

χ Ȧ
R

)

. (4.8)

The two spinors ψL and χR are independent. It is simple to check that the two-

component spinor −iσ2ψ
∗
L transforms as a (0, 1/2) representation of the Lorentz

group, i.e. it transforms as χR. We can thus construct a different four-component

spinor whose right-handed piece is completely determined by its left-handed pieces

via χR = −iσ2ψ
∗
L. This four-spinor would transform as the (1/2, 0) ⊕ (0, 1/2) rep-

resentation of the Lorentz group, but would have just half as many independent

components as ψ D above. It can be expressed as

ψa =
(

ψL A

(−iσ2ψ
∗
L) Ȧ

)

. (4.9)

This object is the Majorana spinor that we have already encountered in Chapter 3,

and the relation χR = −iσ2ψ
∗
L is simply (3.3).2 Since the Dirac spinor contains

twice as many independent components as a Majorana spinor, it can be thought of

as a combination of two Majorana spinors, in much the same way that we can think

of a complex number as a combination of two real numbers.

Many textbooks and review articles use the more fundamental two-component

spinor notation. Here, we formulate everything in terms of four-component spinors,

which are perhaps more familiar to particle physicists interested in performing

phenomenological calculations.

4.3 The Poincaré group

In addition to rotations and boosts, the other spacetime transformations include

translations in space and time. Translations in space and time are generated by

the energy–momentum operator Pμ, which can be represented by the differential

operator Pμ = i∂μ. The Poincaré group is formed by combining rotations, boosts,

and translations. We then have ten independent generators: the six Mμν plus the

four Pμ. It is then straightforward to work out the commutation relations for the

2 In Chapter 3 and elsewhere, ψL,R is also used to denote the four-component spinor PL,Rψ which has only
two non-vanishing components in the representation where the matrix γ5 is diagonal. These non-vanishing
components are just the components of the two-spinor ψL,R discussed in this chapter. Although this is an abuse
of notation, it should be clear from the context whether we are using ψL,R to denote four- or two-component
spinors.
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generators, using their representation as differential operators. One finds:

[Pμ, Pν] = 0, (4.10a)

[Mμν, Pλ] = i(gνλ Pμ − gμλ Pν), (4.10b)

[Mμν, Mρσ ] = −i(gμρ Mνσ − gμσ Mνρ − gνρ Mμσ + gνσ Mμρ). (4.10c)

To classify the representations of the Poincaré group, we again look for Casimir

operators. One of these is the operator P2, which certainly commutes with all

the group generators. Its eigenvalue operating on particle state vectors is just the

squared mass P2|ψ〉 = m2|ψ〉. The other Casimir operator is obtained from the

Pauli–Lubanski four-vector Wμ = 1
2
εμνρσ Pν Mρσ , with W μ Pμ = 0. The square of

the Pauli–Lubanski vector, W 2, can be shown to commute with all the generators

of the Poincaré group. Notice also that in the rest frame (of a massive state) W i

is proportional to the rotation generator J i . The various representations of the

Poincaré group were first worked out by Wigner. The physically realized unitary

representations which are of interest to us are:

� P2 ≡ m2 > 0, with W 2 = −m2s(s + 1), where s denotes the spin quantum num-

ber s = 0, 1
2
, 1, . . . Thus, these states correspond to particles of definite mass and

discrete spin values.
� P2 = 0, W 2 = 0 so that Wμ = λPμ. Here λ is the state helicity value, and λ = ±s,

for s = 0, 1
2
, 1, . . . These correspond e.g. to single particle states of massless

particles such as photons with λ = ±1 or the graviton with λ = ±2.
� Finally, Pμ ≡ 0, corresponding to the vacuum state which is invariant under

Poincaré transformations.

In the 1960s, a number of papers were written about the possibility of embedding

the spacetime symmetries (i.e. the Poincaré group) into some larger master group

such as SU (6) that would serve as a more general framework for the symmetry of

the laws of physics. These efforts culminated in several no-go theorems, the most

general of which was the Coleman–Mandula theorem.3 It states the following.

Theorem Let G be a connected symmetry group of the S matrix (its generators

commute with the S matrix), and assume the following.

� G contains a subgroup which is locally isomorphic to the Poincaré group (Poincaré

invariance).
� All particle types correspond to positive energy representations of the Poincaré

group. For any finite mass m, there are only a finite number of types of particles

with mass less than m.

3 S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
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� Elastic scattering amplitudes are analytic functions of the Mandelstam variables

s and t in some neighborhood of the physical region, except at normal thresholds,

and the S matrix is non-trivial in the sense that essentially any two one-particle

momentum states scatter, except perhaps for isolated values of s.
� Finally, a technical assumption: the generators of G, considered as integral oper-

ators in momentum space, have distributions as their kernels.

Coleman and Mandula asserted that if these conditions hold, G is locally isomorphic
to the direct product of a compact symmetry group and the Poincaré group.

Stated more simply, under a number of physically reasonable assumptions, it

is not possible to form a non-trivial merger of the Poincaré symmetry with other

symmetries of the S matrix into a bigger group. It is not possible to have a larger

spacetime symmetry and, further, internal symmetries such as local gauge sym-

metries or additional global symmetries (e.g. isospin) can only be realized as a

direct product of these symmetry groups with the Poincaré group. It is intriguing

that all the Poincaré group symmetries of the S matrix are in fact realized in na-

ture. It is important to recognize that Coleman and Mandula did not envisage the

possibility of anticommuting spinorial charges in their analysis. It is precisely the

inclusion of these that allows us to enlarge the spacetime symmetry group to include

supersymmetry, as we have already seen in Chapter 3.

4.4 The supersymmetry algebra

Our investigation of the Wess–Zumino model in Chapter 3 shows that it is possible

to construct a relativistic quantum field theory that is invariant under supersymmetry

transformations, for which the generators are anticommuting spinorial charges Qa .

We saw that the algebra of the Qa’s (this involved anticommutators, which is how

the Coleman–Mandula theorem is circumvented) closes to yield Pμ, so that the

supersymmetry is, in effect, a spacetime symmetry. In this sense, supersymmetry

can be looked upon as a generalization of the special theory of relativity.

We had already worked out the algebra of the spinorial generators Qa amongst

themselves and with the translation generators in Chapter 3. Since this involves

anticommutators of the super-charges, it is called a graded Lie algebra. The com-

mutator of the Lorentz generators with the super-charges Qa is simply given by the

fact that these are spin 1
2

objects. We can thus write the supersymmetric extension

of the Poincaré algebra, known as the super-Poincaré algebra, as

[Pμ, Pν] = 0, (4.11a)

[Mμν, Pλ] = i(gνλ Pμ − gμλ Pν), (4.11b)

[Mμν, Mρσ ] = −i(gμρ Mνσ − gμσ Mνρ − gνρ Mμσ + gνσ Mμρ), (4.11c)

[Pμ, Qa] = 0, (4.11d)
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[Mμν, Qa] = −( 1
2
σμν)ab Qb, (4.11e)

{Qa, Q̄b} = 2(γ μ)ab Pμ. (4.11f)

Since Q is a Majorana spinor charge, we can use the last of these relations to work

out the anticommutators between two Q’s or Q̄’s.

Exercise: Verify that

{Qa, Qb} = −2(γ μC)ab Pμ,

{Q̄a, Q̄b} = 2(C−1γ μ)ab Pμ.

An extension of the Coleman–Mandula type analysis that allows for spinorial

charges was worked out by Haag, Lopuszanski, and Sohnius who showed that the

super-Poincaré algebra above is indeed the most general extension of the Poincaré

algebra, provided we have just a single spinorial charge Q.4 These authors also

showed that theories with more than one spinorial generator are possible. These

are referred to as extended supersymmetry theories. Such theories do not allow

chiral representations which, as we know, are crucial for phenomenology. Only

theories with a single spinorial generator Qa , known as N = 1 supersymmetry

theories, allow chiral representations. For this reason, we restrict our attention only

to N = 1 supersymmetry.5 To sum up, the Haag–Lopuszanski–Sohnius theorem

tells us that the most general symmetry of the S matrix is the direct product of some

internal symmetry with super-Poincaré invariance.

The irreducible representations of the super-algebra can be worked out as usual

by finding the relevant Casimir operators. For the SUSY algebra above, the operator

P2 again commutes with all generators, so that all particles occurring in a super-

multiplet will have the same mass. However, the square of the Pauli–Lubanski

pseudovector W 2 is no longer a Casimir invariant, so that supermultiplets can now

contain particles of differing spins. We will not discuss the construction of a new

Casimir operator for this case, but instead focus on the particle supermultiplets that

furnish representations of the super-Poincaré algebra.

For the massive case P2 ≡ m2 > 0, the representations are labeled by (m, j)

with j = 0, 1/2, 1, . . . For fixed m, the complete supermultiplet contains a state

each corresponding to spin s = j ± 1/2, and two states with spin s = j (except

for the case j = 0 where the state with s = j − 1/2 is absent), all of which have

the same mass. Notice that the number of helicity states for the two objects with

spin j [2(2 j + 1)] is exactly balanced by the corresponding number of helicity

4 R. Haag, J. Lopuszanski and M. Sohnius, Nucl. Phys. B88, 257 (1975).
5 The underlying fundamental theory could be an extended supersymmetric theory, but all but one (or none!)

of the supersymmetries must somehow be broken at much higher scales, leaving an N = 1 supersymmetric
theory as the extension of the Standard Model that could have phenomenological relevance.
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states for the two states with spins j ± 1
2

[2( j + 1/2) + 1 + 2( j − 1/2) + 1]. This

is just the statement that the number of bosonic and fermionic helicity states are the

same. If j = 0, we have the multiplet of the Wess–Zumino model – two spin zero

states and two spin half states – as we discussed in Chapter 3. If j = 1/2, there are

four bosonic degrees of freedom (three spin 1 and one spin zero) balanced by four

fermionic degrees of freedom corresponding to two Majorana spin half fermions

as we will see when we study spontaneously broken gauge theories.

For the massless case, one can show that if j is the state with largest helicity in

a supermultiplet, it is always accompanied by another state with helicity j − 1/2.

Furthermore, a Lorentz invariant field theory always contains these states together

with their CPT conjugates which have opposite helicities, − j and − j + 1/2 and

which are also massless. These states constitute a complete massless supermultiplet.

If j = 1/2, this multiplet consists of two fermionic states with helicities ±1/2, and a

pair of spin zero bosonic states. This multiplet occurs in the massless Wess–Zumino

model. Such a multiplet would also describe a massless neutrino and antineutrino

together with its supersymmetric partners which would be two spin zero states

(which can be regarded as quanta of one massless complex scalar field). For j = 1,

the bosonic states would correspond to a massless gauge boson (helicities ±1); the

fermionic partner states, which have helicity ±1/2, then correspond to a Majorana

fermion referred to as a gaugino. This “gauge multiplet” is a crucial ingredient

of supersymmetric gauge theories, which form the basis of all supersymmetry

phenomenology. Finally, if j = 2, we see that the two bosonic states have helicities

±2. These are thought to correspond to a graviton, the massless spin two quantum

that mediates gravity. The fermionic partners of these j = 2 states have helicities

±3/2 and describe a spin 3
2

massless Majorana fermion referred to as a gravitino.

This “gravity multiplet” is essential for theories in which the parameter α of SUSY

transformations depends on xμ. These locally supersymmetric theories necessarily

involve Einsteinian gravity, and are referred to as supergravity theories.
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