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DISCRETE LINEAR WEINGARTEN SURFACES

F. BURSTALL, U. HERTRICH-JEROMIN and W. ROSSMAN

Abstract. Discrete linear Weingarten surfaces in space forms are character-

ized as special discrete Ω-nets, a discrete analogue of Demoulin’s Ω-surfaces. It

is shown that the Lie-geometric deformation of Ω-nets descends to a Lawson

transformation for discrete linear Weingarten surfaces, which coincides with

the well-known Lawson correspondence in the constant mean curvature case.

§1. Introduction

A Lie-geometric approach to flat fronts in hyperbolic space and, more gen-

erally, (smooth) linear Weingarten surfaces in (Riemannian and Lorentzian)

space forms was outlined in the two short notes [7] and [8]. Apart from

providing a unified treatment and a natural realm for a transparent

analysis of the singularities of fronts, this Lie-geometric approach also

revealed a close relationship to the theory of isothermic surfaces: linear

Weingarten surfaces in space forms are Lie-applicable1 (cf. [1, Section 85]

or [16]). In particular, non-tubular linear Weingarten surfaces envelop a

pair of isothermic sphere congruences that separate the curvature sphere

congruences harmonically (see [10], [11] and [1, Section 85]), where each

isothermic sphere congruence takes values in a linear sphere complex. Up

to a mild genericity assumption, this yields a characterization of linear

Weingarten surfaces or, more generally, fronts (see [8]).

As a main result of the present text, we provide a similar characterization

in the discrete case (see Theorem 2.8), where discrete linear Weingarten

nets are defined in terms of mixed areas (see Definitions 2.3 and 2.4). This
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generalizes and unifies the rather different approaches to constant mean

curvature nets of [6] and [4].

In the process (see Definition 3.1), we introduce discrete Ω-nets as a

new class of integrable discrete surfaces. For this definition, we employ the

new and geometrically somewhat obscure idea of Königs duality of suitable

homogeneous coordinates of Königs nets in a projective space. Classically,

affine projections of Königs nets or surfaces in projective geometry admit

duals—and are characterized by their existence (cf. [2, Definition 2.22] or [4,

Section 2]). However, this idea is motivated by observations in the smooth

case.

A fact that sets our notion of discrete Ω-nets apart from their smooth

analogs is the existence of multiple pairs of enveloped isothermic sphere

congruences (see Lemma 3.3). This hints strongly at the nonexistence of

a sensible notion of vertex curvature spheres for a discrete Legendre map

(Definition 2.1) or principal contact element net [2, Definition 3.23]. As

initial spheres for a pair of isothermic sphere congruences of an Ω-net can be

chosen arbitrarily in one contact element, no pair of geometrically defined

sphere congruences will satisfy the aforementioned property of harmonic

separation. Nevertheless, all isothermic sphere congruences of the family

given in Lemma 3.3 are conformal in the sense that they share the same cross

ratio function on faces—in the smooth case, conformality of the induced

metrics is intimately related to the harmonic separation property.

One merit of describing linear Weingarten surfaces or nets in the Lie-

geometric realm is the natural description of their transformations in

terms of the transformations of their Legendre lifts: Ω-nets come with

their Lie-geometric deformation, the Calapso deformation of Definition 3.9,

as well as with Darboux transformations, inherited by the corresponding

transformations of the enveloped isothermic sphere congruences. These

transformations give rise to Lawson transformations (see Definition 4.1)

and Bianchi–Bäcklund transformations of linear Weingarten nets.

The Lawson transformation is discussed in detail in Section 4 of the

present text. In particular, we justify our terminology by showing that

the Lawson transformation becomes the well-known Lawson correspondence

in the case of constant mean curvature nets (see Example 4.2 and [6,

Section 5]). The Bianchi–Bäcklund transformation will be discussed in a

forthcoming paper.
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§2. Discrete linear Weingarten surfaces in space forms

We aim to describe discrete linear Weingarten surfaces, defined in terms

of mixed areas (cf. [3, Definition 8] and [4, Definition 3.1]), in Riemannian

and Lorentzian space forms in a unified manner. To this end, we consider

the space form geometries as subgeometries of Lie sphere geometry: fix

orthogonal vectors p, q ∈ R4,2 \ {0}, and let

(2.1) Q3 := {y ∈ R4,2 | (yy) = 0, (yq) =−1, (yp) = 0},

where (··) denotes the inner product of R4,2; 〈·, · · · , ·〉 denotes the linear

span of vectors. If (pp) 6= 0, then Q3 is a three-dimensional quadric of

constant sectional curvature −(qq).

In this setting, the projective light cone or Lie quadric L4 := {〈y〉 | y ∈
R4,2, (yy) = 0} ⊂ P(R4,2) parametrizes the set of oriented 2-spheres (thus,

complete, totally umbilic hypersurfaces) in Q3 via

s 7→Q3 ∩ s⊥.

In particular, for y ∈Q3, s= 〈y〉 corresponds to the point sphere {y}, while,

when s ∈ L4 differs from its reflection s′ in the hyperplane orthogonal to p,

s, s′ correspond to the same sphere but with opposite orientations.

In general, a nonzero point k ∈ R4,2 (or, more properly, a point 〈k〉 ∈
P(R4,2)) defines the linear sphere complex L4 ∩ k⊥, a three-dimensional

family of 2-spheres. In particular, taking k = q yields

(2.2) P3 := {y ∈ R4,2|(yy) = 0, (yq) = 0, (yp) =−1},

the complex of (spacelike if (pp)> 0) hyperplanes (thus, complete, totally

geodesic hypersurfaces) in the space form Q3 (cf. [14, Section 1.4]).

Two oriented 2-spheres are in oriented contact if and only if the corre-

sponding points of L4 are orthogonal. It follows that lines in L4 correspond

to pencils of 2-spheres sharing a common contact element and so parametrize

those contact elements. For more details, see Cecil [9, Chapter 1].

To make this approach more tangible, assume that (pp) =∓1 and

(qq) 6= 0. Now, the constant offset{
x = f +

q

(qq)

∣∣∣∣ f ∈Q3

}
⊂ 〈p, q〉⊥

yields the standard model of a space form as a (connected component of

a) quadric in a four-dimensional linear space with nondegenerate inner
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product, and the unit (timelike if (pp) = +1) tangent space of the space

form at x = f + q
(qq) becomes the constant offset{

n = t +
p

(pp)

∣∣∣∣ t ∈P3 ∩ 〈f〉⊥
}
⊂ 〈p, q〉⊥.

In the case (qq) = 0 of a flat ambient space form geometry, the situation

becomes slightly less obvious: here, a choice of origin o ∈Q3 yields an

identification via inverse stereographic projection,

(2.3) Q3 3 f = o + x +
1

2
(xx)q ↔ x ∈ 〈o, p, q〉⊥ ∼=

{
R3, if (pp) =−1,

R2,1, if(pp) = +1,

and P3 ∩ 〈f〉⊥ becomes the unit (timelike in the Lorentzian case) tangent

space of R3 or R2,1, respectively, via

(2.4) P3 ∩ 〈f〉⊥ 3 t =− p

(pp)
+ n + (xn)q ↔ n ∈ 〈o, p, q〉⊥.

Now, consider a discrete principal (circular) net2 f : Z2→Q3; that is, f has

planar faces in R4,2 (cf. [2, Theorem 3.9]). For nondegeneracy, we assume

that neither edges nor diagonals of f are isotropic: if (ijkl) denotes an

elementary quadrilateral of Z2, then the vectors

dfij := fj − fi and δfik := fk − fi

are assumed to be non-null. In particular, any two or three vertices of a face

of f span a two- or three-dimensional subspace of R4,2, respectively, with a

nondegenerate induced inner product. Further, in order to be able to define

the Gauß and mean curvatures via mixed areas below, we assume that the

faces of f have nonparallel diagonals, so that their areas do not vanish.

Such a principal net admits a two-parameter family of Gauß maps, that is,

unit (timelike in the Lorentzian case) “normal” vector fields along f, so that,

for each edge (ij), there is an edge curvature sphere κij that is orthogonal

to the “normal” vectors at the endpoints3 fi and fj (cf. [2, Theorem 3.36]).

2For simplicity, we restrict to Z2 as a domain; throughout, Z2 may be replaced by a
(simply connected) quad-graph.

3Note that, in contrast to the Euclidean case, the normal lines in Q3 defined by the
Gauß map do not necessarily intersect: this is the case when the curvature sphere κij is
not a distance sphere in the ambient space form geometry.
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In our Lie-geometric setup, a choice of Gauß map for the principal net f

amounts to a choice of a “tangent plane” congruence t : Z2→P3 with t⊥ f.

This pair of maps gives rise to the Legendre lift (principal contact element

net, cf. [2, Definition 3.23]) of a principal net in a space form with Gauß map:

Definition 2.1. Let f : Z2→Q3 be a principal net in a quadric Q3

of constant sectional curvature with tangent plane congruence t : Z2→P3,

t⊥ f . The line congruence4

Z2 3 i 7→ fi := 〈fi, ti〉 ⊂ L4

is called the Legendre lift of the pair (f, t) if adjacent lines fi and fj intersect;

κij := fi ∩ fj is called the curvature sphere of f on the edge (ij). The pair

(f, t) is called the space form projection of the Legendre map f .

We exclusively deal with pairs (f, t) : Z2→Q3 ×P3 occurring as space

form projections of Legendre maps. Note that, generically,5 any choice

of a point sphere complex p ∈ R4,2, (pp) 6= 0, and a space form vector

q ∈ R4,2 \ {0}, (qp) = 0, gives rise to a space form projection (f, t) of a given

Legendre map f .

As the edge curvature sphere κij ∈ L4 is obtained as the intersection

κij = fi ∩ fj of the lines of the Legendre lift of a principal net f with tangent

plane congruence t at the endpoints of an edge (ij), we may write

(2.5) κij = ti + kjifi = tj + kijfj

for (a lift of) the curvature sphere with suitable coefficients kij and kji. Now,

kji =
(κijq)

(κijp)
= kij ,

showing that (ij) 7→ kij is an edge function, that is, takes equal values

for opposite orientations of an edge. This yields a notion of a principal

curvature function on the edges of a principal net f in Q3 with tangent

plane congruence t. Rewriting (2.5) as

(2.6) 0 = dtij + kijdfij ,

4Here, a line congruence just means a map into the space of lines in a projective space.
5In the definite case (pp)< 0, the only obstruction is that the point sphere map may

hit the infinity boundary of the space form; in the Lorentzian case, additional obstructions
occur as a contact element may consist entirely of point spheres.
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we obtain a Rodrigues’ type formula. Conversely, (2.6) implies that f, and

hence t, is a conjugate net in R4,2 as long as the principal curvature function

k is not constant around an elementary quadrilateral, that is, away from

umbilical faces, where the curvature spheres of the four edges of a face

coincide. Thus, we obtain the following characterization.

Lemma 2.2. A space form projection (f, t) : Z2→Q3 ×P3 of a Legendre

map f is a pair of edge-parallel nets in R4,2. Conversely, if f : Z2→Q3 and

t : Z2→P3 satisfy (2.6), then any nonumbilical face of f is planar and, away

from umbilical faces, (f, t) is the space form projection of a Legendre map f .

In particular, the faces of f and t lie in parallel planes so that the Λ2R4,2-

valued (mixed) area functions

A(t, t)ijkl = 1
2δtik ∧ δtjl and A(f, t)ijkl = 1

4{δfik ∧ δtjl + δtik ∧ δfjl}

are multiples of A(f, f)ijkl = 1
2δfik ∧ δfjl. Note that A(f, f) 6= 0 by our regu-

larity assumption on f.

Lemma and Definition 2.3. There are two functions, H and K,

defined on the faces6 of a space form projection of a Legendre map so that

0≡A(f, t) +H A(f, f) =A(t, t)−K A(f, f).

These are called the mean curvature and Gauß curvature of the pair (f, t),

respectively.

As the mixed areas are invariant under translation, the mean and

Gauß curvatures defined here clearly coincide with those of [4, Definition

3.1] in the case of a Riemannian ambient geometry.

To see that they coincide with the ones of [2, Definition 4.45] and [3,

Definition 8] in the case of a principal net x in R3 with (unit) Gauß map n,

we employ (2.3) and (2.4) to observe that the mixed areas of

f = o + x + 1
2(xx)q and t = p + n + (xn)q

take values in Λ2〈o, p, q〉⊥ ⊕ (〈o, p, q〉⊥ ∧ 〈q〉) and that the mean and

Gauß curvatures H and K are therefore determined by the Λ2〈o, p, q〉⊥-

parts A(n, n), A(x, n) and A(x, x) of the mixed areas A(t, t), A(t, f) and

A(f, f).

6Note that these Gauß and mean curvatures do not depend on the orientation of an
elementary quadrilateral (ijkl): reversing the orientation, all (mixed) areas change sign
so that the curvatures remain unaffected.
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Definition 2.4. The space form projection (f, t) : Z2→Q3 ×P3 of a

Legendre map is called a linear Weingarten net if its mean and Gauß cur-

vatures satisfy a nontrivial affine relation

(2.7) 0 = α K + 2β H + γ.

Note the symmetry of the situation: in the case (qq) 6= 0, we may

interchange the geometric interpretations of p and q, thus swapping the

roles of f and t. That is, t is interpreted as the principal net and f as its

tangent plane congruence. As long as A(t, t) 6= 0, that is, K 6= 0, we obtain H
K

and 1
K as the mean and Gauß curvatures of the pair (t, f), which is therefore

a linear Weingarten net also. In particular, if (f, t) is a minimal net, H ≡ 0,

then so is (t, f). In this case, A(f, t)≡ 0, so that f and t are Königs dual nets

in R4,2 (cf. [2, Definition 2.22]):

Definition 2.5. Two discrete maps σ± into an affine space are called

Königs dual if they are edge-parallel and their opposite diagonals are

parallel: for any edge (ij) and any elementary quadrilateral (ijkl),

dσ+ij ‖ dσ
−
ij and δσ±ik ‖ δσ

∓
jl .

Indeed, δσ+ik ∧ δσ
−
jl = δσ−ik ∧ δσ

+
jl for any edge-parallel nets σ+ and σ−, so

that the vanishing of their mixed area, A(σ+, σ−)ijkl ≡ 0, is readily seen to

be equivalent to their opposite diagonals being parallel. Thus, we obtain a

characterization of minimal nets in space forms via Königs duality (cf. [4]).

Theorem 2.6. The space form projection (f, t) : Z2→Q3 ×P3 of a

Legendre map is minimal if and only if f and t are Königs dual lifts in

R4,2 of nets in the Lie quadric.

We aim to generalize this description for linear Weingarten nets. To

this end, suppose that σ± are Königs dual lifts of sphere congruences7s±

spanning a Legendre map f . Further suppose that each sphere congruence

takes values in a linear sphere complex k±. Since σ+ and σ− are edge-parallel

nets and σ± ⊥ k±, the inner products (σ±k∓)≡ const. As long as these inner

products do not vanish, we may, without loss of generality, assume the same

7A sphere congruence is simply a map s : Z2→L4 to the space of 2-spheres. The
components f, t of a space form projection of a Legendre map are examples.
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relative normalizations as for space form projections:8

(σ±k±) = 0 and (σ±k∓) =−1.

Now, k± span a plane, and choosing a point sphere complex p and a

space form vector q for a space form projection (f, t) of f in this plane,

〈q, p〉= 〈k+, k−〉, our relative normalizations control the relation between

basis transformations. With B ∈Gl(2), a change of basis

(2.8) (q, p) = (k+, k−)B yields (σ−, σ+) = (f, t)Bt.

As both the symmetric products on 〈k−, k+〉 and the mixed areas of pairs

of edge-parallel nets spanning f are symmetric bilinear forms, they change

in a similar way:(
q� q

p� q

q� p

p� p

)
=Bt

(
k+ � k+

k− � k+
k+ � k−

k− � k−

)
B and(

A(σ−, σ−)

A(σ+, σ−)

A(σ−, σ+)

A(σ+, σ+)

)
=B

(
A(f, f)

A(t, f)

A(f, t)

A(t, t)

)
Bt.(2.9)

Thus, if σ± are Königs dual, A(σ+, σ−)≡ 0, then the constructed space

form projection (f, t) is a linear Weingarten net:

(2.10) αA(t, t)− 2βA(t, f) + γA(f, f)≡ 0,

for suitable constants α, β, γ ∈ R, which are determined from the basis

representation of the symmetric bilinear form9

(2.11) W := 2 k− � k+ =
1

2(αγ − β2)
{α q� q + 2β q� p + γ p� p}.

To see the converse, we merely reverse this line of argument. Let (f, t) : Z2→
Q3 ×P3 be a linear Weingarten net, that is, its mixed areas satisfy a linear

relation (2.10). We seek k± satisfying (2.11), that is, factorizing

W := α q� q + 2β q� p + γ p� p.

8We see below that we need to allow σ± to become complex conjugate in order to
capture general linear Weingarten nets. In this case, k± can be assumed to be complex
conjugate as well, and this relative normalization can be achieved while maintaining
complex conjugacy since (σ±k∓) are complex conjugate also.

9In the smooth case, W realizes the linear Weingarten condition as an orthogonality
condition for the curvature spheres. Note that, when k± are complex conjugate, W is real.
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Clearly, this ambition is in vain if W does not have full rank, that is, if

αγ − β2 = 0: as the sought-after k± are linearly independent, k+ � k− has

rank 2. Thus, we exclude this case from the investigation. The following

terminology is chosen in analogy to the smooth case, where the linear

Weingarten surfaces with αγ = β2 are those with a constant principal

curvature.

Definition 2.7. A linear Weingarten net (f, t) : Z2→Q3 ×P3 with

αγ − β2 = 0 is called tubular.

In the non-tubular case δ2 := β2 − αγ 6= 0, we can now solve the factor-

ization problem up to order and (geometrically irrelevant) scaling, hence

obtaining a pair of Königs dual lifts σ± of sphere congruences s±.

If α 6= 0, then k+ � k− = 1
4αW , with k± := 1

2α{(αq + βp)± δp} and σ± =

f± 1
δ (βf− αt), yield the sought-after Königs dual lifts of sphere congru-

ences s± := 〈σ±〉 : Z2→L4. By construction, the sphere congruences

s± take values in (different) linear sphere complexes k±, s± ⊥ k±. Note

that k± and σ± become complex conjugate when αγ − β2 > 0.

If α= 0, then β 6= 0 and k+ � k− = 1
2βW , with k− := p and k+ := q + γ

2βp. In

this case, not too surprisingly, we recover the constant mean curvature

net σ− = f together with its mean curvature sphere congruence σ+ =

t +H f (cf. [6, Definition 5.1] or [4, Definition 4.1]) as a pair of

enveloped sphere congruences with Königs dual lifts. Again, s± take

values in the linear sphere complexes given by k±.

Thus, we have proved the following.

Theorem 2.8. The Legendre lift of a non-tubular linear Weingarten net

is spanned by a pair of (possibly complex conjugate) sphere congruences s±

that admit Königs dual lifts. The sphere congruences take values in different

linear sphere complexes k±, s± ⊥ k±.

Conversely, if f is a Legendre map spanned by a pair of sphere con-

gruences s± that admit Königs dual lifts σ± and take values in different

linear sphere complexes k±, then any space form projection (f, t) of f with

〈q, p〉= 〈k+, k−〉 is a non-tubular linear Weingarten net.

In particular, as parallel nets in a space form are obtained from space

form projections (f, t) and (̃f, t̃) of the same Legendre map f with respect

to bases (q, p) and (q̃, p̃) that are related by an orthogonal transformation

of their common plane, we have not too surprisingly also learned:
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Corollary 2.9. The parallel nets of a linear Weingarten net in a space

form are linear Weingarten.

§3. Discrete Ω-surfaces and their Calapso deformation

Recall that a discrete Legendre map is a line congruence Z2 3 i 7→ fi ⊂
L4 ⊂ P(R4,2), so that adjacent lines share a (unique) curvature sphere, fi ∩
fj = κij ∈ L4 (cf. [2, Definition 3.23]). In Theorem 2.8, we see that non-

tubular linear Weingarten nets lift to Legendre maps that are spanned by

pairs of sphere congruences admitting Königs dual lifts; that is, they lift to

Ω-nets of Lie sphere geometry.

Definition 3.1. A discrete Legendre map is called a discrete Ω-net if it

is spanned by a pair of sphere congruences s± : Z2→L4 that admit Königs

dual lifts σ± : Z2→ R4,2.

For regularity, we assume, as for the principal net f of a space form pro-

jection, that the spheres at different vertices of an elementary quadrilateral

do not touch; that is, dσ± and δσ± never become isotropic. Hence, the

endpoints of an edge of s± span a two-dimensional Minkowski space, and the

vertices of any face of s± span a three-dimensional space with nondegenerate

induced inner product. We also exclude umbilical faces, where the curvature

spheres of the incident edges all coincide.

As an immediate consequence of this definition, the sphere congruences

s± are Ribaucour sphere congruences in the sense of [2, Definition 3.27]:

both sphere congruences s± have planar faces.

Moreover, s± : Z2→L4 are isothermic sphere congruences as Königs nets

in the Lie quadric.10 To see that s± are indeed Königs nets in P(R4,2), we

employ a characterization of Königs nets in terms of their diagonal vertex

stars11 (cf. [2, Theorem 2.27]). Since the Königs dual lifts σ± of s± are

Königs nets (in R4,2), their diagonal vertex stars lie in three-dimensional

(affine) subspaces of R4,2. Consequently, the diagonal vertex stars of s±

10Note our somewhat unusual point of view. Naturally, Königs nets form a class of nets
in projective geometry, as they can be characterized in terms of incidence relations, while
the notion of their duality belongs to an affine subgeometry of the projective ambient
geometry, as it relies on a notion of parallelity. In contrast, we consider Königs duality of
(not necessarily affine) lifts of Königs nets in the linear space of homogeneous coordinates
of their ambient projective geometry.

11Alternatively, planarity of intersection points of diagonals of adjacent faces could be
employed (cf. [2, Theorem 2.26]).
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span four-dimensional (linear) subspaces of R4,2, and hence lie in three-

dimensional (projective) subspaces of P(R4,2). To summarize, we have the

following.

Lemma 3.2. If f = s− ⊕ s+ is an Ω-net spanned by a pair of sphere

congruences s± that admit Königs dual lifts, then s± are isothermic and, in

particular, Ribaucour sphere congruences.

Below, we see that the sphere congruences s± come with a cross ratio

factorizing edge labeling as well as their respective isothermic loops of flat

connections (cf. [12, Definition 4 and Proposition 10] and [6, Definition 2.1

and Lemma 2.5]).

The definition of an Ω-net aims to provide a discrete analogue of smooth

Ω-surfaces, the generic12 deformable surfaces of Lie geometry (see [1,

Section 85] or [16]). In the smooth case, these come in two classes: the ones

originally investigated by Demoulin [10, 11], which are given by a real pair of

isothermic sphere congruences, and the ones where the enveloped isothermic

sphere congruences become complex conjugate. In the discrete case, these

two classes merge and Definition 3.1 captures the entire class without the

need to allow for complex conjugate pairs of sphere congruences.

Lemma 3.3. Let f be an Ω-net. Then, for any given pair of spanning

spheres s±0 ∈ f0 at an initial point 0 ∈ Z2, there is a pair of isothermic sphere

congruences s± through s±0 that admit Königs dual lifts and span f .

To prove this lemma, we investigate how to construct a new pair of

isothermic sphere congruences from a given one. Thus, let f = s+ ⊕ s−, with

a pair of isothermic sphere congruences s± that have Königs dual lifts σ±.

Hence, there is a real function r so that σ± satisfy the Christoffel formula

(3.1) dσ−ij = rirj dσ
+
ij ⇔ dσ+ij =

1

rirj
dσ−ij

and µ± = r±1σ± are Moutard lifts of s± (see [2, Theorems 2.31 and 2.32]).13

Note that the Moutard equations [2, (2.44)] for µ± are nothing but the

12Excluding Ω0-surfaces, where the two isothermic sphere congruences coincide with
one of the two curvature sphere congruences.

13By the ±-symmetry of (3.1), the two functions r± obtained from [2, Theorems 2.31
and 2.32] can be chosen to be reciprocal, r± = r±1, with a single function r.
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integrability conditions14 for (3.1),

(r±1k − r
±1
i ){r±1l σ±l − r

±1
j σ±j }= (r±1l − r

±1
j ){r±1k σ±k − r

±1
i σ±i }.

Now, for any two constants c+ 6= c−,

(3.2) σ̃± :=
1

r + c∓
{σ− + c±rσ+}

yields Königs dual lifts of another pair of isothermic sphere congruences

spanning the same Ω-net. The fact that σ̃± are edge-parallel,

(ri + c−)(rj + c−) dσ̃+ij = (ri + c+)(rj + c+) dσ̃−ij ,

hinges on the Christoffel equation (3.1), while the Königs duality of σ̃±,

(ri + c−)(rk + c−)

rk − ri
δσ̃+ik =

(rj + c+)(rl + c+)

rl − rj
δσ̃−jl ,

follows from the Königs duality [2, (2.40)] of σ± and the Moutard equations

[2, (2.44)] for µ±,

r±1i r±1k
r±1k − r

±1
i

δσ±ik =
1

r±1l − r
±1
j

δσ∓jl and

1

r±1k − r
±1
i

δµ±ik =
1

r±1l − r
±1
j

δµ±jl.(3.3)

These computations also yield r̃ := r+c−

r+c+
as a rescaling for Moutard lifts

µ̃± = r̃±1σ̃± of the new isothermic sphere congruences s̃± = 〈σ̃±〉.
Thus, given an Ω-net f = s+ ⊕ s− in terms of a pair of isothermic sphere

congruences s± with Königs dual lifts σ±, another such pair s̃± can be

constructed to pass through any two spanning spheres at a given initial

point 0 ∈ Z2 by choosing the constants c± appropriately. We have therefore

proved Lemma 3.3.

Clearly, choosing c± complex conjugate in (3.2), say c± =±i, a complex

conjugate pair

σ̃± =
1

r ∓ i
{σ− ± irσ+}

14Having excluded umbilical faces, we must have (rk − ri)(rl − rj) 6= 0.

https://doi.org/10.1017/nmj.2017.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.11


DISCRETE LINEAR WEINGARTEN SURFACES 67

of Königs dual lifts in R4,2 ⊗ C∼= C6 is obtained from a real pair σ±. To

see that, conversely, a real pair can be obtained from a complex conjugate

pair, σ+ = σ−, first note that we can, without loss of generality, assume

that |r|2 ≡ 1. On any edge, |ri|2|rj |2 = 1, by (3.1), when σ± are complex

conjugate; hence, |r|2 ≡ 1 as soon as the scaling of r is chosen so that

|r0|2 = 1 at some initial point 0 ∈ Z2. Now, we obtain a purely imaginary

pair

σ̃± =
±i
|r ∓ i|2

{(σ+ + σ−)± i (rσ+ − r̄σ−)},

by choosing c± =±i again. Hence, ∓iσ̃± define Königs dual lifts15 of a real

Ω-net and we conclude the following.

Corollary 3.4. Any Ω-net can be spanned by pairs of isothermic

sphere congruences with complex conjugate Königs dual lifts, and, con-

versely, any such pair gives rise to an Ω-net.

Thus, our Definition 3.1 encompasses also the linear Weingarten nets with

αγ − β2 > 0 by Theorem 2.8.

The transformations of the enveloped isothermic sphere congruences

of an Ω-net give rise to transformations of the net. As the isothermic

transformation theory of discrete isothermic nets hinges on the isothermic

loop of flat connections of the net, which, in turn, depends on the cross

ratio factorizing function of the net, we start by getting our hands on this

function.

First, observe that on rewriting (3.1) we obtain (a lift of) the edge

curvature sphere

(3.4) κij = rirjσ
+
i − σ

−
i = rirjσ

+
j − σ

−
j ∈ fi ∩ fj

of the Legendre map f on an edge (ij) (cf. (2.5)). Using that κij ⊥ σ±i , σ
±
j ,

we learn that

(3.5) (σ−i σ
+
j ) = (σ+i σ

−
j ) = (µ±i µ

±
j ) =: aij .

15Note that reciprocal constant rescaling of σ∓ demands rescaling of r in (3.1) by the
same factor. In the case at hand, the purely imaginary function r̃ is turned into the real
function ir̃.
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Clearly, a is an edge function, aij = aji. Rearranging the Moutard equation

for µ+ from (3.3) suitably and taking norm squares,

µ+k
rk − ri

−
µ+l

rl − rj
=

µ+i
rk − ri

−
µ+j

rl − rj
⇒ aij − akl

(rk − ri)(rl − rj)
= 0,

we also learn that a is an edge labeling in the sense of [2, Definition 4.4]; that

is, it is constant across opposite edges of faces, aij = akl (cf. [2, Theorem

4.29]).

To see that a is indeed a cross ratio factorizing function (cf. [14,

Section 5.7.2] or [12, Proposition 10]), first note that the vertices of a face

of either isothermic sphere congruence s± lie on a conic in a projective

plane since s± are Ribaucour sphere congruences in the sense of [2,

Definition 3.27]. Fixing three points s±i , s±j and s±l of a face, the cross ratio

q = [s±i , s
±
j , s

±
k , s

±
l ] ∈ R ∪ {∞} bijectively parametrizes the conic via

(3.6) s±k =

〈
σ±i +

1

(σ±j σ
±
l )

{
(q − 1)(σ±i σ

±
l )σ±j +

(
1

q
− 1

)
(σ±i σ

±
j )σ±l

}〉
,

where σ± is any lift of s± (cf. [12, (B.7)]16 or [6, Section 2.1]). It is now

straightforward to verify that q = aij/ajk, as, for Moutard lifts µ± of s±

and taking inner products with µ±j in (3.3),

(3.7) µ±k = µ±i −
aij − ajk
(µ±j µ

±
l )

δµ±jl = µ±i +
r±1k − r

±1
i

r±1l − r
±1
j

δµ±jl.

In summary, we have the following.

Lemma 3.5. The edge labeling a of (3.5) factorizes the cross ratios of

faces of either isothermic sphere congruence,

[s±i , s
±
j , s

±
k , s

±
l ] =

aij
ajk

.

In particular, the edge labeling a of (3.5) is, up to constant rescaling, a

well-defined Lie-geometric invariant of each isothermic sphere congruence,

s+ and s−.

16Note that q = [s±i , s
±
j , s

±
k , s

±
l ] = cr(s±j , s

±
l , s

±
i , s

±
k ), as our definition of the cross ratio

differs from the classical one used in [12] by the order of points.
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We are now in a position to exploit the zero-curvature representation of

discrete isothermic nets. We begin with a rapid review of the formalism

of metric connections on the discrete vector bundle Z2 × R4,2→ Z2 (cf. [6,

Definition 2.4]): a metric connection Γ on Z2 × R4,2 assigns to each oriented

edge (ij) a linear isometry Γij : {j} × R4,2→{i} × R4,2 such that Γji = Γ−1ij ,

for all edges (ij). In this context, a gauge transformation is a map i 7→ Ti :

Z2→ SO(4, 2), where we view Ti as a linear isometry of {i} × R4,2. Gauge

transformations T act on connections Γ by

(TΓ)ij = TiΓijT
−1
j .

A connection Γ is flat if, on every elementary quadrilateral (ijkl), we have

ΓijΓjkΓklΓli = id, or, equivalently, ΓijΓjk = ΓilΓlk.

In this case, we can trivialize the connection. That is, there is a gauge

transformation T with TΓ = id:

Γij = T−1i Tj ,

for all edges (ij). Clearly, any gauge transform of a flat connection is also

flat.

With this understood, we are able to introduce the isothermic loop of

connections of an isothermic sphere congruence.

Definition 3.6. Let s : Z2→L4 be an isothermic sphere congruence

with cross ratio factorizing edge labeling a. The isothermic loop of connec-

tions (Γ(t))t∈R of s is a one-parameter family of connections given by

Γij(t)x :=


(1− taij) x, if x ∈ si,
x, if x ∈ (si ⊕ sj)⊥,

1

1− taij
x, if x ∈ sj .

Clearly, Γji(t)Γij(t) = id away from the singularity t= 1
aij

, so that Γ(t)

defines indeed a connection on the discrete vector bundle Z2 × R4,2. When

σ denotes any lift of the isothermic sphere congruence s, then

Γij(t)x= x+
taij

(σiσj)

{
1

1− taij
(xσi)σj − (xσj)σi

}
.
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Note the structural similarity to (3.6)—indeed, parallel sections of Γ(t) in

the Lie quadric yield Darboux transforms of s: the corresponding condition

on edges realizes a propagation by cross ratio ta, and thus yields a discrete

version of Darboux’s linear system (cf. [6, Definition 4.1]). For both Darboux

and Calapso transformations of an isothermic sphere congruence, flatness

of the connections Γ(t) is paramount. Thus, returning to our context of

an Ω-net f enveloped by a pair s± of isothermic sphere congruences, we

aim to convince ourselves that the connections Γ+(t) of s+ are flat (cf. [6,

Lemma 2.5]).

Lemma 3.7. Given an Ω-net f = s+ ⊕ s− in terms of a pair of isother-

mic sphere congruences s± that admit Königs dual lifts σ±, the isothermic

loop of connections of s+ consists of flat connections.

Thus, we wish to show that, on an elementary quadrilateral (ijkl) and as

long as t 6= 1
aij
, 1
ajk

,

Γ+
ij(t)Γ

+
jk(t) = Γ+

il (t)Γ
+
lk(t).

Having obtained the cross ratio factorizing property of the edge labeling a in

Lemma 3.5 above, the relevant part of the proof of [6, Lemma 2.5] applies,

asserting correctness of the claim.

For autonomy, we outline a simple algebraic proof here. First, observe

that, clearly,

Γ+
ij(t)Γ

+
jk(t) x=

1− tajk
1− taij

x for x ∈ s+j ,

and a straightforward computation, using the Moutard lift µ+ = rσ+ of s+

and (3.7), shows that

Γ+
ij(t)Γ

+
jk(t) x=

1− taij
1− tajk

x for x ∈ s+l .

Since Γ+
ij(t)Γ

+
jk(t) ∈ SO(R4,2) acts trivially on (s+i ⊕ s

+
j ⊕ s

+
l )⊥, it must act

trivially on (s+j ⊕ s
+
l )⊥, and flatness of Γ+(t) follows by symmetry and the

fact that a is an edge labeling.17

17Note how, conversely, the limit t→∞ yields the cross ratio factorizing nature of the
edge labeling a of Lemma 3.5.
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Instead of using a symmetry argument to deduce the flatness of the
connections Γ−(t), we employ a gauge theoretic argument. We see that
Γ−(t) and Γ+(t) are gauge equivalent; hence, the flatness of Γ+(t) from
Lemma 3.7 implies flatness of Γ−(t).

To this end, let g be any function on Z2, and consider the following gauge
transform of Γ−(t):

Γgij(t) := (AgΓ−)ij(t) =Agi (t)Γ
−
ij(t)A

g
j (−t), for

Ag(t) := 1− tg (σ+ ∧ σ−) = exp(−tg σ+ ∧ σ−),(3.8)

where we identify so(4, 1)∼=
∧2 R4,2 via (x ∧ y)z = (xz)y − (yz)x. Then, any

of the Γg(t) is a metric connection on the discrete vector bundle Z2 × R4,2.
Next, note that the connections Γg(t) have the same shape as the

connections Γ±(t) of the isothermic loops of connections of s±: first, Γgij(t)

acts trivially on the curvature sphere fi ∩ fj ; second, using the lift (3.4) of
the curvature sphere 〈κij〉= fi ∩ fj , we learn that Γgij(t) has eigenspaces18

xij :=Agj

(
1

aij

)
s−i = 〈σ−i + gjκij〉 and

xji :=Agi

(
1

aij

)
s−j = 〈σ−j + giκij〉

with eigenvalues (1− taij)±1, respectively, since (σ+ ∧ σ−)jσ
−
i = (σ+ ∧

σ−)iσ
−
j =−aijκij ; finally, Γgij(t) acts trivially on (fi + fj)

⊥—hence,

Γgij(t)x=


(1− taij) x, if x ∈ xij ⊂ fi,
x, if x ∈ (xij ⊕ xji)⊥,

1

1− taij
x, if x ∈ xji ⊂ fj .

In particular, xij = s+i and xji = s+j for g ≡ 1, showing that Γ+ = Γ1, so that

flatness of Γ+(t) from Lemma 3.7 yields flatness of Γ−(t) = Γ0(t), and hence
of all connections Γg(t).

Corollary 3.8. All connections Γg(t) defined by (3.8) are flat.

Note that the gauge family of loops of connections Γg also comprises the
isothermic loops of the sphere congruences s̃± = 〈σ̃±〉 of (3.2): s̃± and s±

share the same edge labeling a, and

xij = 〈σ−i + c±riσ
+
i 〉= s̃±i and

18At this point, we see that the Γg generally do not come from an isothermic sphere
congruence: the condition that the eigenspaces xij ⊂ fi coincide for all incident edges
imposes a restriction on the function g.
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xji = 〈σ−j + c±rjσ
+
j 〉= s̃±j for g =

c±

r + c±
.

In particular, when s± have a complex conjugate pair of Königs dual lifts,
the gauge family contains real connections. A simple choice is given by
g ≡ 1

2 : using that rirj is unitary, rirj = e−2iα, we find that Γgij(t) has real
eigenspaces

xij = 〈eiα(rirjσ
+
i + σ−i )〉 and xji = 〈eiα(rirjσ

+
j + σ−j )〉.

By their flatness, all connections Γg(t) can be trivialized: there are (away

from singularities) maps

(3.9)

T g(t) : Z2→ SO (R4,2) so that (T gΓg)ij(t) = T gi (t)Γgij(t)(T
g
j (t))−1 = id

on every edge (ij) of Z2. Further, as the connections are gauge equiv-

alent via (3.8), the gauge transformations T g(t) are, up to constants of

integration, related by T−(t) = (T gAg)(t). In particular, recall that the

Calapso transformation T of an isothermic surface (in a quadric of any

signature) is obtained by trivializing the loop of isothermic connections. See

[6, Definition 2.7] or [5, Theorem 4.15], where this is treated in a rather

general setting. In the present case, the Calapso transformations T± of

the pair s± of isothermic sphere congruences are related by T− = T+A1.

Thus, as Agi (t) acts trivially on the contact element fi, any of the gauge

transformations T g realizes the Calapso transforms T±(t)s± = T g(t)s± of

both isothermic sphere congruences s± spanning an Ω-net. This motivates

the following definition (cf. [7, Section 3] and [6, Lemma 2.7]).

Theorem and Definition 3.9. Let f = s+ ⊕ s− be an Ω-net spanned

by a pair of isothermic sphere congruences s± admitting Königs dual

lifts σ±, and let T g(t) be trivializing gauge transformations (3.9) of the

connections Γg(t) of (3.8). Then, the deformation

t 7→ f(t) := T g(t)f = T±(t)f

does not depend on the choice of gauge function g. It is called the Calapso

deformation of the Ω-net f . The Calapso transforms f(t) of f are Ω-nets

with enveloped isothermic sphere congruences s±(t) = T g(t)s± = T±(t)s±

and Königs dual lifts σ±(t) = T g(t)σ±.
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Only the last claim of the theorem—that f(t) = (s+ ⊕ s−)(t) is an Ω-net

with s±(t) admitting Königs dual lifts—requires further thought. As the

Calapso transform does not depend on the choice of g, we may, without loss

of generality, assume g ≡ 0; that is, T g = T−.

Since T−(t) : Z2→O(R4,2), the Calapso transforms f(t) of f take values

in the space of contact elements. To prove that σ±(t) are edge-parallel, and

hence f(t) satisfies the contact condition, we employ the lift (3.4) of the

curvature spheres. Then, on any edge (ij),

rirjdσ
+
ij(t) = T−i (t){Γ−ij(t)(σ

−
j + κij)− (σ−i + κij)}

= T−i (t){Γ−ij(t)σ
−
j − σ

−
i }= dσ−ij(t).(3.10)

Thus, σ±(t) are edge-parallel and f(t) is a Legendre map with curvature

spheres

〈κij(t)〉= 〈rirjσ+i (t)− σ−i (t)〉= 〈rirjσ+j (t)− σ−j (t)〉= fi(t) ∩ fj(t).

This also teaches us that µ±(t) := r±1σ±(t) with r(t) = r yields Moutard

lifts of s±(t), since the Moutard equations (3.3) are just the integrability

conditions of (3.1). Königs duality (away from umbilical faces) of σ±(t) (see

(3.3)) now also follows directly from (3.10):

rirk(rl − rj) δσ+ik(t) = rirkrl(dσ
+
il (t) + dσ+lk(t))− rirjrk(dσ

+
ij(t) + dσ+jk(t))

= rk(dσ
−
ji(t) + dσ−il (t))− ri(dσ

−
jk(t) + dσ−kl(t))

= (rk − ri) δσ−jl(t).

This concludes the proof of Theorem 3.9.

Note that, in contrast to the function r relating Königs duals and Moutard

lifts that is invariant under the Calapso deformation, the edge labeling a

changes (cf. [14, Section 5.7.16] or [6, Lemma 2.7]):

aij(t) = (µ±i (t)µ±j (t)) = (µ±i Γ±ijµ
±
j ) =

1

1− taij
(µ±i µ

±
j ) =

aij
1− taij

.

§4. Lawson transformation of linear Weingarten surfaces

In this section, we see how the Calapso deformation of Theorem 3.9 for

Ω-nets descends to a “Lawson transformation” for linear Weingarten nets.

To this end, we need to investigate the effect of the deformation on the two
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linear sphere complexes that come with a linear Weingarten net. Thus, let

f = s+ ⊕ s− be an Ω-net, so that s± have Königs dual lifts σ±, and take

values in linear sphere complexes k±, where we assume the above relative

normalizations (k±σ∓) =−1.

For symmetry, we base our analysis on the middle connection Γg with

g ≡ 1
2 . Recall that Γg is then real in the complex conjugate case, and,

consequently, so is T g when fixing T g to be real at an initial point, say

T g0 = id at some point 0 ∈ Z2. Now,

(4.1) k±(t) := T g(t)

{
k± +

t

2
σ±
}

= T±(t)k± ≡ const

for any fixed t, since k± ⊥ s±i ⊕ s
±
j , so that Γ±ij(t)k

± = k± on any edge (ij).

Moreover,

(k±(t)s±(t))≡ 0 for s±(t) = T g(t)s±,

since T g : Z2→O(R4,2). Thus, k±(t) define linear sphere complexes that

the isothermic sphere congruences s±(t) spanning the Calapso transform

f(t) = (s+ ⊕ s−)(t) of f take values in.

Note that, with the Königs dual lifts σ±(t) = T g(t)σ± of s±(t) (see

Theorem 3.9), the deformation preserves the relative scaling (k±(t)σ∓(t))≡
−1, and, in the complex conjugate case, σ±(t) as well as k±(t) are complex

conjugate again.

Consequently, we have proved that the Calapso deformation yields a

transformation for linear Weingarten nets: given a linear Weingarten net,

its Legendre lift is an Ω-net (by Theorem 2.8) admitting (see Theorem 3.9)

Calapso deformation into a new Ω-net, which has the characteristics of

the Legendre lift of a linear Weingarten net (cf. Theorem 2.8). The only

potential issue is that the resulting Ω-net may not admit an appropriate

space form projection—if the plane spanned by k+(t) and k−(t) becomes

null, then it does not contain a point sphere complex p(t). Computing inner

products, we find

(4.2) (k±(t)k±(t)) = (k±k±) and (k+(t)k−(t)) = (k+k−)− t,

showing that this issue does not occur generically: it only occurs at a single

value of t when k± define a (possibly complex conjugate) pair of spheres.

Below, we discuss these cases.

Theorem and Definition 4.1. Let f be the Legendre lift of a linear

Weingarten net (f, t) : Z2→Q3 ×P3. The Calapso transforms f(t) of f are
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generically19 the Legendre lifts of suitable linear Weingarten nets (f, t)(t) :

Z2→Q3(t)×P3(t). These are called Lawson transforms of (f, t).

To justify the terminology, we consider constant mean curvature nets (cf.

[6, Section 5]).

Example 4.2. Let (f, t) : Z2→Q3 ×P3 be a constant mean curvature

net; that is, a linear Weingarten net with

(4.3) 0 = α K + 2βH + γ, where α= 0.

In the discussion leading up to Theorem 2.8, we already saw (cf. [4,

Lemma 4.1]) that

σ− = f and σ+ = t +H f

yield a Königs dual pair of isothermic sphere congruences s± that take values

in linear sphere complexes

k− = p and k+ = q−H p.

To recover the Lawson correspondence of [6, Definition 5.2], we follow

the arguments that proved Theorem 4.1, but now base our analysis on T−

instead of T 1/2. Since Γ−ij(t)k
− = k− for all t and all edges (ij), we may

assume that T−(t)p = p for all t; that is, T−(t) is a Möbius geometric

Calapso transformation of the discrete isothermic net f : Z2→Q3 when

(pp) =−1 (see [14, Section 5.7.16]). Hence, for all t,

k−(t) = k− = p

provides a canonical point sphere complex for space form projection of the

Calapso transform f(t) of the Legendre lift f of (f, t). Further,

k+(t) = T−(t){k+ + tσ+}

is obtained as the image of (the Lie-geometric lift of) the linear conserved

quantity of [6, Definition 5.1]. Consequently,

q(t) := k+(t)− (k+(t)p)

(pp)
p = T−(t)

{
q + t

(
σ+ +

p

(pp)

)}

19That is, as long as the sphere complexes k±(t) from (4.1) do not span a contact
element.
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yields a canonical space form vector for the space form projection.

Hence, as σ±(t) = T−(t)σ±, the corresponding space form projection is

given by

f(t) = T−(t) f : Z2→Q3(t) and

t(t) = T−(t)

{
t− t

(pp)
f

}
: Z2→P3(t).

Now, σ+(t) = t(t) +
(
H + t

(pp)

)
f(t), showing that the linear Weingarten net

(f, t)(t) has constant mean curvature

H(t) =H +
t

(pp)
.

Note that we also recover the Lawson invariant, relating the mean curvature

of the constant mean curvature net and its ambient constant sectional

curvature (cf. (4.2)):

(pp)H2(t) + (q(t)q(t)) = (k+(t)k+(t)) = (k+k+) = (pp)H2 + (qq).

Thus, our Lawson transformation of Definition 4.1 does indeed generalize the

Lawson correspondence of [6, Section 5] for discrete constant mean curvature

nets.

Coming back to the genericity issue of the Lawson transformation from

Theorem 4.1, we consider the discrete analogue of (intrinsically) flat surfaces

in hyperbolic space (cf. [15, Section 4.3] and [7]).

Example 4.3. Thus, let (f, t) : Z2→Q3 ×P3, where (pp) =−1 and

(qq) = +1, so that Q3 becomes hyperbolic space, satisfy A(t, t) =A(f, f) (cf.

[15, Lemma 6.5]). That is, (f, t) is linear Weingarten with

(4.4) 0 = α K + 2β H + γ, where α+ γ = β = 0.

Now, A(f + t, f− t) = 0, so that a Königs dual pair of enveloped isother-

mic sphere congruences is given by

σ± := f± t.

As f and t take values in Q3 and P3, respectively, s± take values in linear

sphere complexes

k± := 1
2(q∓ p).
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These define two oriented spheres, since (k±k±) = 0: they are the two

orientations of the infinity boundary of the ambient hyperbolic space (cf.

[7, Section 2]), and the fact that σ± take values in the sphere complexes

defined by k± teaches us that σ± touch the infinity boundary (with opposite

orientations); that is, σ± are horosphere congruences.

Before proceeding to the Lawson transformation, note how the parallel

nets of (f, t) are obtained by simultaneous reciprocal rescaling of k± and σ±

(cf. (2.8) and Corollary 2.9). With

k̃± = e±ρk± and σ̃± = e±ρσ±,

the relative scalings are preserved and a new choice of point sphere complex

and space form vector

p̃ := k̃− − k̃+ = p cosh ρ− q sinh ρ

q̃ := k̃− + k̃+ = q cosh ρ− p sinh ρ

}
yields{

f̃ = f cosh ρ+ t sinh ρ,
t̃ = f sinh ρ+ t cosh ρ.

The linear Weingarten condition (4.4) is preserved by this change of space

form projection by parallel transformation. Thus, the parallel nets of a

flat net in hyperbolic space are flat. For the analysis of the Lawson

transformation below, we disregard this freedom.

To honor the symmetry of the situation, we again use the Calapso

transformations T g(t) of the middle connection Γg(t) with g ≡ 1
2 , as above

and in [7, Section 3]. Thus (cf. (4.1)), we obtain

σ±(t) = T g(t)σ± = T g(t){f± t} and

k±(t) = T g(t)

{
k± +

t

2
σ±
}

= T g(t)

{
q + tf

2
∓ p− tt

2

}
as the Königs dual pair spanning the Calapso transform f(t) of the

original Ω-net and the sphere complexes the enveloped isothermic sphere

congruences take values in. By (4.2), the new sphere complexes still define

two oriented spheres, (k±k±) = 0, which can be interpreted as the two

orientations of the infinity boundary of a hyperbolic space as long as they

do not touch,

(k+(t)k−(t)) = (k+k−)− t= 1
2(1− 2t) 6= 0.
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That is, as long as the genericity condition of Theorem 4.1 is satisfied.20

Then, a choice of

p(t) := k−(t)−k+(t) = T g(t)(p−t t) and

q(t) := k−(t)+k+(t) = T g(t)(q+t f)

for the point sphere complex and space form vector yields a projection to a

hyperbolic space and a de Sitter space as its (unit) tangent bundle, or vice

versa, depending on the sign of 1− 2t:

(p(t)p(t)) =−(1− 2t) and (q(t)q(t)) = +(1− 2t).

The corresponding space form projection

(f, t)(t) = (T g(t)f, T g(t)t) : Z2→Q3(t)×P3(t)

is a linear Weingarten net satisfying the same linear Weingarten condition

(4.4), since, as before,

W (t) := 2 k+(t)� k−(t) = 1
2{q(t)� q(t)− p(t)� p(t)}.

In particular, as long as t < 1
2 , the Lawson transforms (f, t)(t) of (f, t) remain

discrete analogs of (intrinsically) flat surfaces in hyperbolic space.21 Beyond

the singularity of the Lawson transformation, when t > 1
2 , we obtain linear

Weingarten nets (f, t)(t) with constant (extrinsic) Gauss curvature K = 1 in

de Sitter space.22

Thus, we obtain a case where the genericity issue for the Lawson

transformation does occur, and, in particular, we see how the two conserved

quantities k±(t) in this case become spheres—the two orientations of

the infinity spheres of the ambient hyperbolic geometries—as predicted

from (4.2). Below, we give a more exhaustive discussion of the genericity

phenomenon.

Generalizing Example 4.3, we next discuss discrete nets of (arbitrary)

constant Gauss curvature in (possibly Lorentzian) space forms.

20When t= 1
2
, the plane 〈k+, k−〉 is isotropic, and hence does not contain a point sphere

complex.
21Rescaling p(t) and q(t) by 1/(

√
1− 2t) yields the standard model of hyperbolic space

with de Sitter space as its unit tangent bundle.
22Note that swapping the roles of f(t) and t(t) in this case yields linear Weingarten nets

in hyperbolic space again.
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Example 4.4. Let (f, t) : Z2→Q3 ×P3, where ε :=−(pp) =±1 and

κ=−(qq), be a space form projection into a quadric Q3 of constant

curvature κ satisfying

(4.5) 0 = α K + 2β H + γ, with β = 0.

Clearly,23α 6= 0, so that we may, without loss of generality, assume that

α= 1. Excluding tubular linear Weingarten surfaces, we have K =−γ 6= 0.

Now,

2W = 4 k+ � k− = p� p− 1

K
q� q with k± :=

1

2

{
p∓ 1√

K
q

}
,

showing that k± and the corresponding Königs dual lifts σ± = t±
√
K f

of enveloped isothermic sphere congruences s± become complex conjugate

when K < 0.

To investigate the Lawson transformation, we use the middle connection

Γg with g ≡ 1
2 again, as in the case of flat fronts in hyperbolic space. Recall

that this connection is real in the complex conjugate case, so that the

Calapso transformations T g(t) can be assumed to be real as well. Now (cf.

(4.1)),

σ±(t) = T g(t){t±
√
K f} and k±(t) = T g(t)

{
p + tt

2
∓ q− tKf

2
√
K

}
yield the Calapso transform f(t) of the original Ω-net f = (f, t) and the two

sphere complexes that its pair of enveloped isothermic sphere congruences

s±(t) = 〈σ±(t)〉 take values in. Thus, as long as p + tt does not become

isotropic, ε+ 2t 6= 0, we may choose

p(t) :=
1√
|ε+ 2t|

T g(t){p + tt} and q(t) := T g(t){q− tKf}

as the new point sphere complex and space form vector for the space form

projection (f, t)(t) of f(t), so that

f(t) = T g(t)f and t(t) =
√
|ε+ 2t| T g(t)t.

23Otherwise, γ = 0 as well, and the linear Weingarten condition becomes trivial.
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Note that ε(t) =−(p(t)p(t)) changes sign at t=− ε
2 ; hence, the ambient

geometry of (f, t)(t) changes signature, as in the case of flat nets in

hyperbolic space.

Now,

2W (t) = 4k+(t)� k−(t) = |ε+ 2t| p(t)� p(t)− 1

K
q(t)� q(t)

encodes the linear Weingarten condition for (f, t)(t). The new (constant)

Gauss and ambient curvatures become

K(t) =K |ε+ 2t| and κ(t) =−(q(t)q(t)) = κ− 2tK.

As a consequence, the intrinsic Gauss curvatures

Kint(t) = ε(t)K(t) + κ(t)≡Kint

of the nets remain unchanged by the Lawson transformation. Of course,

this fact depends on the chosen normalization of the space form vectors

q(t). A rescaling of q(t) results in a rescaling of both the extrinsic and

intrinsic Gauss curvatures by the square of the factor. In particular, if

1/(
√
|ε+ 2t|)q(t) is chosen for the space form projections instead, the

extrinsic Gauss curvatures remain unchanged while the intrinsic Gauss

curvatures get scaled in the family.

Similar thoughts show that the apparent problem of the space form

projection when t=− ε
2 is easily resolved as long as the intrinsic Gauss

curvature of the original net does not vanish: as long as neither p(t) nor q(t)

becomes isotropic, their roles can be interchanged after suitable rescalings.

In particular, a common rescaling by 1/(
√
|κ(t)|) and reinterpretation of

1/(
√
|κ(t)|)q(t) as the point sphere complex results in a linear Weingarten

net
√
|κ(t)|(t, f)(t) of constant Gauss curvature 1/(K(t)). Hence, the Lawson

transformation is well defined as long as p(t) and q(t) do not simultaneously

become isotropic; that is, as long as

κ
(
−ε

2

)
=Kint 6= 0.

As a third special class of linear Weingarten surfaces, obtained by the

vanishing of the third coefficient in the linear Weingarten condition, we

discuss nets of constant harmonic mean curvature as a discrete analogue of

the surfaces with constant average of their curvature radii.
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Example 4.5. Fix a space form projection (f, t) : Z2→Q3 ×P3, where

−(pp) =: ε=±1 and the ambient curvature is given by −(qq) = κ as before,

and suppose that

(4.6) 0 = α K + 2β H + γ, where γ = 0.

As we exclude tubular linear Weingarten nets, we must have β 6= 0.

Hence, without loss of generality, β = 1 and α=−2HK are given by the

constant harmonic mean curvature of the net. The enveloped isothermic

sphere congruences of the constant harmonic mean curvature net then turn

out to be its tangent plane congruence and its middle sphere congruence,

σ− = t and σ+ = f +
H

K
t,

which take values in the linear sphere complexes

k− = q and k+ = p− H

K
q.

Note the similarity to the constant mean curvature nets of Example 4.2.

Writing (4.6) in the more symmetric form (2.10),

0 = α A(t, t)− 2β A(t, f) + γ A(f, f),

makes this similarity more tangible: as long as κ 6= 0, the aforementioned

duality for linear Weingarten nets relates constant harmonic mean curvature

nets and constant mean curvature nets. In particular, a common rescaling

of the point sphere complex and the space form vector,

(q̃, p̃) =
1√
|κ|

(p, q), yields (̃f, t̃) =
√
|κ| (t, f)

as a constant mean curvature H̃ = H
K net in a quadric of constant curvature

κ̃= ε
|κ| , whose signature is given by ε̃= κ

|κ| . The Lawson transformation of

Example 4.2 then yields a transformation into constant mean curvature nets

with24

H̃(t) = H̃ − ε̃ t

|κ|
and κ̃(t) = κ̃+ 2H̃

t

|κ|
− ε̃

(
t

|κ|

)2

.

24We use the edge labeling a of the original Königs dual pair (σ+, σ−) for the Calapso
transformation here, which results in a rescaling of the spectral parameter of Example 4.2.
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As long as κ̃(t) 6= 0, the same duality can then be used to obtain constant

harmonic mean curvature nets (f(t), t(t)) =
√
|κ̃(t)|(̃t(t), f̃(t)) as Lawson

transforms of the original net (f, t).

Aiming to obtain the Lawson transformation for nets of constant har-

monic mean curvature directly, we recover the same regularity issues as

outlined above. Motivated by the observation that the characterizing feature

of constant harmonic mean curvature nets in our setup is its tangent plane

congruence t being one of the enveloped isothermic sphere congruences, we

base our analysis on T−, where constants of integration are adjusted so that

T−(t)q = q. Then, we aim to obtain

k+(t) = T−(t){k+ + tσ+} ‖ p(t)− H(t)

K(t)
q,

with a normalized point sphere complex p(t)⊥ q, in order to recover the

linear Weingarten condition of a constant harmonic mean curvature net.

Orthogonalization then requires κ 6= 0, and normalization requires also

κ̃(t) 6= 0. When both are satisfied,25

p(t) =
1√
|κκ̃(t)|

T−(t)

{
p + t

(
σ+ − 1

κ
q

)}
yields

1√
|κκ̃(t)|

k+(t) = p(t)− 1√
|κκ̃(t)|

(
H

K
− 1

κ
t

)
q.

Starting from a constant harmonic mean curvature net in a flat ambient

geometry, the Lawson transformation is still well defined, but the above

approach, following Example 4.2, does not yield a suitable space form

projection. However, exploiting the fact that constant harmonic mean

curvature nets in flat ambient geometries arise as parallel nets of minimal

nets leads to an alternative approach. Choosing

p̃(t) := k+(t) and q̃(t) := k−(t)− εt k+(t)

for a space form projection,26 we obtain a constant mean curvature net

(̃f(t), t̃(t)) = (σ+(t), σ−(t) + εt σ+(t)),

25Note that κ̃(t) 6= 0 encodes the nondegeneracy of the induced metric of the plane
spanned by k±(t).

26Recall (4.2): when κ= 0, we have (k+(t)k+(t)) =−ε and (k+(t)k−(t)) =−t.
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as, clearly, A(̃f(t), t̃(t)) = εt A(̃f(t), f̃(t)). Note that, in particular, this choice

of projection yields a minimal net (̃f(0), t̃(0)) for t= 0. When t 6= 0, the

ambient curvature of the constant mean curvature net (̃f(t), t̃(t)) does not

vanish, κ̃(t) =−εt2 6= 0, so that a choice

p(t) :=
1

t
q̃(t) and q(t) := p̃(t)

now yields a net (f(t), t(t)) = (̃t(t), t̃f(t)) of constant harmonic mean curva-

ture H(t)/K(t) =−ε in a (Lorentzian if ε= 1) quadric of constant curvature

κ(t) = ε.

Indeed, as our discussion of the Lawson transformation for constant

harmonic mean curvature nets hints at, the Lawson transformation is a

transformation for parallel families of linear Weingarten nets rather than for

individual nets: it involves a choice of space form projection that, essentially,

is a choice of a net in a parallel family. We see that every parallel family of

discrete linear Weingarten nets contains nets of at least one of the particular

types discussed in the preceding examples.

Parallel Families 4.6. In Corollary 2.9, we see that parallel nets of a

linear Weingarten net are linear Weingarten (cf. [14, Section 2.7]). Using

the same setup as above, let (f, t) denote a linear Weingarten net in a space

form given by a point sphere complex p and a space form vector q⊥ p. A

change of basis

(q̃, p̃) = (q, p)B,

where B ∈Gl(2) is chosen to preserve inner products of the basis, yields a

parallel linear Weingarten net (̃f, t̃). The coefficients of the linear Weingarten

relations (2.7) of (f, t) and (̃f, t̃) are then related by27(
α̃

β̃

β̃

γ̃

)
=B

(
α

β

β

γ

)
Bt.

As the shape of the basis transformations B depends on the signature of

the plane 〈q, p〉, we discuss the cases that occur in turn (cf. [17, Section 3.4]

or [13, Section II.5]).

27This follows easily by interpreting the linear Weingarten condition (2.7) as an
orthogonality condition with respect to the inner product on symmetric 2× 2-matrices
given by the determinant as its quadratic form.
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(1) In the definite case, we assume (q, p) to be an orthonormal basis, so

that the parallel family of nets is parametrized by

B =

(
cos ϑ

sin ϑ

−sinϑ

cos ϑ

)
.

Writing (α+ γ)/2 = µ, (α− γ)/2 = % cos 2ω and β = % sin 2ω, the coef-

ficients of the linear Weingarten condition (2.7) of the parallel nets

(f, t)(ϑ) become

α(ϑ) = µ+ % cos 2(ϑ+ ω), β(ϑ) = % sin 2(ϑ+ ω) and

γ(ϑ) = µ− % cos 2(ϑ+ ω).

Thus, if % 6= 0, then sin 2(ϑ+ ω) = 0 yields two pairs of antipodal

constant Gauss curvature nets, and, if also

µ2 − %2 = αγ − β2 < 0,

then cos 2(ϑ+ ω) =∓µ
% yields two pairs of antipodal constant mean

curvature nets and of constant harmonic mean curvature nets, respec-

tively. When µ= 0, these coincide and yield minimal nets. Note the

symmetric spacing of the twelve or eight nets that appear in this case.

If, on the other hand, %= 0 then all (f, t)(ϑ) are intrinsically flat, cf.

Example 4.4.

(2) In the degenerate case, we assume that (qq) = 0 and (pp) =±1, so that

the parallel family is parametrized by

B =

(
1

0

ϑ

1

)
,

and the linear Weingarten coefficients of (2.7) of the parallel nets

(f, t)(ϑ) become

α(ϑ) = α+ 2βϑ+ γϑ2, β(ϑ) = β + γϑ and γ(ϑ) = γ.

Thus, in the generic case, ϑ=−β
γ yields a constant Gauss curvature

net, which has two parallel constant mean curvature nets at ϑ=−β
γ ±

1
γ

√
β2 − αγ as soon as the root is real. We recover the classical Bonnet

theorem in this case (cf. [14, Section 2.7.4]).

If, however, γ = 0, then the parallel family consists of the parallel

constant harmonic mean curvature nets of a minimal net at ϑ=− α
2β ,

as discussed in Example 4.5.
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(3) In the indefinite case of hyperbolic and de Sitter spaces, we base the

analysis on an orthonormal basis again, so that

B =

(
cosh ϑ

sinh ϑ

sinh ϑ

cosh ϑ

)
now parametrizes the parallel family. To obtain a convenient represen-

tation of the linear Weingarten coefficients of (2.7) for the parallel nets

(f, t)(ϑ), we distinguish three cases.

(i) If |(α+ γ)/2|> |β|, we write (α− γ)/2 = µ, (α+ γ)/2 = % cosh 2ω

and β = % sinh 2ω, to obtain

α(ϑ) = µ+ % cosh 2(ϑ+ ω), β(ϑ) = % sinh 2(ϑ+ ω) and

γ(ϑ) =−µ+ % cosh 2(ϑ+ ω).

Thus, ϑ=−ω yields one constant Gauss curvature net, which has

two parallel constant mean or constant harmonic mean curvature

nets if %2 − µ2 = αγ − β2 < 0.

(ii) If (α+ γ)/2 =±β, we find, with (α− γ)/2 = µ 6= 0,

α(ϑ) = µ± βe±2ϑ, β(ϑ) = βe±2ϑ and

γ(ϑ) =−µ± βe±2ϑ.

Thus, as long as β 6= 0, the parallel family contains no constant

Gauss curvature net, but either one constant mean or one con-

stant harmonic mean curvature net, depending on the sign of

(α− γ)/(α+ γ). On the other hand, β = 0 yields a parallel family

of flat fronts (see Example 4.3).

Note that we obtain discrete analogs of linear Weingarten surfaces

of Bryant type in hyperbolic or de Sitter space here. With

ε=−(pp) and κ=−(qq) =−ε, and assuming, without loss of

generality,28 that (α+ γ)/2 =−β, the linear Weingarten condition

reads

0 = (µ− β)(K − 1) + 2β (H − 1) = (µ− β)ε Kint + 2β (H − 1).

28A change p→−p of orientation reverses the sign of H.
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As in the smooth case (see [8, Section 4]), a characteristic feature

of these nets is that one of the linear sphere complexes k± consists

of spheres touching the infinity sphere p− q:

W = (µ− β) q� q + 2β q� p− (µ+ β) p� p = k+ � k−,

with k+ = p− q and k− = (β − µ) q− (β + µ) p. This observation

leads to a geometric Weierstrass type representation for these

linear Weingarten nets (cf. [15]).

(iii) If |(α+ γ)/2|< |β|, we write (α− γ)/2 = µ, (α+ γ)/2 = % sinh 2ω

and β = % cosh 2ω, to find

α(ϑ) = µ+ % sinh 2(ϑ+ ω), β(ϑ) = % cosh 2(ϑ+ ω)

and γ(ϑ) =−µ+ % sinh 2(ϑ+ ω).

Thus, the family does not contain any nets of constant Gauss

curvature, but a constant mean and a constant harmonic mean

curvature net are obtained when sinh 2(ϑ+ ω) =∓µ
% . When µ= 0,

these coincide and the net is minimal.

Thus, in any family of parallel (non-tubular) linear Weingarten nets, there

occurs at least one of the special nets that the Lawson transformation was

discussed for in the above examples. In particular, our analysis shows that

the genericity issue of the Lawson transformation only occurs in the cases of

parallel families of intrinsically flat surfaces in nonzero ambient curvature.29
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