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Abstract

Let pa e be the Linnik density, that is, the probability density with the characteristic function

Va.eU) ••= 1/d +ew"in'\t\"), (a,6>) G PD,

PD := {(a, 9) : 0 < a < 2, |0| < min(7ra/2, n - na/2)}.

The following problem is studied: Let (a, 0), (P,!?) be two points of PD. When is it possible to represent
Pfi.t as a scale mixture of pael A subset of the admissible pairs (a, 0), (fi, #) is described.

1991 Mathematics subject classification (Amer. Math. Soc): primary 60E10; secondary 60E05.

1. Introduction and statement of results

In 1953, Linnik [12] considered a family {pa(x) : a G (0, 2)} of symmetric probability
densities with the characteristic functions

?„(*) = 1/0 + I T ) , 0 < a < 2 .

Since then, the family had several probabilistic applications ([1-5]). Analytic and
asymptotic properties of the densities pa were studied in [9].

We will consider a more general family {pa,e(x)} of densities with characteristic
functions

(1) <pa.e(t)
(a, 0) e PD := {(a, 6) : a e (0, 2), |0| < min(^a/2, n - na/2)}.

We will call the densities pa$ the Linnik densities. Comparison of (1) with the well-
known representation of a stable characteristic function (see, for example, [19, p. 17])
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shows that the pa,e's are exponential mixtures of stable densities. Evidently, <pa,o = <fa,
Pafi = Pa and, moreover, pa0 is non-symmetric for 0^0. For \0\ = min(7ra/2, JT —
na/2) these densities first appeared in the paper of Laha [11]. Klebanov et al.
[7] introduced the concept of geometric strict stability and proved that the family
of the Linnik densities coincides with the family of geometrically strictly stable
densities. Pakes [15-18] showed that the densities /?„,# play an important role in
some characterization problems of mathematical statistics. Analytic and asymptotic
properties of pa # were studied in [6,10].

Kotz and Ostrovskii [8] proved that, if 0 < a < fi < 2, then pa can be represented
as a scale mixture of pp. This paper is devoted to a generalization of the result to the
whole family of Linnik densities. Since a general expression of the Linnik densities
is not easily attainable, such a mixture representation which facilitates generation of
Linnik's densities seems to be of interest.

The problem studied in this paper is the following. Let (a, 9), (/}, #) be two points
of PD. When is it possible to represent <pPj as a scale mixture of <pa_e7

To state the result, let us denote by PDa<9 the subset {(£, #) e PD : £ <
a, \&\/P < \6\/a}\{(a, 0), (a, -0)} of PD (see Figure 1).

PD

m.

-JI/2

FIGURE 1
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THEOREM 1. If 9 ^ 0, (a, 9) e PD, then for any (P, ft) e PDaM the following
representation is valid:

(2) = (pa,e
J — oo

where g(s; or, p, 9, ft) is a probability density.

In virtue of Theorem 1, we obtain the representation

f°°
eAx) = / Pa,

J —OO

P/sAx) = / pa,9(xs)g(s; a, p, 9, ft)s ds

as stipulated in the abstract.
We could not determine the maximal subset PD^e of PD, where <ppi9 is a mixture

of <paj of the form (2). Nevertheless, the representation (2) remains valid for a larger
set of (P, ft) if we do not require that g(s; a, p, 9, ft) is a probability density.

Denote by PD*a6 the subset {(P, ft) e PD : n/P + \9\/a > n/a + \ft\/P) of PD
(see Figure 1). Evidently PDa9 is a proper subset of PD* e.

THEOREM 2. If 9 ^ 0, (a, 9) e PD, thenforany (P, ft) G PD*a6 the representation
(2) is valid with

i pc+ioa

(3) g(±s;a,p,9,ft) = — f^fcct, p,9,ft)s~z~i dz, s > 0,
Z.7ZI Jc—ioo

(4) |c| < min(/3, O7r/(2|fl|)), ^ ( z ; a, p,e,») = ^^±/_. ..on .ax a (sinnz/a) sin z(9 /a ± ft/P)

sm(2z9/a)

Theorem 1 is an immediate corollary of Theorem 2 and the following one.

THEOREM 3. For any (a, 9) e PD such that 9^0, and any (P, ft) e PDa8, the
function g(s; a, P, 9, ft) defined by (3) is a probability density function.

In connection with the open question about the size of the set PD+e, it is of some
interest that the function^ (s; a, p, 9, ft) is not a probability density for (P, ft) e PD*af)

(see Figure 1) lying to the right of the line {(P, ft) : p = a] unless (or, 9) = (1, ±n/2)
as the following remark shows.

REMARK. If (a, 9) 4 {(1, TT/2), (1, - T T / 2 ) } , and (fi, ft) e {PDle\PDa,e)
ft) : p > a], then g(s; a, p, 9, ft) admits negative values and therefore is not a
probability density.
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The case (a, 9) = (1, inr/2) is exceptional as we will see later (Theorem 5).
In [8], it was shown that for 0 < ft < a < 2, <Pp(t) = /0°° (pa(t/s)g(s,a, P)ds

where

a TZB sfi~l

(5) g(s,a,P) = -sm-^——-—— — , s > 0.
•n a 1 + s2? + Is? cos np/a

This result is a limiting case of Theorem 3 since the following formula is valid for
0/ct = ff//3:

1 + sen s
lim g(s; a, p, 0, &) = -=—^( | j | , a, p).

Under the conditions of Theorem 3 the probability density g{s\ a, /3, 9, #) is not
concentrated on IR+ in general. Before giving a description of its structure, we note
that from (3) it follows that g(s; a, p, 6, #) = g(s; a, p, -0, - i?), g(s; a, p, 9, d) =
g(—s; a, p, 9, —&). Therefore we can restrict our attention to the case when both 9
and & are positive.

Recall that the Mellin convolution of two functions gu gi € L(R+) is defined by
the formula

f°° ds
(g\ *&)(*) = / gi(x/s)g2(s) —.

Jo s

THEOREM 4. Assume the conditions of Theorem 3 are satisfied.

(i) IfP < a, ft IP = 6/a, then g(s; a, P,0, #) is concentrated on R+ and has the
form

(6) g(s;a,p,0,&)= 1 +*^S g{\s\,a, P).

(ii) IfP = a, 0 < # < 9, then

(7)

(iii) In other cases

(8)
9p±a$ ( ( naB Jta\\

THEOREM 5. For any (P, •&) e PD\{(1, n/2), (1, -n/2)} the following repres-
entation is valid.

(9) <Pf>At)=l <ph*/2(t/s)q(s;P,»)ds
J

= f
J--oo s ~r it

https://doi.org/10.1017/S1446788700039197 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039197


[5] Representation of the Linnik density 321

where q is a probability density given by the formula

m , ( ± s ; ^ > ^ s ( s , _ ? | L _ , ) , s>0.

The representation (9) shows that all Linnik densities are mixtures of standard
exponential densities P\,±w/2-

2. Proof of the theorems

PROOF OF THEOREM 2. For simplicity, we shall write / ± (z) instead of / ± (z ; a, ft,
6, &). From (4) it follows that both functions f+(z) and /~(z) are analytic outside of
the set

[ ( J } \{0).
Moreover, in any set {z : | Rez| < H, | Imz| > e}, the following bound holds

(11) | / ± ( z ) |<Cexp( -D | Imz | )

where C, D are positive constants not depending on z. Since /± (z) is analytic in
{z : | Rez| < min(/3, na/(2\9\)), the integral in (3) does not depend on c under the
restrictions mentioned in (4).

Denote by /(/) the integral in the right hand side of (2). We show that it is equal

Assume t > 0. We have

:= I <paAt/s)g(s;a,p,
J -tx

= {J +f }<P«A-t/s)g(-s;a,0,8,t»ds

)<PaAt/s)g(.s\a,p,e,#)ds.

Let 0 < e < min(a, fi, 7ra/(2|0|)). Using (3), we obtain
>-£+ioc

=— / <p.A-t/s) /
1711 J0 J-e-i

pe+i

(PaA-t/s)
Je_io—£+iOQ1 p 1 p—£+iOQ

z— / VaAt/s) / f+(z)s-z~> dzds
1711 J0 J-e-ioo

1 /-00 i

At/s)
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In all integrals in the right hand side, we change the order of integration. This is
possible by Fubini's theorem and (11). Hence, using (1), we have

•—e+ioo p\ a-z-\

/I(t)= / f(z) / dsdz
2niJ_e.ioo

 J W7o s» + e-»t"

2ni J£_i

<1 2> . ,-e+ioc

e+ioo

/ ( ) / dsdz
_iao ; , s° + e-">t°

/>1 a-z-1

Z) / r r -

Jo s«+ e'eta

i pe+ioo poo a— z— 1

— / / + ( z ) / --
ni Js_ioo Jl s° + e'H«

Both of the integrals /„' 5""2"1 /{sa + e±wta) ds converge uniformly on any compact
set lying in {z : Rez < a] and are bounded in {z : Rez < e}. Hence, the integrations
in the first and third integrals of (12) can be translated from {z : Rez = —s} to
[z '• Re z = e} . Therefore (12) can be rewritten in the form:

(13)

i pe+ioo /•(» or-z-1

=^— / r(z) -rr-in:dsdz

£XI Je-ioo JO S + e t

Using the equalities (4), (13) and

ds = , 0 < Re z < a,
sa + e±ieta a smnz/a

one can easily show that

i /-E+ioo f—ze—itz/P

(14) I(t) = — — dz.
2ifi Je-ioo sin7rz//3

The function
1 t'ze~'

h(7\ •— :

y>' 2i0 sin it z/P

is meromorphic with simple poles { )̂3} î_oo. Evidently

(15) Res,=^(A(z)) = - ^ ( - O V e - ' " , qel.
In i

We will calculate the integral in (14) separately for t > 1 and 0 < t < 1.
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(a) t > 1. We apply the Cauchy residue theorem to the integral of h{z) along the
boundary of the region {z : Rez > e, |z| < (n + 1/2)/?} and then let n —> oo. The
integral along Cn := (z : Rez > e, \z\ = (n + 1/2)J6} tends to 0 as n —>• oo since

tor z € Cn, n ->• oo,

and therefore

|A(Z)| = — e-]ostReze^lmzi/f>\sm7tz/P\-1 = O(e"C|z|) forz € Cn,n -» oo,
2/3

where C is a positive constant. Using (15), we obtain

7(0 = -2ni'

(b) 0 < t < 1. Integrating the function h(z) along the boundary of the region
{z : Rez < e, |z| < (n + l/2)/3} in a similar way as above, we obtain

q=0 '

Thus, we have proved (2) for t > 0.
From (1), (3), (4) it is easy to derive the following equalities:

<PpAt) = Vts.-ei-t), g(s; a, p, 9, - # ) = g(-s; a, p, 9, i?).

Using them and the validity of (2) for t > 0, we obtain (2) for t < 0.

PROOF OF THEOREM 3. It suffices to prove that g(s; a, P, 9, &) is non-negative.
From (3), (4) we have

ct fico sinjrz/o! sinz(#/a ± ft/P) •
; a, p, 9, ??) = / 5 dz,

2nip J_ioosin7iz/P sin2z6»/a
a

In the case when either a = ^, |i?|/^ < \9\/a or 0 < a, |# | /£ = |0| /a, the assertion
immediately follows from the fact (see, for example, [14, p. 35,7.20]) that the function
sinh by I sinh b'y is a characteristic function up to a constant factor for 0 < b < b'. In
the case when simultaneously /J < a and |#|//J < \6\/a, we note that the function

sinh nt/a sinh f \0/a ± &/p \
sinhnt/p sinh2r|0|/a;

is a characteristic function since it is a product of characteristic functions. Therefore
the last integral in (16) is non-negative.
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PROOF OF THE REMARK. It suffices to show that the function (17) is not a charac-
teristic function under the conditions mentioned in the statement of the remark. It
is easy to see that under these conditions the function (17) is analytic in the strip
{t : | Imf | < min(/J, na/2\0\)} and has at least two imaginary zeros in it. This con-
tradicts well-known properties of analytic characteristic functions (see, for example,
[13, p. 29, Theorem 2.3.2 (a)]).

PROOF OF THEOREM 4. By [14, p. 35, 7.20],

2n e-"'"1 sin Bit IB'
y

?' + 2e-"/r cos

The second equality in (18) can easily be verified using the definition of g(s, a, P)
given in (5). Proofs of (6), (7) are straightforward using (16) and (18).

To prove the last assertion of Theorem 4 note that if we substitute 5 = e~T in (16)
we obtain

(19)

*«-,(*»-:«. />. *.*) = +- r ^"^Sinhtl6/a ±
a s H 2n J

By using the convolution property of Fourier transforms, and (18) and (19), we have

a
(20)

OP ± fta 20

Substituting r = — log s and u = — log v in (20) we obtain (8).

PROOF OF THEOREM 5. Evidently, PD\{(l,7r/2), (1, -TT/2)} = PD\n/2. Apply-
ing Theorem 2 with a = 1, 0 = n/2 and noting that <P\,K/2(t) = 1/(1 + it) we obtain
the representation (9) with g(±s; P, ft) — g(±s; 1, P, n/2, ft). Using the equality
(19), we obtain

- f f ?"r dt, r e

By [14, p. 35,7.20], the function (sinh t\n/2±ft/P\)/(sinhnt / P) is a characteristic
function for all (P, ft) € PD*n/2 and therefore ^(5; p, ft) is a probability density and,
moreover, the formula (10) holds.
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