ON MIXTURE REPRESENTATION OF THE LINNIK DENSITY

BURAK ERDOĞAN and I. V. OSTROVSKII

(Received 27 November 1996; revised 29 September 1997)

Communicated by A. G. Pakes

Abstract

Let $p_{\alpha, \theta}$ be the Linnik density, that is, the probability density with the characteristic function $$
\begin{gathered} \varphi_{\alpha, \theta}(t):=1 /\left(1+e^{\left.i \theta \operatorname{sgn} t|t|^{\alpha}\right), \quad(\alpha, \theta) \in P D,}\right. \\ P D:=\{(\alpha, \theta): 0<\alpha<2,|\theta| \leq \min (\pi \alpha / 2, \pi-\pi \alpha / 2)\} . \end{gathered}
$$

The following problem is studied: Let $(\alpha, \theta),(\beta, \vartheta)$ be two points of $P D$. When is it possible to represent $p_{\beta, \vartheta}$ as a scale mixture of $p_{\alpha, \theta}$? A subset of the admissible pairs $(\alpha, \theta),(\beta, \vartheta)$ is described.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 60E10; secondary 60E05.

1. Introduction and statement of results

In 1953, Linnik [12] considered a family $\left\{p_{\alpha}(x): \alpha \in(0,2)\right\}$ of symmetric probability densities with the characteristic functions

$$
\varphi_{\alpha}(t)=1 /\left(1+|t|^{\alpha}\right), \quad 0<\alpha<2 .
$$

Since then, the family had several probabilistic applications ([1-5]). Analytic and asymptotic properties of the densities p_{α} were studied in [9].

We will consider a more general family $\left\{p_{\alpha, \theta}(x)\right\}$ of densities with characteristic functions

$$
\begin{align*}
\varphi_{\alpha \theta}(t) & =1 /\left(1+e^{i \theta \operatorname{sgn} t}|t|^{\alpha}\right), \tag{1}\\
(\alpha, \theta) \in P D & :=\{(\alpha, \theta): \alpha \in(0,2),|\theta| \leq \min (\pi \alpha / 2, \pi-\pi \alpha / 2)\} .
\end{align*}
$$

We will call the densities $p_{\alpha, \theta}$ the Linnik densities. Comparison of (1) with the wellknown representation of a stable characteristic function (see, for example, [19, p. 17]) (C) 1998 Australian Mathematical Society 0263-6115/98 \$A2.00 +0.00
shows that the $p_{\alpha, \theta}$'s are exponential mixtures of stable densities. Evidently, $\varphi_{\alpha, 0}=\varphi_{\alpha}$, $p_{\alpha, 0}=p_{\alpha}$ and, moreover, $p_{\alpha, \theta}$ is non-symmetric for $\theta \neq 0$. For $|\theta|=\min (\pi \alpha / 2, \pi-$ $\pi \alpha / 2$) these densities first appeared in the paper of Laha [11]. Klebanov et al. [7] introduced the concept of geometric strict stability and proved that the family of the Linnik densities coincides with the family of geometrically strictly stable densities. Pakes [15-18] showed that the densities $p_{\alpha, \theta}$ play an important role in some characterization problems of mathematical statistics. Analytic and asymptotic properties of $p_{\alpha, \theta}$ were studied in $[6,10]$.

Kotz and Ostrovskii [8] proved that, if $0<\alpha<\beta \leq 2$, then p_{α} can be represented as a scale mixture of p_{β}. This paper is devoted to a generalization of the result to the whole family of Linnik densities. Since a general expression of the Linnik densities is not easily attainable, such a mixture representation which facilitates generation of Linnik's densities seems to be of interest.

The problem studied in this paper is the following. Let $(\alpha, \theta),(\beta, \vartheta)$ be two points of $P D$. When is it possible to represent $\varphi_{\beta, \vartheta}$ as a scale mixture of $\varphi_{\alpha, \theta}$?

To state the result, let us denote by $P D_{\alpha, \theta}$ the subset $\{(\beta, \vartheta) \in P D: \beta \leq$ $\alpha,|\vartheta| / \beta \leq|\theta| / \alpha\} \backslash\{(\alpha, \theta),(\alpha,-\theta)\}$ of $P D$ (see Figure 1).

Figure 1

Theorem 1. If $\theta \neq 0,(\alpha, \theta) \in P D$, then for any $(\beta, \vartheta) \in P D_{\alpha, \theta}$ the following representation is valid:

$$
\begin{equation*}
\varphi_{\beta, \vartheta}(t)=\int_{-\infty}^{\infty} \varphi_{\alpha, \theta}(t / s) g(s ; \alpha, \beta, \theta, \vartheta) d s \tag{2}
\end{equation*}
$$

where $g(s ; \alpha, \beta, \theta, \vartheta)$ is a probability density.
In virtue of Theorem 1, we obtain the representation

$$
p_{\beta, \vartheta}(x)=\int_{-\infty}^{\infty} p_{\alpha, \theta}(x s) g(s ; \alpha, \beta, \theta, \vartheta) s d s
$$

as stipulated in the abstract.
We could not determine the maximal subset $P D_{\alpha, \theta}^{+}$of $P D$, where $\varphi_{\beta, \vartheta}$ is a mixture of $\varphi_{\alpha, \theta}$ of the form (2). Nevertheless, the representation (2) remains valid for a larger set of (β, ϑ) if we do not require that $g(s ; \alpha, \beta, \theta, \vartheta)$ is a probability density.

Denote by $P D_{\alpha, \theta}^{\star}$ the subset $\{(\beta, \vartheta) \in P D: \pi / \beta+|\theta| / \alpha>\pi / \alpha+|\vartheta| / \beta\}$ of $P D$ (see Figure 1). Evidently $P D_{\alpha, \theta}$ is a proper subset of $P D_{\alpha, \theta}^{\star}$.

THEOREM 2. If $\theta \neq 0,(\alpha, \theta) \in P D$, then for any $(\beta, \vartheta) \in P D_{\alpha, \theta}^{*}$ the representation (2) is valid with

$$
\begin{gather*}
g(\pm s ; \alpha, \beta, \theta, \vartheta)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f^{ \pm}(z ; \alpha, \beta, \theta, \vartheta) s^{-z-1} d z, \quad s>0, \tag{3}\\
|c|<\min (\beta, \alpha \pi /(2|\theta|)), f^{ \pm}(z ; \alpha, \beta, \theta, \vartheta)=\frac{\alpha}{\beta} \frac{(\sin \pi z / \alpha)}{(\sin \pi z / \beta)} \frac{\sin z(\theta / \alpha \pm \vartheta / \beta)}{\sin (2 z \theta / \alpha)} . \tag{4}
\end{gather*}
$$

Theorem 1 is an immediate corollary of Theorem 2 and the following one.

Theorem 3. For any $(\alpha, \theta) \in P D$ such that $\theta \neq 0$, and any $(\beta, \vartheta) \in P D_{\alpha, \theta}$, the function $g(s ; \alpha, \beta, \theta, \vartheta)$ defined by (3) is a probability density function.

In connection with the open question about the size of the set $P D_{\alpha, \theta}^{+}$, it is of some interest that the function $g(s ; \alpha, \beta, \theta, \vartheta)$ is not a probability density for $(\beta, \vartheta) \in P D_{\alpha, \theta}^{*}$ (see Figure 1) lying to the right of the line $\{(\beta, \vartheta): \beta=\alpha\}$ unless $(\alpha, \theta)=(1, \pm \pi / 2)$ as the following remark shows.

REMARK. If $(\alpha, \theta) \notin\{(1, \pi / 2),(1,-\pi / 2)\}$, and $(\beta, \vartheta) \in\left(P D_{\alpha, \theta}^{\star} \backslash P D_{\alpha, \theta}\right) \bigcap\{(\beta$, $\vartheta): \beta>\alpha\}$, then $g(s ; \alpha, \beta, \theta, \vartheta)$ admits negative values and therefore is not a probability density.

The case $(\alpha, \theta)=(1, \pm \pi / 2)$ is exceptional as we will see later (Theorem 5).
In [8], it was shown that for $0<\beta<\alpha<2, \varphi_{\beta}(t)=\int_{0}^{\infty} \varphi_{\alpha}(t / s) g(s, \alpha, \beta) d s$ where

$$
\begin{equation*}
g(s, \alpha, \beta)=\frac{\alpha}{\pi} \sin \frac{\pi \beta}{\alpha} \frac{s^{\beta-1}}{1+s^{2 \beta}+2 s^{\beta} \cos \pi \beta / \alpha}, \quad s>0 . \tag{5}
\end{equation*}
$$

This result is a limiting case of Theorem 3 since the following formula is valid for $\theta / \alpha=\vartheta / \beta$:

$$
\lim _{\theta \rightarrow+0} g(s ; \alpha, \beta, \theta, \vartheta)=\frac{1+\operatorname{sgn} s}{2} g(|s|, \alpha, \beta)
$$

Under the conditions of Theorem 3 the probability density $g(s ; \alpha, \beta, \theta, \vartheta)$ is not concentrated on \mathbb{R}^{+}in general. Before giving a description of its structure, we note that from (3) it follows that $g(s ; \alpha, \beta, \theta, \vartheta)=g(s ; \alpha, \beta,-\theta,-\vartheta), g(s ; \alpha, \beta, \theta, \vartheta)=$ $g(-s ; \alpha, \beta, \theta,-\vartheta)$. Therefore we can restrict our attention to the case when both θ and ϑ are positive.

Recall that the Mellin convolution of two functions $g_{1}, g_{2} \in L\left(\mathbb{R}^{+}\right)$is defined by the formula

$$
\left(g_{1} \star g_{2}\right)(x)=\int_{0}^{\infty} g_{1}(x / s) g_{2}(s) \frac{d s}{s} .
$$

Theorem 4. Assume the conditions of Theorem 3 are satisfied.
(i) If $\beta<\alpha, \vartheta / \beta=\theta / \alpha$, then $g(s ; \alpha, \beta, \theta, \vartheta)$ is concentrated on \mathbb{R}^{+}and has the form

$$
\begin{equation*}
g(s ; \alpha, \beta, \theta, \vartheta)=\frac{1+\operatorname{sgn} s}{2} g(|s|, \alpha, \beta) . \tag{6}
\end{equation*}
$$

(ii) If $\beta=\alpha, 0<\vartheta<\theta$, then

$$
\begin{equation*}
g(\pm s ; \alpha, \beta, \theta, \vartheta)=\frac{\theta \pm \vartheta}{2 \theta} g\left(s, \frac{\pi \alpha}{\theta \pm \vartheta}, \frac{\pi \alpha}{2 \theta}\right), \quad s>0 . \tag{7}
\end{equation*}
$$

(iii) In other cases

$$
\begin{equation*}
g(\pm s ; \alpha, \beta, \theta, \vartheta)=\frac{\theta \beta \pm \alpha \vartheta}{2 \theta \beta}\left(g(s, \alpha, \beta) \star g\left(s, \frac{\pi \alpha \beta}{\theta \beta \pm \vartheta \alpha}, \frac{\pi \alpha}{2 \theta}\right)\right), \quad s>0 . \tag{8}
\end{equation*}
$$

Theorem 5. For any $(\beta, \vartheta) \in P D \backslash\{(1, \pi / 2),(1,-\pi / 2)\}$ the following representation is valid.

$$
\begin{equation*}
\varphi_{\beta, \vartheta}(t)=\int_{-\infty}^{\infty} \varphi_{1 . \pi / 2}(t / s) q(s ; \beta, \vartheta) d s=\int_{-\infty}^{\infty} \frac{s}{s+i t} q(s ; \beta, \vartheta) d s \tag{9}
\end{equation*}
$$

where q is a probability density given by the formula

$$
\begin{equation*}
q(\pm s ; \beta, \vartheta)=\frac{\pi \beta \pm 2 \vartheta}{2 \pi \beta} g\left(s, \frac{2 \pi \beta}{\pi \beta \pm 2 \vartheta}, \beta\right), \quad s>0 . \tag{10}
\end{equation*}
$$

The representation (9) shows that all Linnik densities are mixtures of standard exponential densities $p_{1, \pm \pi / 2}$.

2. Proof of the theorems

PROOF OF THEOREM 2. For simplicity, we shall write $f^{ \pm}(z)$ instead of $f^{ \pm}(z ; \alpha, \beta$, $\theta, \vartheta)$. From (4) it follows that both functions $f^{+}(z)$ and $f^{-}(z)$ are analytic outside of the set

$$
\left\{\{q \beta\}_{q=-\infty}^{\infty} \bigcup\{\pi \alpha q /(2 \theta)\}_{q=-\infty}^{\infty}\right\} \backslash\{0\}
$$

Moreover, in any set $\{z:|\operatorname{Re} z|<H,|\operatorname{Im} z|>\varepsilon\}$, the following bound holds

$$
\begin{equation*}
\left|f^{ \pm}(z)\right| \leq C \exp (-D|\operatorname{Im} z|) \tag{11}
\end{equation*}
$$

where C, D are positive constants not depending on z. Since $f^{ \pm}(z)$ is analytic in $\{z:|\operatorname{Re} z|<\min (\beta, \pi \alpha /(2|\theta|))$, the integral in (3) does not depend on c under the restrictions mentioned in (4).

Denote by $I(t)$ the integral in the right hand side of (2). We show that it is equal to $\varphi_{\beta, v}(t)$.

Assume $t>0$. We have

$$
\begin{aligned}
I(t):= & \int_{-\infty}^{\infty} \varphi_{\alpha, \theta}(t / s) g(s ; \alpha, \beta, \theta, \vartheta) d s \\
= & \left(\int_{0}^{1}+\int_{1}^{\infty}\right) \varphi_{\alpha, \theta}(-t / s) g(-s ; \alpha, \beta, \theta, \vartheta) d s \\
& +\left(\int_{0}^{1}+\int_{1}^{\infty}\right) \varphi_{\alpha, \theta}(t / s) g(s ; \alpha, \beta, \theta, \vartheta) d s
\end{aligned}
$$

Let $0<\varepsilon<\min (\alpha, \beta, \pi \alpha /(2|\theta|))$. Using (3), we obtain

$$
\begin{aligned}
I(t)= & \frac{1}{2 \pi i} \int_{0}^{1} \varphi_{\alpha, \theta}(-t / s) \int_{-\varepsilon-i \infty}^{-\varepsilon+i \infty} f^{-}(z) s^{-z-1} d z d s \\
& +\frac{1}{2 \pi i} \int_{1}^{\infty} \varphi_{\alpha, \theta}(-t / s) \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} f^{-}(z) s^{-z-1} d z d s \\
& +\frac{1}{2 \pi i} \int_{0}^{1} \varphi_{\alpha, \theta}(t / s) \int_{-\varepsilon-i \infty}^{-\varepsilon+i \infty} f^{+}(z) s^{-z-1} d z d s \\
& +\frac{1}{2 \pi i} \int_{1}^{\infty} \varphi_{\alpha, \theta}(t / s) \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} f^{+}(z) s^{-z-1} d z d s .
\end{aligned}
$$

In all integrals in the right hand side, we change the order of integration. This is possible by Fubini's theorem and (11). Hence, using (1), we have

$$
\begin{align*}
I(t)= & \frac{1}{2 \pi i} \int_{-\varepsilon-i \infty}^{-\varepsilon+i \infty} f^{-}(z) \int_{0}^{1} \frac{s^{\alpha-z-1}}{s^{\alpha}+e^{-i \theta} t^{\alpha}} d s d z \\
& +\frac{1}{2 \pi i} \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} f^{-}(z) \int_{1}^{\infty} \frac{s^{\alpha-z-1}}{s^{\alpha}+e^{-i \theta} t^{\alpha}} d s d z \tag{12}
\end{align*}
$$

$$
+\frac{1}{2 \pi i} \int_{-\varepsilon-i \infty}^{-\varepsilon+i \infty} f^{+}(z) \int_{0}^{1} \frac{s^{\alpha-z-1}}{s^{\alpha}+e^{i \theta} t^{\alpha}} d s d z
$$

$$
+\frac{1}{2 \pi i} \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} f^{+}(z) \int_{1}^{\infty} \frac{s^{\alpha-z-1}}{s^{\alpha}+e^{i \theta} t^{\alpha}} d s d z
$$

Both of the integrals $\int_{0}^{1} s^{\alpha-z-1} /\left(s^{\alpha}+e^{ \pm i \theta} t^{\alpha}\right) d s$ converge uniformly on any compact set lying in $\{z: \operatorname{Re} z<\alpha\}$ and are bounded in $\{z: \operatorname{Re} z \leq \varepsilon\}$. Hence, the integrations in the first and third integrals of (12) can be translated from $\{z: \operatorname{Re} z=-\varepsilon\}$ to $\{z: \operatorname{Re} z=\varepsilon\}$. Therefore (12) can be rewritten in the form:

$$
\begin{align*}
I(t)= & \frac{1}{2 \pi i} \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} f^{-}(z) \int_{0}^{\infty} \frac{s^{\alpha-z-1}}{s^{\alpha}+e^{-i \theta} t^{\alpha}} d s d z \tag{13}\\
& +\frac{1}{2 \pi i} \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} f^{+}(z) \int_{0}^{\infty} \frac{s^{\alpha-z-1}}{s^{\alpha}+e^{i \theta} t^{\alpha}} d s d z
\end{align*}
$$

Using the equalities (4), (13) and

$$
\int_{0}^{\infty} \frac{s^{\alpha-z-1}}{s^{\alpha}+e^{ \pm i \theta} t^{\alpha}} d s=\frac{\pi}{\alpha} \frac{t^{-z} e^{\mp i \theta z / \alpha}}{\sin \pi z / \alpha}, \quad 0<\operatorname{Re} z<\alpha
$$

one can easily show that

$$
\begin{equation*}
I(t)=\frac{1}{2 i \beta} \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} \frac{t^{-z} e^{-i \vartheta z / \beta}}{\sin \pi z / \beta} d z \tag{14}
\end{equation*}
$$

The function

$$
h(z):=\frac{1}{2 i \beta} \frac{t^{-z} e^{-i \vartheta z / \beta}}{\sin \pi z / \beta}
$$

is meromorphic with simple poles $\{q \beta\}_{q=-\infty}^{\infty}$. Evidently

$$
\begin{equation*}
\operatorname{Res}_{z=q \beta}(h(z))=\frac{1}{2 \pi i}(-1)^{q} t^{\beta q} e^{-i \vartheta q}, \quad q \in \mathbb{Z} \tag{15}
\end{equation*}
$$

We will calculate the integral in (14) separately for $t>1$ and $0<t<1$.
(a) $t>1$. We apply the Cauchy residue theorem to the integral of $h(z)$ along the boundary of the region $\{z: \operatorname{Re} z>\varepsilon,|z|<(n+1 / 2) \beta\}$ and then let $n \rightarrow \infty$. The integral along $C_{n}:=\{z: \operatorname{Re} z \geq \varepsilon,|z|=(n+1 / 2) \beta\}$ tends to 0 as $n \rightarrow \infty$ since

$$
|\sin \pi z / \beta|^{-1}=O\left(e^{-\pi|\operatorname{lm} z| / \beta}\right) \text { for } z \in C_{n}, n \rightarrow \infty
$$

and therefore

$$
|h(z)|=\frac{1}{2 \beta} e^{-\log t \cdot \operatorname{Re} z} e^{|\vartheta \operatorname{lm} z| / \beta}|\sin \pi z / \beta|^{-1}=O\left(e^{-C|z|}\right) \quad \text { for } z \in C_{n}, n \rightarrow \infty
$$

where C is a positive constant. Using (15), we obtain

$$
I(t)=-2 \pi i \sum_{q=1}^{\infty} \operatorname{Res}_{z=q \beta}(h(z))=\sum_{q=1}^{\infty}(-1)^{q+1} t^{\beta q} e^{-i \vartheta q}=\frac{1}{1+e^{i \vartheta} t^{\beta}}=\varphi_{\beta, \vartheta}(t)
$$

(b) $0<t<1$. Integrating the function $h(z)$ along the boundary of the region $\{z: \operatorname{Re} z<\varepsilon,|z|<(n+1 / 2) \beta\}$ in a similar way as above, we obtain

$$
I(t)=\sum_{q=0}^{\infty}(-1)^{q} t^{\beta q} e^{i \vartheta q}=\frac{1}{1+e^{i \vartheta} t^{\beta}}=\varphi_{\beta, \vartheta}(t)
$$

Thus, we have proved (2) for $t>0$.
From (1), (3), (4) it is easy to derive the following equalities:

$$
\varphi_{\beta, \vartheta}(t)=\varphi_{\beta,-\vartheta}(-t), \quad g(s ; \alpha, \beta, \theta,-\vartheta)=g(-s ; \alpha, \beta, \theta, \vartheta) .
$$

Using them and the validity of (2) for $t>0$, we obtain (2) for $t<0$.

PROOF OF THEOREM 3. It suffices to prove that $g(s ; \alpha, \beta, \theta, \vartheta)$ is non-negative. From (3), (4) we have

$$
\begin{align*}
g(\pm s ; \alpha, \beta, \theta, \vartheta) & =\frac{\alpha}{2 \pi i \beta} \int_{-i \infty}^{i \infty} \frac{\sin \pi z / \alpha}{\sin \pi z / \beta} \frac{\sin z(\theta / \alpha \pm \vartheta / \beta)}{\sin 2 z \theta / \alpha} s^{-z-1} d z \tag{16}\\
& =\frac{\alpha}{2 \pi s \beta} \int_{-\infty}^{\infty} \frac{\sinh \pi t / \alpha}{\sinh \pi t / \beta} \frac{\sinh t|\theta / \alpha \pm \vartheta / \beta|}{\sinh 2 t|\theta| / \alpha} e^{-i t \log s} d t
\end{align*}
$$

In the case when either $\alpha=\beta,|\vartheta| / \beta<|\theta| / \alpha$ or $\beta<\alpha,|\vartheta| / \beta=|\theta| / \alpha$, the assertion immediately follows from the fact (see, for example, [14, p.35, 7.20]) that the function $\sinh b y / \sinh b^{\prime} y$ is a characteristic function up to a constant factor for $0<b<b^{\prime}$. In the case when simultaneously $\beta<\alpha$ and $|\vartheta| / \beta<|\theta| / \alpha$, we note that the function

$$
\begin{equation*}
\frac{\sinh \pi t / \alpha}{\sinh \pi t / \beta} \frac{\sinh t|\theta / \alpha \pm \vartheta / \beta|}{\sinh 2 t|\theta| / \alpha} \tag{17}
\end{equation*}
$$

is a characteristic function since it is a product of characteristic functions. Therefore the last integral in (16) is non-negative.

PROOF OF THE REMARK. It suffices to show that the function (17) is not a characteristic function under the conditions mentioned in the statement of the remark. It is easy to see that under these conditions the function (17) is analytic in the strip $\{t:|\operatorname{Im} t|<\min (\beta, \pi \alpha / 2|\theta|)\}$ and has at least two imaginary zeros in it. This contradicts well-known properties of analytic characteristic functions (see, for example, [13, p. 29, Theorem 2.3.2 (a)]).

PROOF OF THEOREM 4. By [14, p. 35, 7.20],

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{\sinh \beta y}{\sinh \beta^{\prime} y} e^{i y t} d y & =\frac{2 \pi}{\beta^{\prime}} \frac{e^{-\pi t / \beta^{\prime}} \sin \beta \pi / \beta^{\prime}}{1+e^{-2 \pi t / \beta^{\prime}}+2 e^{-\pi t / \beta^{\prime}} \cos \beta \pi / \beta^{\prime}} \tag{18}\\
& =\frac{2 \pi \beta}{\beta^{\prime}} e^{-t} g\left(e^{-t}, \pi / \beta, \pi / \beta^{\prime}\right), \quad t \in \mathbb{R}
\end{align*}
$$

The second equality in (18) can easily be verified using the definition of $g(s, \alpha, \beta)$ given in (5). Proofs of (6), (7) are straightforward using (16) and (18).

To prove the last assertion of Theorem 4 note that if we substitute $s=e^{-t}$ in (16) we obtain

$$
\begin{equation*}
\frac{\beta}{\alpha} e^{-\tau} g\left(\pm e^{-\tau} ; \alpha, \beta, \theta, \vartheta\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\sinh \pi t / \alpha}{\sinh \pi t / \beta} \frac{\sinh t|\theta / \alpha \pm \vartheta / \beta|}{\sinh 2 t|\theta| / \alpha} e^{i t \tau} d t, \quad \tau \in \mathbb{R} . \tag{19}
\end{equation*}
$$

By using the convolution property of Fourier transforms, and (18) and (19), we have

$$
\frac{\beta}{\alpha} e^{-\tau} g\left(\pm e^{-\tau} ; \alpha, \beta, \theta, \vartheta\right)
$$

$$
\begin{equation*}
=\frac{\theta \beta \pm \alpha \vartheta}{2 \theta \alpha} \int_{-\infty}^{\infty} e^{-u} g\left(e^{-u}, \alpha, \beta\right) e^{-\tau+u} g\left(e^{-\tau+u}, \frac{\pi \alpha \beta}{\theta \beta \pm \vartheta \alpha}, \frac{\pi \alpha}{2 \theta}\right) d u \tag{20}
\end{equation*}
$$

Substituting $\tau=-\log s$ and $u=-\log v$ in (20) we obtain (8).
Proof of theorem 5. Evidently, $P D \backslash\{(1, \pi / 2),(1,-\pi / 2)\}=P D_{1, \pi / 2}^{*}$. Applying Theorem 2 with $\alpha=1, \theta=\pi / 2$ and noting that $\varphi_{1 . \pi / 2}(t)=1 /(1+i t)$ we obtain the representation (9) with $q(\pm s ; \beta, \vartheta)=g(\pm s ; 1, \beta, \pi / 2, \vartheta)$. Using the equality (19), we obtain

$$
\beta e^{-\tau} g\left(\pm e^{-\tau} ; 1, \beta, \pi / 2, \vartheta\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\sinh t|\pi / 2 \pm \vartheta / \beta|}{\sinh \pi t / \beta} e^{i t \tau} d t, \quad \tau \in \mathbb{R}
$$

By [14, p. 35, 7.20], the function $(\sinh t|\pi / 2 \pm \vartheta / \beta|) /(\sinh \pi t / \beta)$ is a characteristic function for all $(\beta, \vartheta) \in P D_{1, \pi / 2}^{*}$ and therefore $q(s ; \beta, \vartheta)$ is a probability density and, moreover, the formula (10) holds.

Acknowledgement

The authors thank the anonymous referee for suggestions which improved the presentation of this paper.

References

[1] D. N. Anderson and B. C. Arnold, 'Linnik distributions and processes', J. Appl. Probab. 30 (1993), 330-340.
[2] B. C. Arnold, 'Some characterizations of the exponential distribution by geometric compounding', SIAM J. Appl. Math. 24 (1973), 242-244.
[3] L. Devroye, Non-uniform random variable generation (Springer, New York, 1986).
[4] -, 'A note on Linnik's distribution', Statist. Probab. Lett. 9 (1990), 305-306.
[5] ——, 'A triptych of discrete distributions related to the stable law', Statist. Probab. Lett. 18 (1993), 349-351.
[6] B. Erdoğan, 'Analytic and asymptotic properties of non-symmetric Linnik's densities', (to appear).
[7] L. B. Klebanov, G. M. Maniya and I. A. Melamed, 'A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables', Theory Probab. Appl. 29 (1984), 791-794.
[8] S. Kotz and I. V. Ostrovskii, 'A mixture representation of Linnik's distribution', Statist. Probab. Lett. 26 (1996), 61-64.
[9] S. Kotz, I. V. Ostrovskii and A. Hayfavi, 'Analytic and asymptotic properties of Linnik's probability density I,II', J. Math. Anal. Appl. 193 (1995), 353-371, 497-521.
[10] T. J. Kozubowski, 'Representation and properties of geometric stable laws', in: Approximation, probability, and related fields (Santa Barbara, CA 1993) (eds. G. Anastassiou and S. T. Rachev) (Plenum Press, New York, 1994) pp. 321-337.
[11] R. G. Laha, 'On a class of unimodal distributions', Proc. Amer. Math. Soc. 12 (1961), 181-184.
[12] Ju. V. Linnik, 'Linear forms and statistical criteria, II', Select. Transl. Math. Stat. Probab. 3 (1963), 41-90 (Original paper appeared in: Ukrainskii Mat. Zhournal, 5 (1953), 247-290).
[13] Ju. V. Linnik and I. V. Ostrovskii, Decomposition of random variables and vectors (Amer. Math. Soc., Providence, 1977).
[14] F. Oberhettinger, Tables of Fourier transforms and Fourier transforms of distributions (Springer, Berlin, 1990).
[15] A. G. Pakes, 'A characterization of gamma mixtures of stable laws motivated by limit theorems', Statist. Neerlandica 2-3 (1992), 209-218.
[16] ——, 'On characterizations via mixed sums', Austral. J. Statist. 34 (1992), 323-339.
[17] ——, 'Necessary conditions for characterization of laws via mixed sums', Ann. Inst. Statist. Math. 46 (1994), 797-802.
[18] _-_ 'Characterization of discrete laws via mixed sums and Markov branching process', Stochastic Process. Appl. 55 (1995), 285-300.
[19] V. M. Zolotarev, One-dimensional stable distributions (Amer. Math. Soc., Providence, 1986).

Department of Mathematics
Bilkent University
06533 Bilkent

Ankara

Turkey
e-mail: erdogan@fen.bilkent.edu.tr
e-mail: iossif@fen.bilkent.edu.tr

