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A COMPACT IMBEDDING THEOREM FOR
FUNCTIONS WITHOUT COMPACT SUPPORT

BY
R. A. ADAMS(*) AND JOHN FOURNIER(?)

The extension of the Rellich-Kondrachov theorem on the complete continuity
of Sobolev space imbeddings of the sort

M W3- »(G) — L*(G)

to unbounded domains G has recently been under study [1-5] and this study has
yielded [4] a condition on G which is necessary and sufficient for the compactness
of (1). Similar compactness theorems for the imbeddings

¢) wm(G) — L*(G)

are well known for bounded domains G with suitably regular boundaries, and the
question naturally arises whether any extensions to unbounded domains can be
made in this case. Here G is an open domain in Euclidean n-space E,, and, as
usual, W™?(G) [respectively W ?(G)] denotes for m a positive integer and
p =1 real the completion of the space of infinitely differentiable functions on G for
which the norm below is finite [resp. the space of infinitely differentiable functions
with compact support in G] with respect to the norm | |, », ¢ defined by

ulno = 3 | |DuCol ax
osla|lsmJG

where a=(oy, . . ., o,) is an n-tuple of nonnegative integers; |¢|=> «;; D*=D$. ..

D; D;=0]x,.

The vanishing, in a generalized sense, on the boundary of G of elements of
W& ?(G) plays a critical role in the establishment of the complete continuity of (1)
for unbounded domains. For elements of W™ ?(G) we no longer have this property
and one might be led to expect that (2) cannot be compact for any unbounded G.
For example, if G is the union of infinitely many balls B; (j=1, 2, ...) with pair-
wise disjoint closures then the sequence {u;} defined by

_ 0 if x¢ B
ux) = {(vol. B)-Y* if xe B,

is clearly bounded in W™ ?(G) but not precompact in L?(G) no matter how rapidly

Received by the editors September 3, 1970.
(M) (?) Research partially sponsored by the National Research Council of Canada under
Grants A-3973 and A-4822.

305

https://doi.org/10.4153/CMB-1971-056-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1971-056-2

306 R. A. ADAMS AND JOHN FOURNIER [September

the radius of B; tends to zero as j tends to infinity. (As long as the radius of B;
tends to zero the imbedding (2) is compact by a theorem of [2].)

In the remainder of this paper we shall consider a very restricted class of un-
bounded domains G in E, for which a condition necessary and sufficient for the
complete continuity of the imbedding

(3 W%G) — L¥G)
can be given. In particular, therefore, there do exist extensions of the Rellich—
Kondrachov theorem to unbounded domains for imbeddings of type (2).

DeriNiTION. Hereafter f shall denote a positive, decreasing, continuously
differentiable function on [0,00) with bounded derivative f* and which satisfies
o f(x) dx<oo. G shall denote the domain in E, bounded by the coordinate axes
and the curve y=f(x). For R>0 we set Gy={(x, ) € G: x> R} and Kz=G—Gj.

ReMARK. C. Clark has shown in [5] that the imbedding (3) is not compact for

a domain G of the above type but for which [g f(x) dx=c0. The imbedding
33(G) — L¥G) is compact in this case provided only that f(x) — 0 as x — 0.
Our principal result is the following

THEOREM 1. The imbedding W' %(G) — L*(G) is completely continuous if and
only if

) f: f() dx = o(f(R)) as R —c.

EXAMPLE. f(x)=e~** satisfies (4) while f(x)=e~* does not. Condition (4) asserts
that the half-life of f tends to zero as x — 0. In fact we require the following

LemMA 1. Condition (4) is satisfied if and only if for every >0, f(R+¢)=0(f(R))
as R—oo.

Proof. (a) Assume f(R+¢)=0(f(R)) as R—>oo, for every positive e. For such
& there exists R, such that if x> R, then f(x+¢) <3 f(x). Using the monotonicity
of f we obtain for R>R,
R+(m+1)&

j: f@dx= S 1) dx

m=0 JR+me

<. ,..20 S(R+me) < ¢f(R) éo 1/27 = 2¢f(R)

whence f satisfies condition (4).

(b) Conversely, suppose f satisfies condition (4). Let ¢, §>0. There exists R,
such that if R> R, then [ f(x) dx <z8f(R). But then by the monotonicity of f we
have for R> R,

f(R+5) < f;” f() dx < J': F(9) dx < e5f(R)
whence f(R+¢)=o0(f(R)) as R —c0.
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LemMA 2. If R>1 then for all § € C*([0, o)) we have

)

where

f: F(x) dx

< 3@ [ s ax+ [ s ax}

1 0
5R) = sup 775 L £(x) dx.
Proof. For x, £>0 we have

() = YO+ L T (o) .

Multiplication by f(x) and integration first with respect to x over [R, ) and then
with respect to ¢ over [0, R] yields

R[" o ax = [ s ax [ des [ de [ s ax v a
= [Trwax [Twoder [ ae{ [Twwar [ 1 ax
+ f: () dt ft o) dx}.
Making use of the definition of 8 and the monotonicity of f we now obtain
B[ s ax] < s w) [ 1o e
+ [ ae{s@s@ [ 1wl aers® [~ row) a}
<3 [ rowol de+ Ro® [ ) di

whence follows the Lemma.

LEMMA 3. With & defined as in Lemma 2 there exists a constant C such that for
all ue W*2%(G) we have

(©) lul3.2.c0 < COR) 23, 2,

Proof. Without loss of generality we assume all functions are real-valued. Let
¢ € CY(G) have finite W*:2-norm and let ) € C*([0, c0)) be defined by

1 f(x) 2
9 = 7 f b(x, )2 dy,
Then clearly

| [7 763 ] = 1913.2.00
[7 11991 dx = 1418.2.0
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Moreover,
, 1 , 2 f(t) ) d
V) = s {FOr OB SO+ [ 26,9 Dibte, )
&)
=@ [ 10 b}

whence we have, since f’ is assumed bounded on [0, o),

f(t)
FOWO] <2 [ 146 9)] 1Dt )] dy

1 f(t)
[ SO~ 75 [ wenra

+ const.

<2 fom) |6(t, ¥)| | D1¢(t, ¥)| dy+const. |[¢(t, F(£)I2—[4(t, g(1))?]

for some function g satisfying 0 <g(¢) <f(¢). Hence

f(&) f(t)
SO (@) < const. { fo |8, ¥)| | D1g(t, ¥)| dy+ L [6(t, »)| | D2g(t, ¥) dy}-

1t follows that
fo " FOW©)] dt < const, {||¢.Dl¢|!o,1,a+1|¢.D2¢uo,1,c}
< const. { [,z ol Dutlo,5.c [#10.2.01 Deblo. .}

< const. {[¢l8.a,+ | DiblB. .o+ | Dl 5, 0)

Substitution in (5) now yields (6) for ¢ and the lemma follows by completion.

Proof of Theorem 1. (2) Sufficiency. We assume (4) and hence that 8(R) — 0 as
R —o0. Let {u}>; be a bounded sequence in W %(G). We must show that {u}
is precompact in L%(G) and for this it suffices by a standard diagonalization argu-
ment to show that

(i) for every £>0 there exists R such that for all i, ||#;o, 2,6, <e, and
(ii) for every bounded subdomain G’'<G the sequence {y; | G'} is precompact
in L*(G").

We note that (i) is an immediate consequence of Lemma 3. If G'=G is bounded
then G’'< K =G —Gjy for some R. The set K is bounded and sufficiently regular
that Rellich’s compactness theorem is known to hold for it and so {i | K3} being
bounded in W?* 2(Ky) is precompact in L%(Kz). Hence {y; | G’} is precompact in
L%*(G') and so the imbedding (3) is completely continuous.

(b) Necessity. We assume that (4) does not hold and so by Lemma 1 there exist
8,e>0 and a positive sequence {R;} with R; —>oo0 as j—>o0 such that f(R;+3e)
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> 8f(R,). Without loss of generality we may assume that R,, ;> R;+ 3 for each j.
Define functions u; as follows

x—R; for R; < x < R+«
c & for Rj+e < x < Ryj+2e
NR4+3—x for Rj4+2e < x < R;+3e
0 otherwise

ui(x) y) =

where ¢, is chosen so that

R, +2¢
il 0> 2 [ 1) dx > Pactf(R) = 1.
R;j+e&

But then
R, +& B, + 3¢
12wl = ([ + [ ) fo an
Ry Rs+2¢
< 2ec?f(R) = 2272671

so that {u;};2; is bounded in W* %(G) and bounded away from zero in L*(G).
Since the functions u; have mutually disjoint supports {,} is not precompact in
L*(G) and (3) is not completely continuous.

Remark. Condition (4) is not merely a restriction on the magnitude of f(x)
as x —> oo but is also concerned with the steadiness of its decay. In fact it is easy to
construct f(x) <e~** for which, however, f(x+1) #o(f(x)) as x — oo.
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