A COMPACT IMBEDDING THEOREM FOR FUNCTIONS WITHOUT COMPACT SUPPORT

BY R. A. ADAMS(1) AND JOHN FOURNIER(2)

The extension of the Rellich-Kondrachov theorem on the complete continuity of Sobolev space imbeddings of the sort

$$(1) W_0^{m,p}(G) \to L^p(G)$$

to unbounded domains G has recently been under study [1-5] and this study has yielded [4] a condition on G which is necessary and sufficient for the compactness of (1). Similar compactness theorems for the imbeddings

$$(2) W^{m, p}(G) \to L^p(G)$$

are well known for bounded domains G with suitably regular boundaries, and the question naturally arises whether any extensions to unbounded domains can be made in this case. Here G is an open domain in Euclidean n-space E_n , and, as usual, $W^{m,p}(G)$ [respectively $W_0^{m,p}(G)$] denotes for m a positive integer and $p \ge 1$ real the completion of the space of infinitely differentiable functions on G for which the norm below is finite [resp. the space of infinitely differentiable functions with compact support in G] with respect to the norm $\|\cdot\|_{m,p,G}$ defined by

$$||u||_{m, p, G}^{p} = \sum_{0 \le |\alpha| \le m} \int_{G} |D^{\alpha}u(x)|^{p} dx$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is an *n*-tuple of nonnegative integers; $|\alpha| = \sum \alpha_i$; $D^{\alpha} = D_1^{\alpha_1} \ldots D_n^{\alpha_n}$; $D_j = \partial/\partial x_j$.

The vanishing, in a generalized sense, on the boundary of G of elements of $W_0^{m,p}(G)$ plays a critical role in the establishment of the complete continuity of (1) for unbounded domains. For elements of $W^{m,p}(G)$ we no longer have this property and one might be led to expect that (2) cannot be compact for any unbounded G. For example, if G is the union of infinitely many balls B_j (j=1, 2, ...) with pairwise disjoint closures then the sequence $\{u_j\}$ defined by

$$u_{j}(x) = \begin{cases} 0 & \text{if } x \notin \overline{B_{j}} \\ (\text{vol. } B_{j})^{-1/p} & \text{if } x \in \overline{B_{j}} \end{cases}$$

is clearly bounded in $W^{m, p}(G)$ but not precompact in $L^{p}(G)$ no matter how rapidly

Received by the editors September 3, 1970.

^{(1) (2)} Research partially sponsored by the National Research Council of Canada under Grants A-3973 and A-4822.

the radius of B_j tends to zero as j tends to infinity. (As long as the radius of B_j tends to zero the imbedding (2) is compact by a theorem of [2].)

In the remainder of this paper we shall consider a very restricted class of unbounded domains G in E_2 for which a condition necessary and sufficient for the complete continuity of the imbedding

$$(3) W^{1,2}(G) \to L^2(G)$$

can be given. In particular, therefore, there do exist extensions of the Rellich-Kondrachov theorem to unbounded domains for imbeddings of type (2).

DEFINITION. Hereafter f shall denote a positive, decreasing, continuously differentiable function on $[0,\infty)$ with bounded derivative f' and which satisfies $\int_0^\infty f(x) dx < \infty$. G shall denote the domain in E_2 bounded by the coordinate axes and the curve y=f(x). For $R \ge 0$ we set $G_R = \{(x,y) \in G : x \ge R\}$ and $K_R = G - G_R$.

REMARK. C. Clark has shown in [5] that the imbedding (3) is not compact for a domain G of the above type but for which $\int_0^\infty f(x) dx = \infty$. The imbedding $W_0^{1,2}(G) \to L^2(G)$ is compact in this case provided only that $f(x) \to 0$ as $x \to \infty$.

Our principal result is the following

THEOREM 1. The imbedding $W^{1,2}(G) \to L^2(G)$ is completely continuous if and only if

(4)
$$\int_{R}^{\infty} f(x) dx = o(f(R)) \text{ as } R \to \infty.$$

EXAMPLE. $f(x) = e^{-x^2}$ satisfies (4) while $f(x) = e^{-x}$ does not. Condition (4) asserts that the half-life of f tends to zero as $x \to \infty$. In fact we require the following

LEMMA 1. Condition (4) is satisfied if and only if for every $\varepsilon > 0$, $f(R+\varepsilon) = o(f(R))$ as $R \to \infty$.

Proof. (a) Assume $f(R+\varepsilon)=o(f(R))$ as $R\to\infty$, for every positive ε . For such ε there exists R_0 such that if $x\geq R_0$ then $f(x+\varepsilon)\leq \frac{1}{2}f(x)$. Using the monotonicity of f we obtain for $R\geq R_0$

$$\int_{R}^{\infty} f(x) dx = \sum_{m=0}^{\infty} \int_{R+m\varepsilon}^{R+(m+1)\varepsilon} f(x) dx$$

$$\leq \varepsilon \sum_{m=0}^{\infty} f(R+m\varepsilon) \leq \varepsilon f(R) \sum_{m=0}^{\infty} 1/2^{m} = 2\varepsilon f(R)$$

whence f satisfies condition (4).

(b) Conversely, suppose f satisfies condition (4). Let ε , $\delta > 0$. There exists R_0 such that if $R \ge R_0$ then $\int_R^\infty f(x) \, dx < \varepsilon \delta f(R)$. But then by the monotonicity of f we have for $R \ge R_0$

$$\varepsilon f(R+\varepsilon) \le \int_{R}^{R+\varepsilon} f(x) dx \le \int_{R}^{\infty} f(x) dx < \varepsilon \delta f(R)$$

whence $f(R+\varepsilon) = o(f(R))$ as $R \to \infty$.

LEMMA 2. If $R \ge 1$ then for all $\psi \in C^1([0, \infty))$ we have

$$\left| \int_{R}^{\infty} f(x) \psi(x) \ dx \right| \leq \delta(R) \left\{ \int_{0}^{\infty} f(x) |\psi(x)| \ dx + \int_{0}^{\infty} f(x) |\psi'(x)| \ dx \right\}$$

where

$$\delta(R) = \sup_{S \ge R} \frac{1}{f(S)} \int_{S}^{\infty} f(x) \, dx.$$

Proof. For $x, \xi > 0$ we have

$$\psi(x) = \psi(\xi) + \int_{\xi}^{x} \psi'(t) dt.$$

Multiplication by f(x) and integration first with respect to x over $[R, \infty)$ and then with respect to ξ over [0, R] yields

$$R \int_{R}^{\infty} f(x)\psi(x) dx = \int_{R}^{\infty} f(x) dx \int_{0}^{R} \psi(\xi) d\xi + \int_{0}^{R} d\xi \int_{R}^{\infty} f(x) dx \int_{\xi}^{x} \psi'(t) dt$$
$$= \int_{R}^{\infty} f(x) dx \int_{0}^{R} \psi(\xi) d\xi + \int_{0}^{R} d\xi \left\{ \int_{\xi}^{R} \psi'(t) dt \int_{R}^{\infty} f(x) dx + \int_{R}^{\infty} \psi'(t) dt \int_{\xi}^{\infty} f(x) dx \right\}.$$

Making use of the definition of δ and the monotonicity of f we now obtain

$$R\left|\int_{R}^{\infty} f(x)\psi(x) dx\right| \leq \delta(R)f(R) \int_{0}^{R} |\psi(\xi)| d\xi$$

$$+ \int_{0}^{R} d\xi \left\{ \delta(R)f(R) \int_{\xi}^{R} |\psi'(t)| dt + \delta(R) \int_{R}^{\infty} f(t)|\psi'(t)| dt \right\}$$

$$\leq \delta(R) \int_{0}^{\infty} f(\xi)|\psi(\xi)| d\xi + R\delta(R) \int_{0}^{\infty} f(t)|\psi'(t)| dt$$

whence follows the Lemma.

LEMMA 3. With δ defined as in Lemma 2 there exists a constant C such that for all $u \in W^{1,2}(G)$ we have

(6)
$$||u||_{0,2,G_R}^2 \leq C\delta(R)||u||_{1,2,G}^2$$

Proof. Without loss of generality we assume all functions are real-valued. Let $\phi \in C^1(G)$ have finite $W^{1,2}$ -norm and let $\psi \in C^1([0,\infty))$ be defined by

$$\psi(x) = \frac{1}{f(x)} \int_0^{f(x)} (\phi(x, y))^2 dy,$$

Then clearly

$$\left| \int_{R}^{\infty} f(x) \psi(x) \ dx \right| = \|\phi\|_{0, 2, G_{R}}^{2}$$
$$\int_{0}^{\infty} f(x) |\psi(x)| \ dx = \|\phi\|_{0, 2, G}^{2}$$

Moreover,

$$\psi'(t) = \frac{1}{[f(t)]^2} \left\{ f(t)f'(t)[\phi(t,f(t))]^2 + f(t) \int_0^{f(t)} 2\phi(t,y) \ D_1\phi(t,y) \ dy - f'(t) \int_0^{f(t)} [\phi(t,y)]^2 \ dy \right\}$$

whence we have, since f' is assumed bounded on $[0, \infty)$,

$$\begin{split} f(t)|\psi'(t)| &\leq 2 \int_0^{f(t)} |\phi(t,y)| \; |D_1\phi(t,y)| \; dy \\ &+ \text{const.} \left| [\phi(t,f(t))]^2 - \frac{1}{f(t)} \int_0^{f(t)} [\phi(t,y)]^2 \, dy \right| \\ &\leq 2 \int_0^{f(t)} |\phi(t,y)| \; |D_1\phi(t,y)| \; dy + \text{const.} \; |[\phi(t,f(t))]^2 - [\phi(t,g(t))]^2| \end{split}$$

for some function g satisfying $0 \le g(t) \le f(t)$. Hence

$$|f(t)|\psi'(t)| \leq \text{const.} \left\{ \int_0^{f(t)} |\phi(t,y)| |D_1\phi(t,y)| dy + \int_0^{f(t)} |\phi(t,y)| |D_2\phi(t,y)| dy \right\}$$

It follows that

$$\begin{split} \int_{0}^{\infty} f(t) |\psi'(t)| \ dt &\leq \text{const.} \left\{ \|\phi. D_{1}\phi\|_{0, 1, G} + \|\phi. D_{2}\phi\|_{0, 1, G} \right\} \\ &\leq \text{const.} \left\{ \|\phi\|_{0, 2, G} \|D_{1}\phi\|_{0, 2, G} + \|\phi\|_{0, 2, G} \|D_{2}\phi\|_{0, 2, G} \right\} \\ &\leq \text{const.} \left\{ \|\phi\|_{0, 2, G}^{2} + \|D_{1}\phi\|_{0, 2, G}^{2} + \|D_{2}\phi\|_{0, 2, G}^{2} \right\} \cdot \end{split}$$

Substitution in (5) now yields (6) for ϕ and the lemma follows by completion.

Proof of Theorem 1. (a) Sufficiency. We assume (4) and hence that $\delta(R) \to 0$ as $R \to \infty$. Let $\{u_i\}_{i=1}^{\infty}$ be a bounded sequence in $W^{1,2}(G)$. We must show that $\{u_i\}$ is precompact in $L^2(G)$ and for this it suffices by a standard diagonalization argument to show that

- (i) for every $\varepsilon > 0$ there exists R such that for all i, $||u_i||_{0, 2, G_R} < \varepsilon$, and
- (ii) for every bounded subdomain $G' \subseteq G$ the sequence $\{u_i \mid G'\}$ is precompact in $L^2(G')$.

We note that (i) is an immediate consequence of Lemma 3. If $G' \subseteq G$ is bounded then $G' \subseteq K_R = G - G_R$ for some R. The set K_R is bounded and sufficiently regular that Rellich's compactness theorem is known to hold for it and so $\{u_i \mid K_R\}$ being bounded in $W^{1,2}(K_R)$ is precompact in $L^2(K_R)$. Hence $\{u_i \mid G'\}$ is precompact in $L^2(G')$ and so the imbedding (3) is completely continuous.

(b) Necessity. We assume that (4) does not hold and so by Lemma 1 there exist δ , $\varepsilon > 0$ and a positive sequence $\{R_j\}$ with $R_j \to \infty$ as $j \to \infty$ such that $f(R_j + 3\varepsilon)$

 $\geq \delta f(R_j)$. Without loss of generality we may assume that $R_{j+1} \geq R_j + 3\varepsilon$ for each j. Define functions u_j as follows

$$u_{j}(x, y) = c_{j}\begin{cases} x - R_{j} & \text{for } R_{j} \leq x \leq R_{j} + \varepsilon \\ \varepsilon & \text{for } R_{j} + \varepsilon \leq x \leq R_{j} + 2\varepsilon \\ R_{j} + 3 - x & \text{for } R_{j} + 2\varepsilon \leq x \leq R_{j} + 3\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

where c_i is chosen so that

$$||u_j||_{0,2,G}^2 \geq \varepsilon^2 c_j^2 \int_{R_j+\varepsilon}^{R_j+2\varepsilon} f(x) dx \geq \varepsilon^3 \delta c_j^2 f(R_j) = 1.$$

But then

$$||D_{1}u_{j}||_{0,2,G}^{2} = c_{j}^{2} \left(\int_{R_{j}}^{R_{j}+\varepsilon} + \int_{R_{j}+2\varepsilon}^{R_{j}+3\varepsilon} \right) f(x) dx$$

$$\leq 2\varepsilon c_{j}^{2} f(R_{j}) = 2\varepsilon^{-2} \delta^{-1}$$

so that $\{u_j\}_{j=1}^{\infty}$ is bounded in $W^{1,2}(G)$ and bounded away from zero in $L^2(G)$. Since the functions u_j have mutually disjoint supports $\{u_j\}$ is not precompact in $L^2(G)$ and (3) is not completely continuous.

REMARK. Condition (4) is not merely a restriction on the magnitude of f(x) as $x \to \infty$ but is also concerned with the steadiness of its decay. In fact it is easy to construct $f(x) \le e^{-x^2}$ for which, however, $f(x+1) \ne o(f(x))$ as $x \to \infty$.

REFERENCES

- 1. R. A. Adams, Compact Sobolev imbeddings for unbounded domains, Pacific J. Math. 32 (1970), 1-7.
- 2. ——, The Rellich Kondrachov theorem for unbounded domains, Arch. Rational Mech. Anal. 29 (1968), 390-394.
- 3. ——, Compact imbedding theorems for quasibounded domains, Trans. Amer. Math. Soc. 148 (1970), 445-459.
 - 4. ——, Capacity and compact imbeddings, J. Math. Mech. 19 (1970), 923-929.
 - 5. C. W. Clark, An embedding theorem for function spaces, Pacific J. Math. 19 (1966), 243-251.

University of British Columbia, Vancouver, British Columbia