
NONSINGULAR RINGS WITH ESSENTIAL SOCLES

Dedicated to the memory of Hanna Neumann

G. IVANOV

(Received 29 August 1972; revised 1 June 1973)

Communicated by M. F. Newman

This paper is a study of nonsingular rings with essential socles. These rings
were first investigated by Goldie [5] who studied the Artinian case and showed
that an indecomposable nonsingular generalized uniserial ring is isomorphic to a
full blocked triangular matrix ring over a sfield. The structure of nonsingular
rings in which every ideal generated by a primitive idempotent is uniform was
determined for the Artinian case by Gordon [6] and Colby and Rutter [2], and
for the semiprimary case by Zaks [12]. Nonsingular rings with essential socles and
finite identities were characterized by Gordon [7] and the author [10]. All these
results were obtained by representing the rings in question as matrix rings. In
this paper a matrix representation of arbitrary nonsingular rings with essential
socles is found (section 2). The above results are special cases of this representa-
tion. A general method for representing rings as matrices is developed in section 1.

The results of section 2 are used in section 3 to investigate the structure of
nonsingular QF-3 rings with finite identities. Semi-primary QF-3 rings which are
also partially PP rings were first studied by Harada [8], [9] who showed that
each of these rings has a semi-simple Artinian ring as a left, and a right, injective
hull and that a semi-primary hereditary QF-3 ring is generalized uniserial. Colby
and Rutter [3] proved these results for the semi-perfect case and later [4] showed
that an arbitrary nonsingular left and right QF-3 ring has a semi-simple Artinian
ring as a left, and a right, essential extension. In section 3 a matrix representation
of nonsingular QF-3 rings with finite identities is used to determine the structure
of left and right QF-3 rings and of semi-perfect QF-3 rings with various abundances
of projective ideals.

The following conventions, terminology and notation are used throughout
the paper. All exceptions to these are specifically mentioned so there are, hopefully,
no ambiguities. All rings have identities and all modules are unital. The adjective
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"left" is usually omitted from expressions such as "left module", "left ideal"
unless doubt could arise or special emphasis is wanted. A homomorphism be-
tween K-modules is an R-homomorphism. Homomorphisms are written on the
right, except those between right modules which are written on the left. Composi-
tion of homomorphisms is indicated by juxtaposition. The isomorphism symbol
~ is usually not subscripted but its meaning is always clear. The symbol © means
direct sum as modules.

1. Matrix Representations of Rings

Let £ be a right faithful two-sided ideal in a ring R and, for each reR, let pr

be that endomorphism of RE which maps xeE onto xr. Since E is right faithful
pr = 0 if, and only if, r = 0. Therefore the function F : R -* End^is) which maps
reR onto pr is a ring monomorphism. If pr e EF and <p e End(R£), then pr<f> = pri,
and pr4, ^ 0 when r £ ker (j>. That is, £ r is a faithful right ideal of End(R£) and
is, therefore, an essential left £F-submodule of EndGjE). This proves the following
theorem.

THEOREM 1.1. Let E be a right faithful, two-sided ideal in a ring R. Then
there is an embedding F : R-*End(RE) defined by: rF, reR, is the endomor-
phism which maps xeE onto xr. EF is a faithful right ideal o/End(R£) and an
essential left EF-submodule of End(RE).

Assume that £ is a direct sum of finitely generated left ideals Etj, i el,je J(i),
whose indexing satisfies the relation Etj cz Ea if, and only if, i = s and let N be
the disjoint union of the J(i). Then End(K£) is isomorphic to the ring of all row-
finite N x N matrices whose entries at the place (s, t), s e J(i), j ej(i), are elements
of Hom(£ls, £,-,). It is clear that, for fixed i e I, all the rings End(£fj) are mutually
isomorphic—isomorphic to Hu, say. If i, sel, then it is also clear that the (Hit, Hss)-
bimodules Hom(£y, £B) are isomorphic—isomorphic to His, say. Moreover,
these isomorphisms can be picked in such a way that they commute with the
multiplication (composition of homomorphisms) on u H o m ^ - . E , , ) . By substi-
tuting the Htj into the above matrix representation of End(R£), it can be seen
that End(R£) is isomorphic to the ring H of all blocked row-finite N x N matrices
whose {i,j)th block is a row-finite J(i) x J(j)-matrix over H tJ. For simplicity of exposi-
tion, the rings End(fi£) and H are usually identified and so are the (H{i,Hss)-
bimodules His and Hom(£ij-, £w). If Ekj is not finitely generated, then End(R£) is
isomorphic to H with its (k, t)th blocks replaced by blocks which may have infinite
rows.

DEFINITION. Let S be a set, {T(s) \seS}a. class of sets and {Aa \ (s, t) e S x S}
a class of additive abelian groups which have the following properties.

(i) Each Ass is a ring (with identity)
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(ii) Each A,,, is a unital (Ass, An)-bimodule.

(iii) There is a partial associative multiplication on U ^ s , with the property
that if <j> e A^ and \j/ e Atu then <j>\j/ is denned and is in Asu. This multilpication ex-
tends the ring multiplication on each Ass and the bimodule multiplication of
elements of As, by elements of ^4SS and Att. The generalized matrix ring GMR
(S, T(s), Ast) is the ring of all blocked row-finite matrices whose (s, t)'h block is an
arbitrary row-finite T(s) x T(0-matrix over Aa.

A matrix is finitary if it has only a finite number of non-zero entries. The
matrix in GMR(S, T(s), Ast) whose only non-zero entry is the element 0 of Ast

at the place (p, q) of the (s, t)'h block is denoted by \<j)\'s
q

p.
It is clear that the ring H, in the preceding discussion, is simply GMR

(I,J(i),HtJ).
Assume that each summand Etj of the ideal E is generated by an idempotent

etj and that the eu are orthogonal. If x is the endomorphism of E which is induced
by right multiplication by xeei}Repv then etJx = x and estx = 0, for est •£ ei}.
Therefore % corresponds to the matrix \x\ff of H. If K s H is the image of R
under the ring monomorphism induced by F, then clearly K contains all matrices
of the form |a|™" and hence all finitary matrices of H. Moreover the identity of H
is in K, since the identity of R induces the identity function on E.

Let G be a subring of H containing the finitary matrices and the identity and
consider the left ideal F = Z, jG/j ; , where ftj = |l|//. If xeH then fi}x is the
matrix which has the same entries as x at the places (J, I) in the (i, k)'h blocks and
whose other entries are zeros. As x is row-finite, this means that fux is a finitary
matrix and is, therefore, in F. Hence, F is a right ideal of G. If x has a non-zero
entry at the place (s, f) of the (ij)"1 block, then/fsx ^ 0 and so Fx # 0. That is, F
is right faithful. It follows from the above discussion that End(G£) is isomorphic
to GMR(/ ,J(0,Gy) where GtJ ^ Horn (Gfim, Gfjn). But C y * / y G / y =* HtJ,
therefore the rings End(GF) and H are isomorphic. This proves the following
theorem.

THEOREM 1.2. Let R be a ring and {e,v | i e I,j e J(i)} a set of orthogonal idem-
potents of R with the property that Y,tjReij is a faithful right ideal. Then R is
isomorphic to a subring K of the ring H— GMR(I,J(i),Hjj), where the groups
Hfj and the subring K have the following properties.

(i) The identity of H is in K.

(ii) The finitary matrices of H are in K.

(iii) For each i, the rings End(Reik) and Hu are isomorphic and, for all i,j,
these isomorphisms make each Hom(Reis,Rejt) into an (Hji,Hjj)-bimodule
isomorphic (as a bimodule) to H y .

Conversely, if K and H satisfy the above conditions down to, and including,
condition (ii), then K has a set {ftj\ieI,J(i)} of orthogonal idempotents with
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the property that E , ;K /y is a faithful right ideal of K. Moreover, the rings H
and EndK(XijKfij) are isomorphic.

DEFINITION. An idempotent is primitive if it is not the sum of two orthogonal
idempotents. An idempotent is finite if it is a sum of (a finite number of) orthogonal
idempotents. A ring is indecomposable if it is not a direct sum of two two-sided
ideals.

When the ring R has a finite identity then Theorem 1.2 can be strengthened
to the following characterization, which is proved in [10].

COROLLARY 1.3. Every indecomposable ring with finite identity is isomorphic
to a GMR(I,J(i),H,j) which satisfies the following conditions.

(i) The sets I and J(i), iel, are finite.
(ii) Each HH has a unique idempotent (the identity).
(iii) For any (s,t)el x I there is a sequence s = r(\),r(2), •••,t(n) = t of

elements of I with the property that for each r(i) either Hr( j ) r ( i+1) ^ 0 or

) ^ 0-

Conversely, every GMR(/, J(i), Htj) which satisfies the above conditions is
indecomposable and has a finite identity.

2. Nonsingular Rings with Essential Socles

DEFINITION. The singular submodule Z(M) of an .R-module M is the sub-
module of all elements of M which are annihilated by essential ideals of R. M is
nonsingular \fZ(M) = 0 and it is singular if Z(M) = M. The left singular ideal

Zt(R) of a ring R is the ideal Z(RR) and the right singular ideal Zr(R) is Z{RR).

R is left (respectively, right) nonsingular if Z,(R) = 0 (respectively, Zr(R) = 0).

The left and right socles of a ring R are denoted by S,(R) and Sr(R), respectively.

A module is uniform if all of its submodules are essential. The additive group of

row-finite c x d-matrices over a ring A is denoted by M(A,c x d).

The following well-known results are essential for the discussion in the re-

mainder of the paper. Their proofs can be found in [10].

LEMMA 2.1. If N is an essential submodule of an R-module M, then for any

meM there is an essential ideal Eof R such that Em <= N.

LEMMA 2.2. Let M,N be R-modules such that Z(N) = 0. / / the kernel of

a homomorphism <\> : M - > N is essential, then <f) = 0. In particular, if M is uni-

form then every non-zero </> : M -* N is a monomorphism.

LEMMA 2.3. / / M is a minimal ideal in a nonsingular ring R then there is a

primitive idempotent eeR such that Re ^ M.

From now on let R be a nonsingular ring with essential socle. Let Eo be a
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complement in S,(i?) of the sum of all nilpotent minimal ideals. It is clear that Eo

is a direct sum of minimal ideals each generated by a primitive idempotent. Let
£ t be an ideal maximal with respect to not intersecting Eo and the property that
Eo © Et is a two-sided ideal. Since S£R) is a two-sided ideal it is contained in
E — Eo © Eu and, therefore, E is right faithful. Hence it follows from Theorem 1.1
that there is an embedding of R into End(R£) and this embedding is characterized
by the following theorem. To ensure that R is embedded in the smallest ring which
is useful (for this approach) the ideal E, rather than S,(.R), is used. This is parti-
cularly significant when R has a finite identity, for then E = R and the above
embedding is surjective.

THEOREM 2.4. / / R is a nonsingular ring with essential socle then it is iso-
morphic to a subring K of the ring H = GMR{I,J(i),Hi}). The rings K and H
have the following properties.

(i) The integer 1 is an element of I and J(l) = {1}.
(ii) / / i # 1 then Hti is a sfield.
(iii) / / for i # 1 the left Hu-dimension of Hn is bt, then Hlx c n>#1

M(Hu,b,xbt).
(iv) Sj^i/Zji is a faithful right Hn-module.
(v) / / i # j and j # 1 then Htj = 0.
(vi) The identity of H is in K.
(vii) For each i e I\ {1} and each j e J(i) there is a matrix f{j e K whose non-

zero entries are all in the j ' h column of the (i,i)'h block and whose entry at the
place (j,j) in this block is the identity of Hu.

(a)

(b) Eachfij\d\l/ is in K.

(c) For each i e / \ { l } , eachjeJ(i) and every non-zero xeK whose non-

zero entries are all in the j ' h column of the (i,i)'h block, there is a matrix ysK

with the property that yx = ftj.

Conversely, if K is a subring of H = GMR(I,J(i),H,j) and K and H satisfy

the above conditions then K is a nonsingular ring with essential socle.

PROOF. AS mentioned above the isomorphism between R and K is obtained
by applying Theorem 1.1. To do this, express Eo as a direct sum

© Reu
is / '

of minimal ideals generated by primitive idempotents which are indexed in such a
way that Re^ ^ Rest if, and only if, i = s. Assume, moreover, that I' does not
contain the integer 1 and let / = / ' U {1}, J(l) = {1} and £ n = Ev It follows
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from the discussion following Theorem 1.1 that End(RE) is isomorphic to a ring
H' which is a slightly modified GMR(/, J{i),Ht]), where for fixed i,j,Hjj is an
identification of all the groups HomR(Eis,EJt)—Epq stands for Repq, if p ¥= 1. The
modification is that the (l,p)'* blocks in elements of H' need not be row-finite.
As before, End(R£) and H' are identified so that, by Theorem 1.1, R is isomorphic
to a subring K of H'. So it only remains to show that K satisfies conditions (vi)
and (vii) and that it is contained in a subring H of H' which satisfies conditions
(ii)-(v).

(ii) Each Re^ is a minimal ideal so if i ^ 1 then Hu is a sfield.
(iii) Clearly fc( is the cardinal of a set T(i) of images of Rei} in Et t which is

maximal with respect to the sum of the elements of T(i) being direct. Since every
minimal ideal of R is isomorphic to an Retj (Lemma 2.3) the socle of £ l t is the
direct sum ®i*it(i), where t(i) is the sum of all minimal ideals in T(i). By
Lemma 2.2 the restriction to S(Etl) of a non-zero endomorphism of £ u is non-
zero. Therefore Htl can be regarded as a subring of IT;^ M(Hih bt x b,) which is
isomorphic to End(S(£u)).

(iv) Each Reu is a direct summand of R, so S(£n) = /?(Lj#1//f l). As S(£n)
is not annihilated by non-zero endomorphisms of £ u , the product (2.ii:lHn)h
is non-zero, for each non-zero fteHlt.

(v) If i / j and i,j ^ 1 then Rels % ReJt and, therefore, HtJ = 0. For non-
zero xeRepq if Extx # 0 then, since i?x = /?ep9 is projective, £ t x ~ N®M
where Mx ^ 0 and M a* i?x. By definition of £0, M is nilpotent and so MRx = 0:
a contradiction. Hence £ I t x = 0 for all xeRepq and, therefore, K is contained in
the subring Hoff l 'o f all matrices whose (1,p)"1 blocks, p # 1, are zero.

(vi) Since the identity endomorphism on H can be extended to the identity
on R, the identity of E is in K.

(vii) The idempotent eu induces, by multiplication on the right, a homomor-
phism £ -* RetJ which is the identity on Re^. Therefore etj is mapped, by the em-
bedding of R into H, onto a matrix ftj e K whose non-zero entries are all in the
j ' h column of the (i, i)'h block and whose entry at the place (j,j) is the identity of

(vii) (a) Every homomorphism d : Retj -»Reik can be extended to the endo-
morphism \d\'^ of £. Therefore RetJ is mapped by \d\fj into Reik, that is, x|d||*e Kfik,
for every x e Kf^.

(vii) (b) A similar argument shows that for every heHn the matrix fu\ft|,
x/

is in K.
(vii) (c) The ideal £ is mapped by x into Re^, so x(l —ftj) annihilates £.

Hence Lemma 2.2 implies that x(l —ftj) = 0 and so Kx e Kftj. As Kftj is a
minimal ideal, there is a matrix yeK such that yx = fl}.

The ring K has an identity (condition (vi)), so to prove the converse it is
necessary to show only that the socle of K is essential and that K is nonsingular.
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The former is true if every non-zero principal ideal Kx contains a minimal ideal.
By (vii) (c), KftJ is a minimal ideal, so if/yKx^O then, Kx contains a minimal ideal
isomorphic to Kfti. If x has a non-zero entry at the place (j, k) of the (i, t)'h block,
i i= 1, then/^x # 0; and if x = \h\\[ then, by (iv), there is a geHn, for some
i / 1, such that gh # 0 and so/y|gi|yx ^ 0. That is, Kx always has a minimal
ideal: therefore St(K) is essential in K. To show that K is nonsingular it is sufficient
to prove that S,(K)x i=- 0, for every non-zero xeK. If x ^ 0, then one of the
ideals Kf(Jx, KftJ\h\\) x is non-zero and so, since Kfi} and KftJ\h\^ (h ¥= 0) are mini-
mal ideals, S,(.K)JC # 0: therefore K is nonsingular.

Dorroh's extension A* of a ring A with characteristic f is the unital ring on
Z, x A, Zt being the integers modulo t, whose addition is component-wise and
whose multiplication is given by (m, x)(n, y) = (mn, my + nx + xy), for all m,
neZt, x, ye A. It is easy to see that the isomorphic image {0} x A of A is an
essential ideal of A*. Therefore, A is nonsingular ring with essential socle if, and
only if, A* is. Consequently, the next result follows immediately from conditions
(ii) and (iii) of Theorem 2.4.

COROLLARY 2.5. The characteristic of a nonsingular ring with essential
socle (but not necessarily with identity) is not divisable by p2,for any prime p.

The statement of the next result requires some more notation. Consider the
ring H = GMR(I,J(i),Hu) of Theorem 2.4 and let ee Hlt be an idempotent and
Io ^ /\{1}. Let/(/(,,e) denote that matrix in H whose only non-zero entries are
the identities of (the appropriate) Hu on the diagonals of the blocks (i,j), i e 70,
and the idempotent e in the block (1,1).

COROLLARY 2.6. The ring R of Theorem 2.4 is indecomposable if, and only
if, for every proper subset /„ c /\{1} and every idempotent ee Htl with the pro-
perties that Hne = Hn,for ielo, and Hne — 0, for i$I0, the matrix f(I0,e) is
not in K.

PROOF. If R is decomposable then it has an idempotent / such that R is the
sum of the non-zero two-sided ideals I?/and R(l —/), that is, R = fRf®(l —/)
• R(l - / ) . Therefore each eu is in fRf or in (1 -/)/?(1 - / ) . If M * Reu and
eu e fRf then, since etjM # 0,/M # 0 and so M ^ fRf Therefore there is a proper
subset Io cz /\{1} with the property that a minimal ideal is in/R/if, and only if,
it is isomorphic to an Reu, ielo.

Conversely, if for a proper subset Io S /\{1} there is an idempotent feR
with the property that a minimal ideal is in Rf if, and only if, it is isomorphic to an
Reu, ielo, then R is the sum of the non-zero two-sided ideals Rf, R(l—f) and
so is decomposable. The ideals Rf, R(l —/) are two-sided since fR(l — f)
= (1 —f)Rf = 0. For if /R(l — / ) # 0 then there is a non-zeroh omomorphism
(p :Rf^R(l —/) which, by Lemma 2.2, does not kill a minimal ideal in Rf.
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Therefore R(l —/) contains a minimal ideal isomorphic to a minimal ideal in Rf:
a contradiction to the hypothesis on / . Therefore //?(1 — / ) = 0 and, similarly,
(1 -f)Rf = 0. Since Io is a proper subset of/ {1}, both Rf and R(l - / ) contain
an Reu and so i?/and R(l —/) are non-zero.

It follows that R is indecomposable if, and only if, it does not have an idem-
potent / with the above properties. If R does contain such an idempotent / , then
because / i s a left and a right identity for each Re^ (i e Io) and all its homomorphic
images in R,f is mapped, by the embedding of R into H, onto a matrix f(I0,e),
where ee HX1 is an idempotent with the properties that Hne = Hn, for i eIo, and
Hne = 0, for i$I0. Conversely, if K contains an idempotent / = f(I0, e) then
K =fKf®{\ -f)K(l - / ) and so K is decomposable.

COROLLARY 2.7. The ideal Eo = Z,,y/tey of the ring R of Theorem 2.4 is
generated by a set of orthogonal primitive idempotents if, and only if, condition
(vii) of Theorem 2.4 can be replaced by the condition that all of the finitary ma-
trices with zero in the block (1,1) are in K.

PROOF. Necessity. Clearly it can be assumed that the idempotents ei} are
orthogonal. Therefore their images, the idempotents ftJ, in K are orthogonal and
so fij= \l\)Jj. Hence conditions (vii) (a) and (vii) (b) merely state that the finitary
matrices with zero in the block (1,1) are in K. If x e K has non-zero entries only
on the j ' h column of the (i, i)"1 block and the non-zero entry d at the place (k,j)
then l^"1!** = 111*5- S° condition (vii) (c) is satisfied.

Sufficiency. It was just shown that the above condition implies condition
(vii), so it remains to show only that the complement, in St(R) of the sum of all
nilpotent minimal ideals of K is generated by a set of orthogonal primitive idem-
potents. It is clear that {|l||y} is such a generating set.

THEOREM 2.8. If R is a nonsingular ring with essential socle and an essential
(left) ideal which is generated by a set of orthogonal primitive idempotents and
which is also a right ideal then R is isomorphic to a subring K of H = GMR
(I,J(i),HtJ), where K and H have the following properties.

(i) / is the disjoint union of a non-empty subset Io and a subset It.
(ii) / / i e 70 then Hti is a sfield.
(iii) If the Hu-dimension ofHtj is bu then Hpq £ YlieIoM{Hihbip x biq).
(iv) If jelo and i J= j then H^ = 0.
(v) If 4>eHJk is non-zero then there is an i e / 0 such that //,-,(/> ^ 0.
(vi) The identity of H is in K.
(vii) The finitary matrices of H are in K.
Conversely, if K is a subring of H = GMR(/, J(i), Hi}) and K and H satisfy

the above condition, then K is a nonsingular ring with essential socle and has a
right ideal which is also an essential left ideal and is generated, as a left ideal,
by a set of orthogonal primitive idempotents.
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PROOF. Let E be the left essential two-sided ideal of R generated by orthogonal
idempotents e{j, iel, je J(i), which are indexed in the usual way. Lemma 2.3
implies that there is a subset Io of/ with the properties that RetJ, i e Jo, is a minimal
ideal and every minimal ideal is isomorphic to an ReiJt ielo. It follows from
Theorems 1.2 and 2.4 and Corollary 2.7 that R can be represented as a matrix
ring K which has all the above properties except (iii) and (v), so it remains to
prove that K satisfies (iii) and (v).

(iii) The socle of ReJt is a direct sum of ideals LiJh i e Io, where Lijt is the sum
of all minimal ideals in ReJt which are isomorphic to an Reu, i e Io. As LiJt is a sum
of minimal ideals it can be expressed as a direct sum of btj (say) minimal ideals.
By Lemma 2.2, different homomorphisms from Rejt to Rekm have different
restrictions to S (Rej,). Therefore Hom(Rej7, Rekm) =* HJk can be embedded in
Hom(S(Ke,,), S(Rekm)) * nisIoM(Hu, btJ x bik).

(viii) If <f> : Reji ->Rekm is non-zero then, by Lemma 2.2, Ly,0 # 0 for some
i e Jo. Therefore there is a homomorphism \j/ : Reis -* Rejt with the property that
il/(j) # 0.

When R has a finite identity the embedding described by Theorem 2.8 is
surjective. This leads to the following result which was proved independently by
Gordon[7] and the author [10], although Gordon stated it only for the semi-
perfect case. It is included here for the reader's convenience as it will be used
throughout the rest of the paper.

THEOREM 2.9. / / R is an indecomposable nonsingular ring with essential
socle and a finite identity, then R is isomorphic to the ring H = GMR(/,J(i) ,Hy)
of Theorem 2.8 which now satisfies the usual indecomposability condition and has
the additional property that the sets I, J(i),(iel) are finite. The decomposability
condition can be stated in terms of the minimal ideals of H as follows. If s,tel
then there is a sequence s — r(l),---,r(n) = t of elements of I with the property
that for each r(i) there is ajelo such that either Hj^ # 0 or Hjr(l+1) # 0.

The converse is also true.

REMARK. The ring H of the preceding theorem can be represented diagram-
matically as follows, on the next page, where blanks denote zeros and the squares
on the diagonal denote sfields.

DEFINITION. A (left) T-ring is a ring whose non-zero (left) modules have non-
zero socles.

Alin and Armenderiz [1] have investigated the structure of T-rings whose
singular simple modules are injective. When such a ring has a finite identity
Theorem 2.9 provides a quick determination of its structure.
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\
\

\

LEMMA 2.10. [1, Theorem l.l(a)]. / / the singular simple modules of a T-
ring are injective then the ring is nonsingular.

THEOREM 2.11. If R is an indecomposable T-ring whose identity is finite and
whose singular simple modules are injective then R is isomorphic to the ring
H of Theorem 2.9 and H has the following additional properties.

(i) Each Hu is a sfield.
(ii) / / i 6 Ix and i ^ j then Hu - 0.
The converse is also true.

REMARK. A diagrammatic representation of H is given on the next page, where
the blanks stand for zeros and the squares on the diagonal for sfields.

PROOF. Let R = RIS,(R) and note that, since St(R) is a two-sided ideal of R,
R is a ring whose ideals coincide with its .R-submodules. Since R is a singular R-
module, every minimal ideal of R is a direct summand and so is generated by an
idempotent. Let e e R be a primitive idempotent which is not in St(R). By hypo-
thesis, R has essential socle, so it has a minimal ideal M ^R~e - Re/S(Re). If M
is generated by an idempotent / then ef # 0, since fe — f and f2 = / . Therefore
M is generated by the idempotent/then ef # 0, since fe=fand f2 = / . Therefore M
is generated by the idempotent/! = ef&eRe. By Lemma 2.3, eSt(R) = 0 which
implies that eRe n S/(R) = 0 and, therefore, eRe and eRe are isomorphic rings.
Since e is the only idempotent in eRe, / t = e. Therefore Re is a minimal ideal.
It follows that S(Re) is the unique maximal submodule of Re and that eRe is a
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\
\

sfield. Consequently, if eteR is also a primitive idempotent, then eRe, ¥> 0 if,
and only if, Re a* Re^. This proves that H satisfies conditions (i) and (n).

Now consider the converse. It is clear that every factor module of HH
has non-zero *ode, hence every cyclic tf-module has non-zero socle and, there-
fore, H is a T-ring. Every singular simple if-module M is lsomorphic to
HWI S(H\l\V) for some iel,. Consequently, the only ideals which have M
as homomorphi'c images are the H\l%jeJ(i), and their sums. Hence every
homomorphism from an ideal of H to M can be extended to a homomorphism
from H to M. Therefore M is injective.

The case when R has an infinite identity poses difficult problems. It is still
true that if eeR is a primitive idempotent then eRe is a sfield and S(Re) is the
unique maximal submodule of Re, but these properties are no longer sufficient
to guarantee the converse.

3. Nonsingular QF-3 Rings with Finite Identities

DEFINITION. A ring R is a (left) QF-3 ring if it has a faithful left module
which is (isomorphic to) a direct summand of every faithful left R-module.

In this section all rings have finite identities, although some results are valid
without this assumption. The following characterization of arbitrary QF-3 rings,
due to Colby and Rutter, is fundamental to the work in this section.
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THEOREM 3.1. [4, Theorem 1]. If R is a QF-3 ring (not necessarily with
finite identity), then it has a finite set of orthogonal primitive idempotents
{el5 •••,ek} with the properties that T,\Ret is injective, has essential socle, and is
the (up to isomorphism) unique minimal faithful R-module. Conversely, if a
ring R has a set {et,---,ek} of orthogonal primitive idempotents such that
YJ[Rei is a faithful, injective ideal with essential socle, then R is a QF-3 ring.

LEMMA. IfR is a nonsingular QF-3 ring (not necessarily with finite identity),
then R has essential socle and every minimal ideal of R is isomorphic to the
socle of one of the ideals Re{ of Theorem 3.1.

PROOF, Let Re = H\Rei be the minimal faithful ideal of R given by Theorem
3.1. If xeR is non-zero, then xRe ^ 0 and so there is a non-zero homomor-
phism (f> : Rx -»Re (given by rxcj> = rxa, for some aeRe satisfying xa # 0).
Since Re has essential socle, there is a minimal ideal M c Rxcj>. Let K = M ^ " 1 .
Then ker^>|K is a maximal submodule of K but is, by Lemma 2.2, not essential in
K. Therefore K = L © ker$|K for some minimal ideal L ^ M. Therefore, every
ideal of R contains a minimal ideal and so the socle of R is essential. Since M is
isomorphic to an S(Ret), every minimal ideal of R is isomorphic to the socle of
an Ret.

It is clear from Theorem 3.2 that a nonsingular QF-3 ring with finite identity
is a direct product of a finite number of indecomposable nonsingular QF-3 rings,
so it is sufficient to study only the indecomposable ones.

THEOREM 3.3. If R is an indecomposable nonsingular QF-3 ring with a finite
identity then it is isomorphic to the ring H described by Theorem 2.9 and the
following additional properties.

(i) There are positive integers k,n,n ^ 2k — 1, such that I = {l,---,n},
Jo = {m, ••-,«}, where m = n — k + 1. Denote {1, ••-,&} by I2.

(ii) If iel2 then Hn is a sfield.
(iii) / / i e I2 and j = n - i + 1 then Hn = # j 7 = Hji.
(iv) / / (e 12 and j = n — i + 1 then Hsi = M(Hjj, bJs x 1), for every sel.
(v) / / i e / 2 and i ¥= j then H^ = 0.
The converse is also true.

PROOF. Necessity. Let R be as in the theorem and let

(3.4) R = R e ^ ® ••• ® R e n ® ••• ® R e i v ( i ) ® ••• ® R e n v ( n )

be a decomposition of R such that the etJ are orthogonal primitive idempotents
with the property that Re^ ^ Rest if, and only if, i = s. For simplicity of notation,
denote en by et. In view of Theorem 3.1, it can be assumed that for a positive in-
teger k ^ n each Reit 1 ^ i ^ k, is an injective ideal and Xj-Re; is the minimal
faithful .R-module. It follows from Lemmas 2.3 and 3.2 that for a positive integer
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m ^ n each Ret, m ^ i ^ n, is a minimal ideal and every minimal ideal is iso-
morphic to one of these. Since the Reh 1 ^ i ^ k, are non-isomorphic injective
ideals their socles are non-isomorphic minimal ideals. Therefore n — m = k — 1
and it can be assumed that the indexing of the Ret is done in such a way that if
m ^ i ^ n and 1 ^ j ^ k then Ret a S(Rej) if, and only if, i = n—j + 1. It
follows from Theorem 2.9 that R is isomorphic to a generalized matrix ring H
which satisfies all the conditions stated in the theorem except (ii), (iii), (iv), (v) and
the inequality n ^ 2fc — 1. So it is sufficient to show that H also satisfies these
conditions.

(ii) If iel2 then Ret is an indecomposable injective ideal whose socle is,
therefore, a minimal ideal. Since Ret is non-singular it follows, from Lemma 2.2,
that End(Ret) ^ End(S(Re,)). Therefore Hti is a sfield.

(iii) If iel2 and j = n — 1 + 1, then Re} m. S(/?ef) and so HJt is a one di-
mensional vector space over HJJ. Moreover it follows, from the fact that End (i?ef)
~ End(S(Rei)), that HH a HJJ. If </>, i/ze Hji are non-zero then Re$ ^ Re^
and so there is a homomorphism a : Rerf -* Re$ satisfying <f>a. = xji. Since Ret

is injective a can be extended to an element of Hu. Therefore HJ{ is a one dimen-
sional right vector space over Hu. Since HJt is a one dimensional left vector space
over Hjj and since Hu m HJJ, it follows that Hu, HJJ and HJt can be identified.

(iv) It follows from the indexing of the Ret that if i e I2 then bjj ^ 0 if, and
only if,j = n — i + l and then bjt = 1. As /?ef is injective, every homomorphism
S(Res) -> Ret can be extended to a homomorphism Kes -> Re;. Therefore, by (iv),
Hsi = M(Hjj, bjs x 1), where j = n - i + 1.

(v) If i e J2 then, by Lemma 2.2, every non-zero homomorphism <f> : Ret -* Rej
is a monomorphism. As Ret is injective, Ret(j) is a direct summand of Re} and so
Ret(f) = Rej. Therefore, i = ; and Hi} = 0 if i ^ ; .

« ^ 2fc - 1. If n < 2fe - 1 then k > m and conditions (v) and (iv) of 2.8 are
incompatible with the indecomposability condition of 2.9: a contradiction.
Therefore n ^ 2k - 1.

Sufficiency. Let H be a matrix ring with all the properties stated in the theorem.
Then it follows from Theorem 2.9 that H is an indecomposable, nonsingular ring
with essential socle and a finite identity. So it remains to show that H is a QF-3 ring.
In view of Theorem 3.1, it is sufficient to prove that £* H\l\\\ is a faithful, injective
ideal.

For each i e Io, let e, denote the element | l | " of H.I{(pe Ha is non-zero then,
by (iii) of 2.8, 4> = E£0j, where <j>i e M(HU, bis x bu), and so one <£,-, say #,-, is non-
zero. Therefore <i>jM(Hjj,bjt x 1) # 0 and so if i = m - j + 1 then it follows
from (iv) that |</>|jp#e,- # 0. It can, similarly, be shown that if x is a non-
zero element of//, then x(YJ[ Het) # 0. That is, £*//ei is faithful.
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To show that Heh iel2, is injective, it is sufficient to prove that for any ideal
L of H every homomorphism L -> He] can be extended to a homomorphism
H -* Hei. Since S(L) is essential in L and is a direct summand of St(H), it follows
from Lemma 2.2 that it is necessary to show only that every homomorphism
<p : St(H) -* Het can be extended to a homomorphism <j> : H -* He{. Let $a : S(H)
-> Het be the map which agrees with <j> on S(Hest) and kills the other S(Hepq). The
image of <pst is in S(He,) ~ HeJt where j = n — i + 1, so (f>sl is determined by its ac-
tion on Lj, the sum of the images ofHej in Hea. As Lj is a direct sum of bJs minimal
ideals (Theorem 2.9), 4>a can be regarded as an fe M(HJp bjs x 1). The matrix
J/IJ,1 is in H (condition (iv)) and induces, by multiplication on the right, a homo-
morphism 0s, : H -> He, which agrees with <f>a. Consequently, <j> = Z j , , ^ can be
extended to a homomorphism 0 ' = Xs>,<^, from H to Het and, therefore, //ef

is injective. This proves the theorem.

COROLLARY 3.5. A nonsingular QF-3 ring with finite identity is right non-
singular and has essential right socle.

PROOF. This is an immediate consequence of Theorem 3.3 and the right dual
of Theorem 2.9.

THEOREM 3.6. Let R be an indecomposable, nonsingular ring which has a
finite identity and is a left, and a right, QF-3 ring. Then St(R), and Sr(R), are
direct sums of a finite number of minimal left, and right, ideals, respectively,
and R is isomorphic to a matrix ring H which is described by Theorem 3.3 and
the following additional property.

If ielo then each HtJ has finite left dimension over HH.
{The converse is also true.)

PROOF. Let H be the representation of R afforded by Theorem 3.3 and let et

denote the matrix |l|/i of H. It is clear that e,H, i e / 2 , are minimal right ideals
and that every minimal right ideal is isomorphic to such an etH. Since these efl
are non-isomorphic, it follows from the right dual of Lemma 3.2 that every ejH,
jelo, is an injective right ideal. For i £ I2 let csi be the right dimension of Hsl over
Hu. Since right homomorphisms are written on the left, it follows from condition
(iv) of 3.3 and its right dual, that if i e I2 and j = n - i + 1 then Hsi

= M(Hjj, bjs x 1) and Hjs = M(HU, csi x 1). If bJS is infinite then, from the first
equation, csi > bJs and, from the second equation, bJs < csi: a contradiction.
Consequently, bjs is finite, bjs = csi, and both S£R) and Sr(R) are finite dimen-
sional. The converse to the theorem follows immediately from Theorem 3.3 and
its right dual.

A completely analogous argument shows that even without the assumption
that the identity of R is finite, the above theorem is still true. It is, of course, neces-
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sary to use a different representation of R. If H' is the representation of R ifforded
by the decomposition JR = Ret © ••• © Rek © Rem © ••• © Ren © R(\ - e), where
e = Z5 e-i + L"< e,-, then it can easily be shown that etH', i e J2, is a minimal right
ideal and that H' satisfies (an analogue of) condition (iv) of 3.3. The rest of the
proof is verbatim.

COROLLARY 3.7. A nonsingular QF-3 ring whose socle is a direct sum of
a finite number of minimal ideals is a right QF-3 ring.

DEFINITION. A ring R with finite identity is a (left) partially PP ring if its
identity has a decomposition 1 = Zef into orthogonal primitive idempotents with
the property that for every non-zero x e etRej the ideal Rx is projective. For
simplicity, only such decompositions of the identity of a partially PP ring will be
discussed. The ring R is a (left) PP ring if its principal ideals are projective. R is
(left) semi-hereditary if its finitely generated ideals are projective. A module is
locally cyclic if its finitely generated submodules are cyclic. A ring R is semi-
perfect if its identity is a sum of a (finite) number of orthogonal primitive idem-
potents et such that each efiej is a local ring. This definition is equivalent to the
usual one [11].

LEMMA 3.8. A partially PP ring is nonsingular.

PROOF. Let 1 = Ze( be a decomposition, into orthogonal primitive idempo-
tents, of the identity of a partially PP ring R and let x y e etRej be non-zero. If
l(x,j) is the left annihilator of xijy then RxtJ ~ ^//(x^) and, since Rx^ is projective,
l(xu) is a direct summand of R. That is, /(xfj) is not essential. Every x e R is a sum
of xu: therefore, R is nonsingular.

Let R be an indecomposable QF-3 and partially PP ring, and consider the
decomposition (3.4) and the representation H, ifforded by Theorem 3.3, of R. The
image of a non-zero homomorphism <j) : Ret -> Rej is projective, so its kernel is a
direct summand of Ret and, therefore, <j> is a monomorphism. Therefore it follows
from conditions (iv) of 3.3 and (v) of 2.8 that every jRe; is isomorphic to a sub-
module of an ReJt iel2. Hence, the socle of each Ret is indecomposable and since,
by the indecomposability condition of 2.9, k = 1 and m = n, every bns = 1. That
is, all S(Ret) are isomorphic. It follows from condition (iv) of 3.3 that Hn — Hni

= Hnn, for all i, and from condition (iii) of 2.8 that HtJ ^ Hm, for all i,j.

An equivalence relation can be defined on the set {Ret} by relating two ideals
if, and only if, they contain isomorphic copies of each other. The resulting set of
equivalences classes {[/?c,]} is partially ordered by the relation: [.Re,-] Si \_Rej]
if, and only if, Ret is isomorphic to a submodule of Rey This order has a unique
minimal element, [Ken], and a unique maximal element, [ R e j . If \Re^\ and [Re;]
have an equal number of classes smaller than themselves, then they are not com-
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parable: that is, etRej = ejRei = 0. It follows that there is a sequence of integers
1 < /i(l) < ••• < h(t) < n, with the properties that if i ^ h(s) < j , then [.Re,]
$ [Rej\; and if h(s) < i, j g h(s + 1) then different \_Rei] and [_Rej\ are not com-
parable. This proves the necessity of the following characterization of R. The suf-
ficiency is clear.

THEOREM 3.9. / / R is an indecomposable QF-3 and partially PP-ring then
it is isomorphic to the ring H of Theorem 3.3 and H has the following addition-
al properties.

( i ) I is partitioned into subsets 1(1) = { 1 , 2 , •-- / i ( l ) } , -•-, / ( s ) = {h(s - 1 ) + 1 ,

••-,/i(s)}, ••-,7(0 = {h(t — 1) + 1, •••,«} which have the following properties.

(a) / / ieliSi) and jel(s2), st < s2, then Hu = 0.

(b) / / i, jel(s) and Hi} ± 0 then Hn * 0.

(ii) Each Htj is contained in a sfield D and, for each is I, Hn = Hni = D.
The converse is also true.

COROLLARY 3.10. A (left) QF-3 and (left) partially PP ring is a right QF-3
and right partially PP-ring.

Now let the ring H, of Theorem 3.9, be a semi-perfect PP-ring. Since H is
semi-perfect its projective modules are direct sums of isomorphic copies of the
Heh i £ / [11]. It follows that if a e etH and b e efl, i ^ j , are non-zero elements
with the property that Ha n Hb ^ 0 then H(a + b) = Ha + Hb is isomorphic to
one of He{, Hes. That is, H(a + b) e {Ha, Hb}. Therefore either there is an element
c e eflej such that a = cb or there is an element d e ejHei such that b = da.

This shows that if a e Hik and fi e HJk then either there is a y e HtJ such that
a = yP or there is a d e HJt such that 0 = <5a, but since Het ^ Hej, not both. If
Htj = 0 then Hb <= Ha and, by restricting a, b to Heu it can be seen that Hjt = D.
As Het % He} no element of HtJ has an inverse in Hjh so if Hjt = D then Hu = 0.
This proves the first part of Theorem 3.11.

The converse of 3.11 can be checked by noting that if a = Z , 6 j | a s | M , b
= £,e/|/?,|n and Ha C\Hb # 0 then it follows, from condition (v) and the fact
that all Hst are in D, that either there is a y e HtJ such that each at = yfit or there
is a 5 e HJt such that each Pi = dat. Hence one of the ideals Ha, Hb is contained
in the other. It follows that every principal ideal of H is projective.

THEOREM 3.11. If R is an indecomposable semi-perfect QF-3 and PP-ring
then it is isomorphic to the ring H of Theorem 3.9 and H satisfies the following
additional conditions.

(i) Each Hit is a local ring.
(ii) / / i > j then Hi} # 0.
(iii) / / i,j e I(s) then H^ # 0. If moreover h(s + 1) > h(s) + 1 then Htj # D.

https://doi.org/10.1017/S1446788700017110 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017110


374 G. Ivanov [17]

(iv) / / i > h(s) ^ j then HtJ = D.

(v) / / a e Hik, p e Hjk then either a e Htjp or fie HtJx.

The converse is also true.

If the ring H, of 3.11, is semi-hereditary then every indecomposable finitely
generated ideal is principal. This leads to the following result.

THEOREM 3.12. A ring is an indecomposable semi-perfect semi-hereditary
QF-3ring if, and only if, it is isomorphic to the ring H of 3.11 and H has the
following additional property.

Every Htj is a locally cyclic H[{-module.

QUESTION. Are Theorems 3.11 and 3.12 (without condition (i) of 3.11) still
valid if the semi-perfect condition is weakened to the condition that the identity
of H is finite? This will be true if every indecomposable principal (respectively,
finitely generated) ideal of H is isomorphic to one of the Heh i e I.
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