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Abstract. This review focuses on different patterns of magnetoconvec-
tion and on aspects of flux expulsion, flux separation and flux pumping.
The transition between magnetoconvection and small-scale dynamo ac-
tion will be described and the role of rotation in leading to large-scale
dynamo action will be emphasized. An attempt will be made to relate
the results of numerical experiments to magnetic features that can be
observed on the Sun, and must also be present in other late-type stars.

1. Introduction

It is now more than half a century since Hannes Alfven initiated the new subject
of magnetohydrodynamics and applied it to the origin of sunspots. That led to
studies of the interaction between convection and magnetic fields in stars but the
style of these investigations has changed drastically since then. Forty years ago it
was only feasible to obtain linear results, relying on analytical techniques. Now it
is possible to compute nonlinear solutions for a realistic three-dimensional model
of a stellar atmosphere and to compare the results directly with appropriate ob-
servations. This progress has led to two contrasting theoretical approaches. One
is concerned with predicting quantities that can actually be measured, while the
other involves the construction of idealized models that allow different processes
to be isolated and explained. The former approach has proved particularly suc-
cessful in stellar atmospheres, while the latter is more appropriate for stellar
interiors (which are anyhow not amenable to direct observation). Reductionist
models of magnetoconvection have gradually advanced from kinematic to dy-
namic calculations, from two to three dimensions and from Boussinesq fluids to
fully compressible atmospheres. Nevertheless, despite the advent of supercom-
puters, it remains impossible to reach the high values of the Reynolds number
and the magnetic Reynolds number that prevail in stellar convection zones.

In this survey I shall first review the progress that has been made during
the last few decades (cf. Weiss 1991). Much of the stimulus has come from the
ever-increasing precision of high-resolution solar observations, starting with the
Stratoscope balloon-borne telescope in the 1950s (Danielson 1961) and culmi-
nating in the new Swedish Vacuum Solar Telescope on La Palma, whose first
results are eagerly awaited.
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2. Looking back

Sunspots provided the original motivation for studying the interaction between
magnetic fields and convection. The first glimmerings of understanding came
in an exchange of letters between Ludwig Biermann, in Germany, and Thomas
Cowling, in England, in 1938-39. Biermann suggested magnetic inhibition of
convection might explain why spots were cool; Cowling, after characteristically
expressing his initial doubts, agreed with this proposal. During the war, Bier-
mann (1941) wrote a survey of stellar convection in which he argued that the
magnetic field in a sunspot umbra could suppress convection since the magnetic
energy density was much greater than the kinetic energy density of photospheric
convection - see Thomas & Weiss (1992) for the text of his brief statement. The
next step was due to Claes Walen: in the course of a rather rambling article
(Walen 1949) he mentioned the competition between thermal buoyancy and the
Lorentz force produced by the curvature of horizontal field lines, and obtained a
criterion for the magnetic suppression of convection which was later resurrected
by Cowling (1953).

After this prehistory came the development of linear theory. Cowling (1957)
generalised Walen's result and derived a criterion for the transition from un-
damped oscillations to exponentially growing overturning motion in the absence
of any diffusion. Thompson (1951) had already included magnetic and ther-
mal diffusion and showed that if the latter was more effective (as is typically
the case in stars) then convection could set in as exponentially growing (over-
stable) oscillations. Finally, Chandrasekhar (1952, 1961) provided the full canon-
ical treatment, with viscosity also included, and distinguished carefully between
overstability and monotonically growing instabilities. The next stage came with
the development of bifurcation theory and nonlinear dynamics. It was soon
found that the initial bifurcation might be subcritical (Veronis 1959; Proctor &
Weiss 1982). Further behaviour was established by expanding about the Takens-
Bogdanov point, with parameters chosen so that the stationary and oscillatory
bifurcations coincide (Knobloch & Proctor 1981; Guckenheimer & Holmes 1986).
The resulting bifurcation patterns could be illustrated in a truncated fifth-order
model which also exhibited chaotic oscillations (Knobloch, Weiss & DaCosta
1981) and Rucklidge (1992, 1994) subsequently confirmed that chaos can occur
arbitrarily close to the initial bifurcation.

Meanwhile, computers had developed sufficiently to make it possible to
carry out numerical experiments and the idealized problem of two-dimensional
convection in an electrically conducting, incompressible (Boussinesq) fluid with
an imposed vertical magnetic field was systematically investigated (Weiss 1981a,
b; Proctor & Weiss 1982; Weiss 1991). The resulting bifurcation structure could
be related to that derived from theory and the nonlinear solutions showed how
vigorous convection led to flux expulsion and segregation of the magnetic field
from the motion. The next stage was to extend these studies by including
compressibility, so that not only stratification but also pressure fluctuations are
important (Hughes & Proctor 1988). The linear theory becomes more compli-
cated, since both fast and slow magnetoacoustic waves are now involved (Weiss
1991), and two-dimensional nonlinear calculations revealed a correspondingly
richer variety of behaviour (Hurlburt & Toomre 1988; Hurlburt et ale 1989;
Weiss et ale 1990; Matthews et ale 1993; Proctor et ale 1994).
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By this time the first three-dimensional calculations had appeared, in both
the Boussinesq (Arter 1985) and anelastic (Nordlund 1983, 1984) approxima-
tions. The latter showed how magnetic flux was swept to the edges of the rising
plumes as they impinged on the upper boundary. Thus a magnetic network was
formed above the sinking fluid, corresponding to the network that encloses su-
pergranules and, on a much smaller scale, to the concentrations of magnetic flux
in intergranular lanes. Since then, as computers have grown more powerful and
more sophisticated codes have been developed, simulations have become more
realistic and it has become possible to explore parameter ranges that are more
extreme.

3. Detailed simulations

Numerical modelling of photospheric convection has proved extraordinarily suc-
cessful (e.g. Spruit, Nordlund & Title 1990; Stein & Nordlund 1998). These
simulations are fully compressible; they include a realistic equation of state,
representing ionization and chemical composition, as well as radiative transfer.
The computational domain spans a region that extends from the temperature
minimum down to a depth that is greater than the diameter of photospheric
granules. Fortunately, behaviour at the photosphere turns out to be remarkably
insensitive to the formulation of a lower boundary condition, which inevitably
has to be somewhat artificial. The simulated patterns of photospheric convec-
tion closely resemble observations of the solar granulation but the calculations
are not just restricted to the Sun. Other similar stars can also be modelled and
line profiles have been successfully computed. The same approach can naturally
be extended to include magnetic fields. Nordlund & Stein (1989, 1990) followed
the evolution of the intergranular magnetic network in a facular region, where
the mean field is fairly strong, and also attempted to model convection in the
umbra of a sunspot. The most recent simulations (Stein, Bercik & Nordlund
2002) show how magnetic flux is swept first into the intergranular lanes and
then concentrated around the larger-scale mesogranules. Small-scale magnetic
elements with intense fields appear at corners in this network. Depending on
the amount of flux that is involved, they give rise to bright points (slender flux
tubes that are laterally heated) or to micropores (somewhat larger concentra-
tions, which appear darker because convective transport is locally suppressed).
Since these and other simulations are described elsewhere in these Proceedings
by Stein & Nordlund (2002) and by Vogler & Schussler (2002), I shall refrain
from discussing them any further here.

4. Idealized models

The alternative approach, which follows naturally from the earlier work de-
scribed in §2, is to construct more elaborate idealized models, focusing on spe-
cific aspects of three-dimensional nonlinear magnetoconvection. In this section
I shall describe some recent developments, all of which rely on massive com-
putation. Early two-dimensional kinematic models had already established two
related effects, the expulsion of magnetic flux from persistent eddy-like circu-
lations and diamagnetic expulsion by inhomogeneous turbulence (Parker 1979;
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Figure 1. Hysteresis in compressible magnetoconvection for R ==
100000 and Q == 2000. The left-hand panel shows small-scale steady
convection in narrow hexagonal cells, enclosed by a magnetic network
at the upper surface. The right-hand panel shows a flux-separated
solution with a broad and vigorously convecting plume from which
magnetic flux has been expelled. The grey-scale shading shows the
magnetic field strength at the top and (reflected) the bottom of the
layer, with lighter shades indicating stronger fields. Shading of the
sidewalls denotes temperature perturbations from the static polytropic
solution and the arrows represent the tangential velocity in each sur-
face. (After Weiss et ale 2002.)

Proctor & Weiss 1982; Zeldovich, Ruzmaikin & Sokoloff 1983; Mestel 1999),
though three-dimensional behaviour proved more complicated to describe (Gal-
loway & Proctor 1983; Arter 1983). Both of these effects turn out to be im-
portant in dynamical modelling of three-dimensional magnetoconvection. The
examples I have chosen concern, first, the pattern of convection in the presence
of a strong vertical magnetic field, secondly, downward pumping of horizontal
flux by compressible convection and, thirdly, the transition from magnetocon-
vection to small-scale dynamo action in a Boussinesq fluid, which links to the
calculations described by Cattaneo (2002) later in these proceedings.

4.1. Patterns of nonlinear magnetoconvection

The properties of nonlinear convection in a strongly stratified layer with an im-
posed vertical magnetic field have been systematically investigated (Weiss et ale
1996; Rucklidge et ale 2000; Weiss, Proctor & Brownjohn 2002). The fluid is
a perfect gas; in the absence of any convection it would be a (strongly supera-
diabatic) polytrope with a polytropic index m == 1 and an elevenfold increase
in temperature and density across the layer. It is contained in a box with a
square cross-section and a ratio of width to height, the aspect ratio A, that can
be varied. The system is assumed to be periodic in both horizontal directions.
At the top and bottom the magnetic field is constrained to be vertical, while
the vertical velocity and the tangential stress vanish. The temperature is fixed
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Figure 2. Flux separation in nonlinear magnetoconvection. As Fig-
ure 1 but for Q == 1400 (left panel) and Q == 1000 (right panel). In
both cases only flux-separated solutions are stable and the patterns are
time-dependent. The regions of vigorous convection contain clusters of
interacting plumes, from which magnetic flux has been expelled. These
are surrounded by regions with strong fields and feeble small-scale con-
vection. (After Weiss et ale 2002.)
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at the base of the layer; at the top it may either be fixed or else satisfy a 'ra-
diative' boundary condition but this distinction has little effect. The properties
of this system depend on five dimensionless parameters. These are the midlayer
Rayleigh number, R, which measures the superadiabatic gradient, the Chan-
drasekhar number, Q, which is proportional to the square of the imposed field
strength, the Prandtl number (the ratio, a, of viscous to thermal diffusivity) and
the ratio, (, of magnetic to thermal diffusivity, plus the aspect ratio, '\. For the
runs to be described here, we set R == 100, 000 and decrease Q from values high
enough to halt convection, while a == 1 and ( varies over the range 0.2 :::; ( :::; 2.2
from top to bottom of the layer. This mimics the effects of ionization in the
Sun, where ( « 1 at the photosphere, so that oscillatory convection is favoured
locally, but ( > 1 at depths greater than 2 000 km, favouring steady overturning
convection.

Earlier calculations (Weiss et ale 1996) were limited to relatively narrow
boxes with ,\ == 2. They showed a transition from small-scale steady convection
in slender hexagonal cells to spatially modulated oscillations (Weiss et ale 1990;
Hurlburt, Matthews & Rucklidge 2000) and then to broad vigorous plumes, as
Q was progressively decreased. Once more powerful computing facilities became
available it was possible to carry out numerical experiments in wider boxes and
it turned out that the patterns of convection had been constrained by choosing
such a narrow aspect ratio (Tao et ale 1998b; Rucklidge et ale 2000). In order
to avoid this problem it is necessary to set ,\ ~ 6 and a systematic survey has
now been carried out with ,\ == 8 (Weiss et ale 2002). When Q is very large the
magnetic field is strong enough to suppress convection completely. Linear theory
shows that convection sets in at a stationary bifurcation, giving rise to small-

https://doi.org/10.1017/S0074180900133315 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900133315


132 Weiss

Figure 3. Intermittent fields in the weak field regime. As Figure 1
but for Q == 500 with A == 8 (left panel) and, in more detail, Q == 200
with A == 4 (right panel). Magnetic flux is squeezed into the narrow
lanes that enclose clusters of vigorously interacting plumes. Flux moves
rapidly through this network, forming intense but ephemeral fields at
the corners. (After Weiss et ale 2002.)

scale steady motion, at Q ~ 4200. In the strong field regime (4 000 ~ Q ~

1800) we obtain solutions with steady convection in narrow hexagonal cells,
corresponding to behaviour in dark nuclei within sunspot umbrae. Figure la
shows the magnetic field strength at the top and bottom of the box for Q == 2 000.
As the rising plumes impinge upon the upper boundary, they sweep magnetic
flux aside to form a network that encloses them. Conversely, the (artificial) lower
boundary conditions ensure that flux is concentrated beneath these plumes by
the converging flow. This pattern remains stationary until Q == 1600, when it
becomes oscillatory. The plumes do not move but they alternate aperiodicically
in vigour, giving rise to spatially modulated oscillations.

When Q == 1400 a totally new pattern appears, as shown in Figure 2a:
some of the slender plumes amalgamate, convecting so vigorously that magnetic
flux is expelled. This results in flux separation, where strong fields (with weakly
convecting narrow cells) are segregated from actively convecting plumes. More-
over there is hysteresis: with suitable initial conditions, flux-separated solutions
can be obtained for Q ::; 2 000, as illustrated in Figure 1b. Flux separation
continues as Q is decreased through a regime of moderate field strengths, with
1400 ~ Q ~ 600. Figure 2b shows a typical pattern, for Q == 1000: vigorous
field-free convection now occupies a much larger fraction of the region, with
weaker small-scale convection in the remainder, where the field is strong. As the
imposed field is further reduced, magnetic flux is progressively confined to lanes
that enclose the clusters of broad and interacting plumes. In the pattern for
Q == 500, shown in Figure 3a, there is still some fine structure in these lanes but
by Q == 200 magnetic flux is confined to regions of strong field in which convec-
tion is locally suppressed, as illustrated in the detailed image of Figure 3b. The
flux apparently moves like a magnetic fluid through the network that encloses
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these mesoscale clusters. The strongest fields appear at corners in this network
but these intense fields are ephemeral and change as the pattern alters. In this
regime no isolated flux tubes can be found. This pattern represents behaviour
in plage regions in the photosphere. Computational difficulties have so far pre-
vented us from proceeding to yet lower values of Q, corresponding to the quiet
Sun.

4.2. Flux pumping

The problem of kinematic flux expulsion in steady laminar motion has a ven-
erable history, going back to J.J. Thomson (1893). In particular, an initially
horizontal field embedded in a layer of two-dimensional eddies will be expelled
into boundary layers at the top and bottom of the layer if the magnetic Reynolds
number is sufficiently high (Weiss 1966). Inhomogeneous turbulence may also
exhibit a similar diamagnetic effect, pumping magnetic flux down the gradient of
turbulent intensity (Zeldovich 1956; Radler 1968). The latter process has been
demonstrated numerically both for convectively driven and for forced turbulence
in fully dynamical two-dimensional calculations (Nordlund et ale 1992; Branden-
burg et ale 1996; Tao, Proctor & Weiss 1998a). In a compressible fluid, up-down
symmetry is broken and three-dimensional convection leads to the appearance
of hexagonal cells. Then there is a topological distinction between the network
of sinking fluid and the isolated rising plumes. Drobyshevski & Yuferev (1974)
argued that magnetic flux would therefore be pumped preferentially downwards.
It turns out, however, that there is a much more potent mechanism. All simu-
lations of stratified compressible convection show a strong contrast between the
gently rising plumes and the sinking fluid, which is focused into rapidly descend-
ing plumes at corners in the network (e.g. Spruit et ale 1990). Since magnetic
fields 'feel' velocity rather than momentum density through the induction equa-
tion, the field is predominantly influenced by these vigorous sinking plumes and
is therefore pumped downwards.

Magnetic pumping has been modelled by placing a strongly superadiabatic
layer above one that is stably stratified and investigating the fate of an initially
horizontal field (Tobias et ale 1998, 2001; Dorch & Nordlund 2001). The vigor-
ous sinking plumes penetrate into the stably stratified region, exciting internal
gravity waves, and are effective in pumping magnetic flux downwards and out
of the unstable region. Figure 4 shows the results of a calculation where the
lower layer is only weakly stable (Thomas et ale 2002). (In the absence of any
motion the two layers would have had polytropic indices m == 1 and m == 1.75,
where m == 1.5 for adiabatic stratification.) The volume renderings in this figure
show initial and final states of the vertical velocity w, of the enstrophy density
0 2 (the square of the vorticity) and of the normalised magnetic energy density
B 2 • After a relatively short time, most of the horizontal magnetic flux has been
pumped into the stable region, leaving tangled fields behind in the turbulent
convecting layer above. The fields themselves are represented in Figure 5, which
shows four selected bundles of field lines together with volume rendered surfaces
of constant enstrophy (which coincide with sinking plumes, as can be seen from
Figure 4). There is an obvious contrast between the tangled field lines in the
upper region and the predominantly horizontal field lines below, which are only
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Figure 4. Downward pumping of magnetic flux by turbulent com-
pressible convection. Left panels show the initial state, right panels
show results at the end of the pumping phase. The volume rendering
at the bottom shows the vertical velocity w, with red (blue) denot-
ing up-(down- )ward motion. The enstrophy density 0 2 is represented
in the middle and the magnetic energy B 2 is shown at the top. At
time t == 0 a thin layer of strong unidirectional field is inserted into an
already convecting layer. By time t == 14.6 (in appropriate units) mag-
netic flux has been pumped out of the upper layer and into the stably
stratified region below. The role of the rapidly sinking plumes, which
penetrate into the lower region, is clearly apparent. (After Thomas et
ale 2002.)
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Figure 5. Perspective view of field lines when flux pumping has oc-
curred. Red-blue shading indicates the vertical velocity just below the
top, while the blue volume rendering shows surfaces of constant enstro-
phy, which indicate the locations of the rapidly sinking plumes. The
instantaneous positions of four bundles of field lines, passing through
the red beads, reveal the magnetic field. In the upper, unstable layer
the field lines are strongly distorted but the original field direction is
preserved when magnetic flux is pumped into the lower region. (After
Thomas et al. 2002.)
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distorted by the penetrating plumes. (Note that these field lines only provide
very local indications of variations in field strength.)

In a star like the Sun, magnetic flux is pumped downwards out of the
convection zone and into the stably stratified radiative zone below. Since the
interface is the site of the tachocline, where there is a strong shear in angular
velocity, this pumping process is an important ingredient of the dynamo that
maintains the star's magnetic field. The same process is also important in the
solar photosphere. The shallow surface layer of vigorous granular and mesogran-
ular convection is superposed on deeper, larger-scale supergranular motion which
is relatively weak. So flux tubes can be held down in spite of being magneti-
cally buoyant. This effect is believed to be responsible for the interlocking-comb
structure of the magnetic fields in the penumbrae of sunspots (Thomas et ale
2002).

4.3. Small-scale dynamos

For my final topic, I shall take up the issue raised at the end of §4.1. What
happens as the imposed magnetic field is further decreased until it becomes
extremely small? The turbulent motion is chaotic, in the sense that the distance
between neighbouring fluid elements increases exponentially, and this has two
competing effects on the magnetic field. Field lines are stretched by the chaotic
flow, thereby increasing the magnetic energy, but the transverse scale of variation
is reduced, so enhancing dissipation. If the former process dominates, the motion
will act as a small-scale dynamo, producing a disordered field. Cattaneo (1999)
has demonstrated that turbulent convection in a Boussinesq fluid can indeed
act as such a dynamo in the limit when Q = 0 and there is no net imposed
field, provided that the magnetic Reynolds number Rm is sufficiently large. In
practice this requires that Rm ~ 1 000 (cf. Cattaneo 2002) and it is hard to
attain this value in compressible calculations.

What is feasible, however, is to explore the effect of decreasing Q in Boussi-
nesq magnetoconvection. This has been done for a Rayleigh number R =
500000, with a = 1 and ( = 0.2, in a wide box with ,\ = 10 (Emonet, Cattaneo
& Weiss 2001; Cattaneo, Emonet & Weiss 2002). With this choice of parame-
ters, convection sets in at a subcritical oscillatory bifurcation when Q = 370000.
Figures 6 and 7 show the behaviour found near the upper boundary as Q is re-
duced over the range 50 000 ~ Q ~ 3 125. For the strongest imposed field (case
4) there is an irregular pattern of small-scale cellular convection and magnetic
flux is swept into a network that encloses the rising plumes as they impinge
upon the rigid upper boundary. The field in this network has the same sign
everywhere. Note that the up-down symmetry of Boussinesq convection ensures
that there is a complementary pattern at the lower boundary, so the field within
the layer is more complicated. The symmetry also ensures that there is no pref-
erential pumping of magnetic flux. Reducing Q allows the cells to widen, as
shown for case 3, but they are still enclosed by a network of unidirectional field.
By case 2 it is apparent that the magnetic pattern has a larger scale than the
thermal pattern and segments of oppositely directed field have appeared. With
the lowest value of Q (case 1) a two-scale pattern has appeared (Cattaneo, Lenz
& Weiss 2001). The magnetic fields surround clusters of convection cells and
are strongest at the corners of this mesocellular network. By this stage the total

https://doi.org/10.1017/S0074180900133315 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900133315


Modelling Stellar Magnetoconvection

Figure 6. From magnetoconvection to small-scale dynamo action.
Temperature fluctuations near the top of the layer for Q == 3 125 (case
1), Q == 12500 (case 2), Q == 25000 (case 3) and Q == 50000 (case
4). Light regions are hot, dark regions are cool. (After Cattaneo et ale
2002.)
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magnetic and kinetic energies are very nearly equal, and the overall pattern is
very similar to that found when Q == 0 and a weak small-scale field is allowed
to grow until a statistically steady state has been reached (Cattaneo 1999).

It follows that there is a smooth transition from magnetoconvection to
small-scale dynamo action. Moreover, there is every reason to expect that a
similar transition could be found for compressible magnetoconvection with a
sufficiently high value of Rm . Owing to stratification, the behaviour of the dy-
namo will be complicated by downward pumping of magnetic flux. It seems likely
that local dynamo action near the photosphere is responsible for producing the
disordered small-scale fields that are constantly emerging to form a magnetic
carpet in the Sun (see, for example, Simon, Title & Weiss 2001).
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Figure 7. As Figure 6 but showing the magnetic field at the upper
boundary, which is constrained to be vertical. In these images, white
indicates strong fields parallel to the direction of the imposed field,
black indicates oppositely directed fields and mid-grey corresponds to
zero field. (After Cattaneo et al. 2002.)

5. Looking ahead

Although we have seen remarkable progress in computational modelling of stellar
magnetoconvection there is still a long way to go. In the immediate future we
can expect to carry out numerical experiments with higher values of Rand
Rm as more powerful facilities become available. It will also be necessary to
use wider boxes, with A 2:: 12, in order to study small-scale dynamo action in
a stratified layer, where the rising plumes are broader. In addition, we shall
be able to probe deeper into a compressible atmosphere and thus to gain a
better idea of the structure of convection and the origin of the supergranular
pattern that is so striking at the surface of the Sun. That will help in exploring
the combined effects of granules, mesogranules and supergranules in pumping
magnetic flux below the photosphere, which will in turn illuminate the structure
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of penumbral filaments in sunspots. Similarly, it will become possible to model
three-dimensional convection in the presence of tilted magnetic fields and thus
eventually to build up coherent models of sunspots and starspots.

In the longer term, what are needed are global, rather than local, calcula-
tions so that we can describe the interactions between convection and magnetic
fields in the deep convection zones of late-type stars. Instead of modelling small-
scale dynamo action, leading to disordered fields only, we want to represent the
large-scale magnetic field that is responsible for cyclic activity in the Sun. It is
rotation that produces macroscopic order out of microscopic chaos and so the
first priority must be to establish how convection interacts with angular mo-
mentum in solar-type stars. Then we have to explain the differential rotation
that has been revealed by helioseismology, together with the origin of the narrow
tachocline. Only then will it be possible to produce a self-consistent model of
the solar dynamo itself, such as exists already for the geodynamo. After that,
we shall be ready to go on and provide more detailed models of dynamos in more
active, rapidly rotating stars, and to explain why they exhibit polar spots.
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6. Discussion

GRAY: Some time ago measurements of granulation layers were found to vary
during the solar cycle. This seems to be at least qualitatively in agreement with
your calculation. Has anyone, or have you, followed up on this point?
WEISS: High-resolution ground bound observation (for example, from the SVST
on la Palma) show that the granulation in plage region is very different from
that in the quiet Sun. The cells are indeed smaller, as expected from models of
magnet-convection, and the patter is clearly abnormal. Thus there is indeed a
variation in mean granulation size over the solar activity cycle, though the effect
is not very large.

DRAVINS: The solar-cycle changes of granular sizes influences another impor-
tant field of astronomy: the search for exoplanets. Spectral line profiles and
wavelength shifts are somewhat different in magnetic granulation, producing an
Ll-year cycle in integrated sunlight of wavelength shifts of some 20 or 30 ui]«.
This is to compared with the 13 mls induced by Jupiter over 12 years, as the Sun
is moving around their common center of mass. Thus, in order to distinguish
real exoplanets with periods comparable to stellar activity cycles, from changes
in magnetic convection, may require a good understanding of the latter.

STEPIEN: Have the computations of the flux pumping shown any approach to
stationary situation (in a statistical sense) or the system evolved systematically
till the end of the computations?
WEISS: The final state depends on the boundary conditions that are imposed.
If no magnetic flux is allowed to escape, the system will eventually settle down
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to a statistically steady state. If magnetic flux can leak out through the upper
then the field will eventually decay, but on a very long time-scale compared with
that of pumping to occur.

STEPIEN: Do you think that sunspots (starspots) can be produced by the sta-
tistical fluctuations during magnetic convection computations or an additional
mechanism of flux concentration is needed?
WEISS: No, such large magnetic features can only be produced by some global
process, presumably a large-scale field generated by a dynamo located at the
base of the convection zone. The magnetic flux that emerges in ephemeral
active regions to form the 'magnetic carpet' is probably produced by small-scale
dynamo action somewhere below the photosphere.
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