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P-ADIC PROPERTIES OF SIEGEL MODULAR FORMS
OF DEGREE 2

SHOYU NAGAOKA

Introduction

H. P. F. Swinnerton-Dyer determined the structure of the algebra
of modular forms modp for all prime numbers p in elliptic modular
case (cf. [10]). Using his result, J.-P. Serre investigated the properties
of p-adic modular forms and succeeded to construct the p-adic zeta func-
tions for any totally real number fields (cf. [8]).

In this paper, we shall try to generalize the result of Swinnerton-
Dyer to the Siegel modular case.

In Part I, we shall study the property of Eisenstein series of de-
gree 2.

Our result is stated as follows:

THEOREM. Let U, be the Eisenstein series of degree 2 and of weight
k. Let Z, denote o numerator of the m-th Bernoulli number B,,. We
assume that the prime number p x 2,3 satisfies Z,_; = 0 (mod p). Then

.=1 (modp™) &k =0 (modp™(p — 1)) .

(Furthermore we have gotten the similar result in the case of arbitrary
degree n, which will be stated in Part 1.)

In Part II, we shall generalize the notion of the algebra of modular
forms mod p to the case of Siegel modular forms of degree 2, and de-
termine its structure.

We shall begin with the definition of Siegel modular forms mod p.
It is well known that the Siegel modular form f(Z) of degree 2 has a
Fourier expansion of the form

7@ = 3 a(T) exp {2ni tr (T2)}
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where T runs over all half integral positive semi-definite symmetric
matrices of degree 2. Denote by O, the local ring of @ at p, i.e. the
ring of all rational numbers with denominators prime to p. Let 7,,
be the ©,-module of Siegel modular forms of degree 2 with even weight
k whose Fourier expansions have all their coefficients in £,, and let
I.., be the space of all formal power series

7= > a(T) exp {2ni tr (T2)}

where f(Z) = 3 a(T) exp {2x¢ tr (TZ)} runs over all the elements of I, ,
and the tilde denotes the reduction mod p. Then we can define the F,-
algebra M, of modular forms mod p of degree 2 by M,= . I ,.

k:even

Our main result can be stated as follows:
Let 3, and y,, are Siegel modular forms of degree 2 and of weight 10
and 12 respectively, which will be defined in Part I.

MAIN THEOREM. Let U, be the same as in the above theorem. Let
P % 2,3 be a prime number satisfying ¥,_, = 1(mod p). Then

M, = F,[UV,W,X1/(B—-1).

Here B is the polynomial with coefficients in O, satisfying ¥,_, = B{¥,,
Ty Y105 Y12) ONA B is the reduction modp of B. The isomorphism is in-
duced by corresponding U, V,W and X to ¥,,¥s, 5,0 and 3., respectively.

The author wishes to express his hearty thanks to Prof. Y. Morita
and Prof. T. Oda for their valuable advices.

Notations

We denote by Z,Q,C the ring of rational integers, the field of
rational numbers, and the field of complex numbers, respectively.

For any prime number p, let @,,Z, and F, be the field of p-adic
numbers, the ring of p-adic integers, and the finite field with p elements.

We denote by M,(C) the ring of all matrices of size » with entries
in C. For any element 4 of M,(C), we denote the trace of A and the
determinant of A by tr (4) and det (4), respectively.

For a complex symmetric matrix Z, we write Z > 0 (resp. Z =0)
if Z is positive definite (resp. positive semi-definite).

H, denotes the Siegel upper half plane of degree 7, namely the
space of all complex symmetric matrices Z = X + 1Y of degree n with
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imaginary parts Y > 0.

We denote by I', (= Sp (n, Z)) the homogeneous Siegel modular group
of degree x.

Part I

§1. Siegel modular forms

In this section, we shall recall the fundamental properties of Siegel
modular forms.

First, we define the Siegel modular form of degree n. I', = Sp(n,Z)
operates on H, by

H,>7Z v o(Z) = (AZ + B)(CZ + D)!

for ¢ = (gl g) eI, with A,B,C and D e M,(Z).

A holomorphic function f(Z) on H, is called a Siegel modular form
of weight k if it satisfies the following conditions:
(1) For every element ¢ of I',, f(Z) satisfies

Sf(0(2)) = det (CZ + D)*f(2) .

(2) f(Z)is bounded in any domain {Z|Y = Y, > 0} in the case n = 1.
It is well known that f(Z) has the Fourier expansion of the form

J(Z) = TZg:oa(T) exp {2z tr (T2)}

where the sum extends over all half integral positive semi-definite sym-
metric matrices.

The Eisenstein series of degree n and of weight k& is defined as
follows ;

U.(Z) =>det(CZ +D)*, ZeH,.

The sum extends over all inequivalent bottom rows of elements of I,
with respect to left multiplications by unimodular integer matrices of
degree n.

In [9], Siegel gave the formula for the coefficients of Fourier ex-
pansion of Eisenstein series.

For a modular form f(Z) of degree n, we put
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oz =tim (% ) zieH..

Then @ maps modular forms of degree n to modular forms of degree
n — 1 of the same weight and it is called the Siegel’s operator. If f(2)
is a modular form of degree n and a(T) are its Fourier coefficients, then

the Fourier coefficients of @(f)(Z,) are given by a(T),) = 0/(1(;1 8) In

particular, Eisenstein series are mapped by @ to Eisenstein series.
The Siegel’s operator @ gives rise to a homomorphism of the graded
rings of modular forms.

A modular form is called a cusp form if it is in the kernel of @.
Here, for the Eisenstein series ¥, of degree 2, we shall put

Yo = 22.837%.57%.771.5371.43867(T Vs — V1)
Yoo = 27%.377.573.772.337°1.131-593(3*- T°¥; + 2-5°¥F — 6917 ,) .

Then these are cusp forms of degree 2 and of respective weight 10 and
12.

For two Siegel modular forms with rational Fourier coefficients
J@Z) = 3 a/(T) exp 2ri tr (TZ)} and f(Z) = 3 a,(T) exp {271 tr (TZ)} and
for any rational integer a, we write

f = f(mod a)
if a,(T) = a,(T) (mod @) for all T.

§2. Congruence properties of Eisenstein series

Let E, be the normalized Eisenstein series of degree 1 and of weight
k. It is known that the Eisenstein series F, satisfies following prop-
erties (cf. [8]).

r=1(modp™) k=0 (modp™'(» —1) »x2,
EF,=1 (mod2™) &k =0 (mod2™~?) .

In the case of degree n = 2, we can obtain following results.

THEOREM 2.1. Assume that k> n + 1.
(1) Suppose that p x 2 is a regular prime. Then we get

V. =1 (modp»™) & k=0 (modp™'(p — 1)) .
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(2) Letn =2 and Z,, be the numerator of the m-th Bernoulli number B,,.
If px2,3 and Z,_; = 0 (mod p), then we get

V.=1 (modp™) & k=0 (modp™(p —1)).

In both (1) and (2), we should remark that the condition of the left hand
side always implies the condition of the right hand side for all odd prime
numbers p.

Proof. (1) We refer the following result from [9]. Let ¥.(2)
= > a(T) exp {2xi tr (T'Z)} be the Fourier expansion of ;. If T is a non
zero matrix and p x 2, then the rational number

bk(T)zak(T).%.’ﬁ)%. kﬁl B,,

v=1 ) p=r()+1 f

is a p-adic integer, where b, is the denominator of Bun and 7(7) is
m

an integer which depends on T (ef. [9]).
If we put
e = 2Be. T Bu,

v=1 Yy p=rD+1 Y

then we obtain

k b.(T) .
T) = o5 Ould) )
r(rHn=1+ B, TZF:O (D) exp {2n1 tr (TZ)}
The proof of (&). Let v, be the normalized, p-adic additive valu-
ation of Q,. TFirst, we estimate the value v, (k/B;). Since k=0

(mod p™~!(p — 1)), we can apply the von Staudt’s theorem and obtain
vo(k/Bi) = vy(k) —v,(B) =2 (m — 1) — (=D =m.

Next, we shall estimate the value v,(c,(T)). It is well known in num-
ber theory that prime number p is regular if and only if p doesn’t
appear in the numerators of the Bernoulli numbers B, B,,-:-,B,_s.
Using Kummer’s congruences for Bernoulli numbers and the above
fact, we see that

w11 Bul) 0.
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Therefore we obtain v, (c,(T)) < 0. Thus we get v, (b,(T)/c,(T)) =0,
and ¥, = 1 (mod p™).

The proof of (=). Since we assume ¥, = 1 (mod p™), we see
" \(¥y) = F, =1 (mod p™). By the result of the case of degree 1, we
obtain £ = 0 (mod p™ '(p — 1)).

It is obvious from the above proof that the left hand side always
implies the right hand side without the condition of regularity for prime
number p.

(2) In the case n = 2, Maass has proved the following result (cf. [6]).

Let N, be the denominator of the m-th Bernoulli number B,. We
assume that ¥ =0 (mod2), k >3 and T > 0. Then

B, q-B,,_
7). 2% 4" Dok—z
w2
is a rational integer, where ¢ is the greatest divisor of (k — 1)N,,_,,
whose prime factors p satisfy p = —1 (mod4) and N,,_, = 0 (mod p).
From this, if we write
kQ@k — 2) .
m T‘éo by (T) exp {2xi tr (TZ)}
+ 25 s b (1) exp (2ni tr (T'2))
B, ae T'=0
then b,(T), b,(T')c Z. Here, we assume k£ = 0 (mod p™ (p — 1)). Then
we obtain v,(k/B,) = m as in (1). Using the condition Z,_, = 0 (mod p),

we can get following inequality.

v(k(2k—2))=y<i>+u(2k——2)
? q-By By, ? B ? q-B_,

SO
k

T2 =1+

This shows that ¥, = 1 (mod p™). Now the rest of the proof of (2) is
the same as (1). Thus we completed the proof of Theorem 2.1.

Remark. We have seen that the condition Z,_; 3 0 (mod p) is valid
for all prime numbers p smaller than 4001 (cf. [1]). Obviously, if »
is regular, then Z,_; = 0 (mod p). We will show in Appendix that there
exists a prime p which does not satisfy the condition of (2) in Theorem
2.1 and, for this p, ¥,_, = 1 (mod p).
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Part 1I

§1. Fourier expansion of Siegel modular forms of degree 2

Let Q{q,, ¢,, ¢;}* denote the ring of all formal power series of the
form

> a(T)exp {2xi tr (TZ)} = 3 a(T)qleqirqs

(a(T) €cQ 7= (ZJ 2) ¢, = exp (2riz j))

where T runs over all half integral positive semi-definite symmetric
matrices.

Let ©,{q,, 01, ¢,}* be the subring of Q{q,, q, q,}* consisting of all ele-
ments of @{q,, ¢,, ¢,}* with a(T) €O, =Q N Z,. For any element f(q,, ¢, 0,

= S a(T)aqiay of Q{au, ¢,y 2:}*, we define 7 by F(u 0, 0) = 3 aD)aioqiiale
where the tilde denotes the reduction mod p, and denote by F,{q, ¢, ¢.}*
the F,-algebra consisting of 7 with f in O,{q, ¢, ¢.}*.

In the rest of this paper, we shall mainly deal with the case of

degree 2.
First of all, we shall define a linear order among the half integral
t, b
positive semi-definite symmetric matrices T = " } as follows:
1
g,
2

1. We arrange in order of tr (7).
When the traces are equal, we arrange them in order of ¢,
3. When both the traces and ¢,’s are equal, we arrange in order

of ¢,.
We arrange the half integral positive semi-definite symmetric ma-
trices T, and write them 7, T,, T,, - - - according to this order. Then

/(@) = 3 a(T,) exp {2i tr (T,2)} .

Here, we shall prove some lemma which is required later.

LEMMA 1.1. Let p be a prime number. Suppose f, g € O,{q, @, ¢@:}*
and he Qqy, qy, @.}*. Furthermore, we assume that the first non zero
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coefficient of g is a p-adic unit. If f = gh, then we get h € D,{q, a0, Q,}".

Proof. Let 9(2) = > 7., a(Ty) exp {2t tr (T.2)} ((T,) = 0) and W(Z)
= 35.: b(Ty) exp 2ni tr (TZ)} (b(T,) + 0) be the series expansions of f
and g. By our assumption, a(7,) is a p-adic unit. Suppose that
heO,{q, 0, ¢:}*. We assume b(T,) is the first coefficient which does
not belong to ©,. Then the coefficient of exp {2zitr (T, + T,)} in the
series expansion of g(2)k(Z) is a(T)0(Ty) + > a(THb(T,), where the sum
runs over all matrices T; and T, (k <m and j > n) satisfying T, + T,
=T,+ T,. By our assumption, the second sum of above expression
must be contained in ©O,. Hence we get a(T,)b(T,) e O,. Since a(T,) is
a p-adic unit, we have b(T,) € ©O,, which is a contradiction.

§2. The graded ring of modular forms of degree 2

The structure of the graded ring of modular forms of degree 2 was
determined by J. Igusa (cf. [3]). Later, E. Freitag gave an elementary
proof of Igusa’s result (cf. [2]).

For real vectors A = (Z‘), B = (21), we defined the theta series
2, 2
9(Z; A, B) over H, by

9(Z; A,B) = Y exp [xi{(G + A)Z(G + A) + 2'BG}]

where the summation is taken over all vectors G = (g‘) with entries in
2
Z.
We define 9,(Z) (1 <17 < 10) as follows;

WD) = s(z; (g)(g) , 92 = s(z,
(
|
9 Z

faf)
33(2)_3(4,(0),((2) , ) = [ |
1) (o)
sgm:s(z;(é), (0)), @ =9lz; |2 | ,
0 0 ‘ 0 —;-J
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rO\ r1~\
0 -—
0 2
97(Z)=19(z;(1 (O)) s =9\z;| 7|
2 =
L2/ LOJJ
e (1) (1))
2| 10 2| |2
00 = 9|2; | Q) s =9\z: ||,
(2) 1@ (2) HOn
[ZJ . k2.4 L2))

Now we can state the theorems of Igusa and Freitag.

THEOREM 2.1 (J.Igusa [4]). Put 0,(Z) = 3> 1, 9%Z) — 2:.11¥%Z)
+ 2U0YZ). Then
1) 6,.2) is a cusp form of weight 12.
@) x(Z2) =2"*.34.117'0,(Z), where x, ts the cusp form which is
defined in Part I, §1.

THEOREM 2.2 (E. Freitag). Put 0,(Z) = [][,94Z), then we have

A1) 0,2) is a cusp form of weight 10.

@) 1(2) = 0,2), where y, is the cusp form which is defined in
Part 1, §1.

3) 6,2) vanishes on {(zo zl)eH2|z1 - 0}.

2 %,
@ If f(Z) is a modular form of even weight k such that f(g" ZO>
2
= 0 (identically), then [f(Z)]/0(Z) is a modular form of weight
(k — 10).

Let A4, be the vector space over C of modular forms of even weight
k. Then the graded ring 4 = @, oyon A, Will be called the graded ring
of modular forms of degree 2 and of even weight. Using the result of
E. Witt (ef. [11]), E. Freitag gave the following lemma.

LEMMA 2.3. Q) If f(Z)e A, then we have

2 0>= W(z" O)W(zo O)Qfc (zo 0)
f(() 2, 4a+6l§26=krabc N0 2/ N0 2/ "0 o

with 744 € C.

@ If 7(Z)cA,, then f(Z) — P (2),V(Z), ¥ (Z)) vanishes on {(go 2)
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eH,|z = O} for a suitable polynomial P.

In relation to the above fact, we shall give some examples which
is required later.

v (3 )=rere, v 0) =B,

W(z °) = (BB + cxBz)Eyz)
0 =z,

2.1
+ c(FiIEN(z) + Ei(z)E%(2y)) .

_3.7.29.783  _ 2051759 o — 2:3:5°-7%.337

131.593.691° ° 131.593.691° °  131.593.691

1
From these relations, we get

@.2) A@)A@) = a2 z") ,

Exe)d(z) + Eie)Az) = ew(g 0) - e—l.wz(zf' 0)
K2

0
2.3) *
+ e“‘-xn(z" 0) )
2,

0

where 4(z) = e (i) — Fi(®) =q [[;-.(L — g¢™* is a cusp form of
weight 12, e = 2°.3® and q = exp (2niz).

Making use of Theorem 2.2 (4) and Lemma 2.3, we get the fol-
lowing theorem.

THEOREM 2.4 (J. Igusa). If f(Z)e A,, then f(Z) can be expressed
as on isobaric polynomial of U(2),T«(Z),1(Z) and y.,(Z). Namely,
A= CIT,, Ve 10> x12). (As a matter of course, ¥,¥eyo and y, ore
independent over C, mutually (cf. [3]).

§3. P-integral modular forms

Let I, be the O,-module of Siegel modular forms of degree 2 and
of even weight & whose Fourier expansions have all their coefficients
in O,=QN Z,.

LeEmMA 3.1. (1) We have ¥, e1,,, ¥sel,, and 3, € I, for all prime
numbers p.
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2) If px2,3, then we have y, €I, ,.

Proof. (1) Let N, be the denominator of the m-th Bernoulli num-
ber B, as in Part I, §2. From the proof of Part I, Theorem 2.1, we
see that

v,(2) =1+ 2k —2) 3, b exp {2 tr (T2)}

QB By,
+ 2k sy 1y exp (2ri tr (T72))

B det T/ =0
kE Tpiso

where ¢ is the factor of (k¥ — 1)N,._, and b,(T) and b;(T") are rational
integers. Since B, = —1/30, B, = 1/42 and B,, = 5/66, we have ¥',¢1,,
and ¥,el;,, for all prime numbers p. From the result of Part II,
Theorem 2.2 and the definition of the theta series 9,(Z), we see that
all the Fourier coefficients of y,, are algebraic integers. Moreover, it
follows from the definition of y,, that all the Fourier coefficients of y,
are rational numbers. Therefore, we see that all the Fourier coefficients
of y, are rational integers. This shows that y,, € I, for all prime num-
bers p.

(2) It follows from Part II, Theorem 2.1 that all the Fourier
coefficients of ©,(Z) are rational integers. Namely, y, has the p-integral
Fourier coefficients if p =% 2,3,11. However, we can see from the defi-
nition of yx;, that all the Fourier coefficients of y, are p-integral if »
x2,3,5,7 and 337. Therefore, if p %2, 3, then all the Fourier coefficients
of y,, are p-integral. This completes the proof.

PROPOSITION 3.2. Let p x 2,3 be a prime number.
O If f(2)el,,,, then we have

% 0): wa<zo O)Wb(zo 0) c(zo 0)
f<0 2, 4a+6b§2c=k Tabe® s 0 2, 8 0 2z X1z 0 2

’With Tabcegp.
@) If f(Z)el,,,, then we have

@@= > Waped¥ {( D) YD) 1io(2)x12(2)

4a+6b+10c+12d=k

WIth ®gpeq € Op-
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Proof. (1) By Lemma 2.3 and (2.1), we have a following expres-
sion,

3.1) f(g" z") = 3 tase BB ()" (B2 Ey(2))?

X (Bi(z0Ei(2,) + Eiy(z)Ei(2))°

with pgc € C.

Now, put 4a + 6b + 12¢ = k = 2K/, then ¥’ = b (mod 2). First assume
that %’ is even. Substituting E’g(:z) by E%(z) — e-4(z) with ¢ = 2°.3% in
the above expression, we have

f(zo 0\ _

0 zz) 4a+12b=4c+12d=k

Oaveali(20)E(2)4%(2)4%(2,) 0area €C .

By comparing the Fourier coefficients of both sides, we get 6,504 € O, if

P X 2,3.
Since f (8" z(z) = f(g2 z((),)’ f((z)" z(:) can be expressed as O,-linear
combination of the terms

E(z)E(z) 4" (20)4%2,) + E(2)E(2,)4%(2)4%(25)

with 4¢ 4+ 12b = 4¢ 4+ 12d = k. Furthermore, as the terms with the
suitable power of FE,(z)E(z,) and 4(z)4(z,) are combined together, we

can verify that f <g° 0

z) is expressed as an isobaric polynomial of
2

E()E(z) , d(z)A(z) , E{z)4%(z,) + Ei(2)4%(z,) (4a = 120)
with coefficients in O,.
The last term is nothing but (B (z)4(z))™ + (E¥(2,)4(2))™, hence

f((z)" ZO ) can be expressed as an isobaric polynomial of
2

E(z)E(2) , 4@)A(z) , Ei(z)A(z) + Ei(2,)A(z,)
with coefficients in O,.

By (2.2) and (2.3) in §2, we conclude that f ((z)“ 0

z) can be expressed
2

as an isobaric polynomial of %(g" ZO), ZIQ(S“ zO) and m(ff ZO) with
2 2 2

coefficients in O, if p x 2,3.
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If ¥ is odd, b is also odd. By multiplying E;'(z)E;'(z,) to both
sides of (3.1), we see

%y 0)_E—1 E- — w'a(zo O)w'bq(zo 0) c(zo 0)
f<0 2, Tz E (2, Zpabc 4 0 2 6 0 2 X1z 0 2z

with pg.€ C. Now, the Fourier coefficients of the left hand side belong
to ©,. Therefore the same argument is applicable to this case.

(2) Let fel,,, Then by (1), we see that f(Z2) — P (2), V(Z), 1:.(2))
vanishes on {(z" z‘) € H,

2 2

fore f(Z)— P(¥ (2), U (2), 1:42) =1 Z)N(Z) for some b € Ay 1o\ Q{doy Ty €}
It follows from Part II, Lemma 1.1 that A(Z) is an element of
I, _y,,- By induction, we can see that f(Z) is expressed as an isobaric
polynomial of ¥ (2), ¥'(2), y(Z) and y,,(Z) with coefficients in ©,. Thus
we have proved our theorem.

2, = 0} for suitable ©,-polynomial P. There-

§4. The structure of the algebra of modular forms mod p

Let I, be the F,-vector space of all formal power series Z(;(\f)

exp {2at tr (T2)} = 3, af(\TJ)qffq{lq;” obtained from elements f(Z) =3 a(T)
exp {2ri tr (TZ)} of I,,, by reducing the coefficients mod p.
We define the F,-subalgebra M, of F,{qy, ¢, @.}* by My, = 3 i.cven 11, p»
which is called the algebra of Siegel modular forms mod p of degree 2.
We can similarly define the F,-algebra M, of elliptic modular forms
modp as in [10]l. The structure of M, is determined by H. P. F.
Swinnerton-Dyer as follows.

THEOREM 4.1 (Swinnerton-Dyer [10]). (1) Supposethatp=5. Then
M, = F,,[Q,R]/(Z — 1) where A(Q, R) is a O,-polynomial defined by E,_,
= AE,E).
(2) Suppose that p =2 or 3. Then M, = F,[4].

The main purpose of this section is to determine the structure of
M,.

Until the end of the proof of Lemma 4.3, we assume p = 5. It
follows from the results of §3 that there is a ring homomorphism

0,lU, V, W, X] —> F,[U, V, W, X] —> i,
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where the left hand arrow is the extension of ©,— F, and z’ is defined
by corresponding U, V,W and X to ¥,,%,,%, and #,. Since «’ is surjec-
tive, to determine the structure of M, we have only to determine the
kernel of ='.

The following diagram is commutative.

O,IU, V, W, X1 —> F,[U, V, W, X] > i,

| |0 |2

9,[Q, Rl ———— F,[Q,R] ——> M,

where @ and @” are the ring homomorphisms defined by U — Q, V - R, W
— 0 and X — 0, and @ is the ring homomorphism defined by 9(F(q,, ¢:, 0,))
= flqy, 1,0) for any f(q,, @ q,) € M,. It is easy to show that & is sur-
Jective.

LEMMA 4.2. Krull dim. M, = 3.

Proof. Since kers’ is non trivial, it is enough to show that
Krull dim. 77, > 3. Since & is surjective, we obtain A7,/ker & = N1,
From Theorem 4.1, we have Krull dim. M, = 1. Hence there exists a
following sequence of prime ideals;

0C kerd C v S M, .

We consider the following ideal of M,;

P = {7 @, ) € M| 700, 1, 0) = 0} .

Using the fact that the ring of formal power series F,[[X,Y]] is an
integral domain, we obtain that p’ is prime. Since 0 % j,€p’,p’ is a
non zero ideal. It follows from ker & = {f(q,,q,, .) € M,| (g, 1,0) = 0}
that »” C ker . Moreover, since 7, cker & and %, &’, then we get the
following sequence of prime ideals;

0y CkerdCp s M,.

Then Krull dim. A, > 3. This completes the proof.
From the above lemma, we can see that ker z’ is a prime ideal of
height 1. We shall determine the structure of this ideal.
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LEMMA 4.3. Let B be the polynomial with coefficients in O, satis-
fying ¥, = B, To, 2100 212) oA let B be the polynomial in F U, V,W,X]
obtained by B reduction mod p of coefficients. Then B —1 is irreduc-
tble in F,[U,V,W,X].

Proof. We assume that B — 1 is reducible. Then we can write

B—1=(ps+ dnst+ o+ 8Wm + Ymes + - + o)
where ¢; and +-; are isobaric polynomials of weight ¢ and j, respectively.
From the definition of @, we have &/(B—1)=A —1 where A is
polynomial satisfying £, , = A(E,, E;). Since (the weight of 9"(¢, + ---))
+ (the weight of @"(Ypy + -+ N =9 — 1, 0"(¢, + ---) and "(Yp, + --)
are not constants. This contradicts the fact that A — 1 is irreducible.

Now we shall fix a prime number p = 2, 3 satisfying ¥,_, = 1 (mod p).
Then B — 1 is contained in kerz’. From the above lemma, (B — 1) is
a prime ideal. It follows from Lemma 4.2 that ker s’ = (B —1). Con-
sequently, we obtain the following result.

THEOREM 4.4. Let p = 2,3 be a prime number satisfying ¥, , =1
(mod p). Then we obtain

M, = F,JU,V,W,X1/(B—1).

§5. Congruence relations between Siegel modular forms of degree 2

In this section, we shall study some congruence relations between
Siegel modular forms of degree 2.

From now until the end of the proof of Proposition 5.2, we shall
fix a prime number p = 2,3 satisfying ¥,_, = 1 (mod p).

ProprosITION 5.1. Let fel,, and f'el , If we assume that
f = f =0 (mod p), then we have k = k' (modp — 1).

Proof. Let f =D,y i2) and f' =D, ¥, 5105 x12) Where D
and D’ are isobaric polynomials with coefficients in ©,. Furthermore,
D and I’ denote the polynomials obtained from D and D’ by reduction
mod p. By Theorem 4.4, we obtain D —D'e(B — 1), namely D— D
=B - 1)(¢n + ¢n+ -+ + ¢, where ¢, is a isobaric polynomial of
weight v and ¢, = 0,¢; % 0. We may assume k > k’. Comparing the
term of same weight of both sides, ¢m_i]§ =0 for i=x 0 (modp — 1).
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Since ¢; 0, m —j=m — k' =0 (modp — 1). Comparing the highest
term, we also see that m + (p — 1) =Fk. Hence we have k= Fk
(mod p — 1).

This proposition is a partial generalization in the case of Siegel
modular forms of degree 2 of Serre’s result [7].

Since ¥,_, = 1 (mod p), we have following sequences for any even
integer « O S a<p— 1.

~ -~

IpClipipC Climpp,C -
If we put It = Unzo Lymp-1y,p» then we obtain the following.

PROPOSITION 5.2. In the above definition, we obtain M, = @yc.<,-1 L5,
namely M, is the graded algebra graded by Z/(p — DZ.

Proof. Let fel:NIE and f=0. Then fel  mp-1.5N liinp-1., fOr
some integer m = 0. Hence we can denote f =g =h %0 for ge Limp-1),p
and hel, npn,,- It follows from previous proposition that a + m(p —1)
=p+mp—1) (modp —1). Thena=p(modp — 1). Consequently, we
obtain Iz = I?. This completes the proof.

Remark 1. A p-adic Siegel modular form can be defined by fol-
lows :

For a formal power series f(Z) =} b(T)exp {2xi tr (TZ)} (b(T) € Q,),
we put v,(f) = infryv,(b(T)). Formal power series ¢(Z) = 3 a(T)
exp {2ri tr (T2)} (a(T) € Q,) is called a p-adic Siegel modular form of
degree n when there exists a sequence {f;(Z)} of Siegel modular form
of degree n with rational Fourier coefficients which satisfy v,(g — f»)
— 0o, Then author studied the property of p-adic Siegel modular form,
but could not obtain complete results.

Remark 2. The same argument holds in the cases of symmetric
Hilbert modular form of real quadratic fields with discriminant 5 and
8.

Appendix

Recently, the author got the following result in relation to the fact
of Part I, §2.

There exists a prime number p satisfying ¥,_, = 1 (mod p). Indeed,
he made sure in case of p = 16843 that
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1 1
2
Up-y . % 0 (mod p) .
1
2

This fact is obtained by the following argument. Let v, be the nor-
malized p-adic additive valuation. From the result of Maass [6], we

see
[1 L
2 4k-B,_,, (=
(1) a =___’1£
}_ 1 Bk‘sz-z
2

where B, , is the generalized Bernoulli number with Dirichlet character
x-

On the other hand, it is known that p = 16843 satisfies Z, ; =0
(mod p) (cf. [6]). We put k=p —1, p=16843 in (1). Then we
obtain

4p — 1)
(2) v (———) <0.
P Bp—l'BZ(p—l)—Z

Next, we shall estimate the value v,(B(,.,,_;,(z%)- In general, the fol-

lowing formula for the generalized Bernoulli number B, , with Kronecker’s
symbol y holds: Let f be the conductor of y. If weassume0< f<p—1
and (f,p) = 1, then we have

1 Iz
JSp &=

Il

(3) B.,,, y(@ar (mod p) .

Therefore, we have

1 3% /-3\,,-
Bra) = gy o (5 )0 modw).

But, we have made sure that

19 —_3)1;@-2) =
vp( 3p bZ=1< b 0.

Therefore, we see that v,(B,_,(-2) = 0. Thus we get
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1 1
2 <0
v D ap—l =

1
0} 1

L3

Consequently, we have a,_, 1 2 0 (mod p) for p = 16843.
5 1
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