THE BEHAVIOUR OF LEGENDRE AND ULTRASPHERICAL POLYNOMIALS IN L_{p}-SPACES

N. J. KALTON AND L. TZAFRIRI

Abstract

We consider the analogue of the $\Lambda(p)$-problem for subsets of the Legendre polynomials or more general ultraspherical polynomials. We obtain the "best possible" result that if $2<p<4$ then a random subset of N Legendre polynomials of size $N^{4 / p-1}$ spans an Hilbertian subspace. We also answer a question of König concerning the structure of the space of polynomials of degree n in various weighted L_{p}-spaces.

1. Introduction. Let $\left(P_{n}\right)$ denote the Legendre polynomials on $[-1,1]$ and let $\varphi_{n}=$ $c_{n} P_{n}$ be the corresponding polynomials normalized in $L_{2}[-1,1]$. Then $\left(\varphi_{n}\right)_{n=0}^{\infty}$ is an orthonormal basis of $L_{2}[-1,1]$. If we consider the same polynomials in $L_{p}[-1,1]$ where $p>2$ then $\left(\varphi_{n}\right)_{n=0}^{\infty}$ is a basis if and only if sup $\left\|\varphi_{n}\right\|_{p}<\infty$ if and only if $p<4$ [8], [9].

In this note our main result concerns the analogue of the $\Lambda(p)$-problem for the Legendre polynomials. In [2] Bourgain (answering a question of Rudin [12]) showed that for the trigonometric system $\left(e^{i n \theta}\right)_{n \in \mathbb{Z}}$ in $L_{p}(\mathbf{T})$ where $p>2$ there is a constant C so that for any N there is a subset \mathbb{A} of $\{1,2, \ldots, N\}$ with $|\mathbb{A}| \geq N^{2 / p}$ and such that for any $\left(\xi_{n}\right)_{n \in \mathbb{A}}$,

$$
\left\|\sum_{n \in \mathbb{A}} \xi_{n} e^{i n \theta}\right\|_{p} \leq C\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)^{1 / 2}
$$

Actually Bourgain's result is much stronger than this. He shows that if $\left(g_{n}\right)_{n=1}^{\infty}$ is a uniformly bounded orthonormal system in some $L_{2}(\mu)$ where μ is a finite measure, then there is a constant C so that if \mathbb{F} is finite subset of \mathbb{N} then there is a further subset \mathbb{A} of \mathbb{F} with $|\mathbb{A}| \geq|\mathbb{F}|^{2 / p}$ so that we have an estimate

$$
\begin{equation*}
\left\|\sum_{n \in \mathbb{A}} \xi_{n} g_{n}\right\|_{p} \leq C\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)^{1 / 2} \tag{1.1}
\end{equation*}
$$

In fact this estimate holds for a random subset of \mathbb{F}. For an alternative approach to Bourgain's results, see Talagrand [15].

It is natural to ask for a corresponding result for the Legendre polynomials. Since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is not bounded in $L_{\infty}[-1,1]$ one cannot apply Bourgain's result. However, Bourgain [2] states without proof the corresponding result for orthonormal systems which are bounded in some L_{r} for $r>2$. Suppose that $\left(g_{n}\right)$ is an orthonormal system

[^0]which is uniformly bounded in $L_{r}(\mu)$ for some $2<r<\infty$. Then he remarks that if $2<p<r$ there is a constant C so that for any subset \mathbb{F} of \mathbb{N} there is a further subset \mathbb{A} of \mathbb{F} with $|\mathbb{A}| \geq|\mathbb{F}|^{\left(\frac{1}{p}-\frac{1}{r}\right) /\left(\frac{1}{2}-\frac{1}{r}\right)}$ so that we have the estimate (1.1). Again this result holds for random subsets. It follows from this result that if $2<p<4$ and $\epsilon>0\{1,2, \ldots, N\}$ contains a subset \mathbb{A} of size $N^{4 / p-1-\epsilon}$ so that we have the estimate
\[

$$
\begin{equation*}
\left\|\sum_{n \in \mathbb{A}} \xi_{n} \varphi_{n}\right\|_{p} \leq C\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)^{1 / 2} \tag{1.2}
\end{equation*}
$$

\]

As shown below in Proposition 3.1, there is an easy upper estimate $|\mathbb{A}| \leq C N^{4 / p-1}$ for subsets obeying (1.2). The sharp estimate $N^{4 / p-1}$ cannot be obtained from Bourgain's results since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is unbounded in $L_{4}[-1,1]$.

In this note we show that, nevertheless, if \mathbb{F} is a finite subset of \mathbb{N} then there is a subset of \mathbb{A} of \mathbb{F} with $|\mathbb{A}| \geq|\mathbb{F}|^{4 / p-1}$ so that (1.2) holds, and again this holds for random subsets.

In fact we show the corresponding result for more general ultraspherical polynomials. Suppose $0<\lambda<\infty$. Let $\left(\varphi_{n}^{(\lambda)}\right)_{n=0}^{\infty}$ be the orthonormal basis of $L_{2}\left([-1,1],\left(1-x^{2}\right)^{\lambda-\frac{1}{2}}\right)$ obtained from $\left\{1, x, x^{2}, \ldots\right\}$ by the Gram-Schmidt process. Then $\left(\varphi_{n}^{(\lambda)}\right)$ is a basis in $L_{p}\left([-1,1],\left(1-x^{2}\right)^{\lambda-\frac{1}{2}}\right)$ if $2<p<r=2+\lambda^{-1}$. We show in Theorem 3.6 that there is a constant C so that if \mathbb{F} is a finite subset of \mathbb{N}, there is a further subset \mathbb{A} of \mathbb{F} with $|\mathbb{A}| \geq|\mathbb{F}|^{2 \lambda\left(\frac{r}{p}-1\right)}$ so that we have the estimate

$$
\left\|\sum_{n \in \mathbb{A}} \xi_{n} \varphi_{n}^{(\lambda)}\right\|_{p} \leq C\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)^{1 / 2}
$$

Here of course norms are computed with respect to the measure $\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x$. Again this result is best possible as with the Legendre polynomials (the case $\lambda=\frac{1}{2}$) and holds for random subsets. Notice that if we set $\lambda=0$ we obtain the (normalized) Tchebicheff polynomials which after a change of variable reduce to the trigometric system on the circle. Thus Bourgain's $\Lambda(p)-$ theorem corresponds to the limiting case $\lambda=0$.

As will be seen we obtain our main result by using Bourgain's theorem and an interpolation technique.

In Section 4 we answer a question of H. König by showing that the space \mathcal{P}_{n} of polynomials is uniformly isomorphic to ℓ_{p}^{n} in every space $L_{p}\left([-1,1],\left(1-x^{2}\right)^{\lambda-\frac{1}{2}}\right)$ for $\lambda>\frac{1}{2}$ and $1<p<\infty$.
2. Preliminaries. In this section, we collect together some preliminaries. A good general reference for most of the material we need is the book of Szegö [14].

For $-\frac{1}{2}<\lambda<\infty$ with $\lambda \neq 0$ we define the ultraspherical polynomials $P_{n}^{(\lambda)}$ as in [14] by the generating function relation

$$
\left(1-2 x w+w^{2}\right)^{-\lambda}=\sum_{n=0}^{\infty} P_{n}^{(\lambda)}(x) w^{n}
$$

For $\lambda=0$ we define $P_{n}^{(0)}(x)=\frac{2}{n} T_{n}(x)$ where T_{n} are the Tchebicheff polynomials defined by $T_{n}(\cos \theta)=\cos n \theta$ for $0 \leq \theta \leq \pi$. Then we have that if $\lambda \neq 0$ [14, p. 81 (4.7.16)],

$$
\int_{-1}^{+1}\left|P_{n}^{(\lambda)}(x)\right|^{2}\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x=2^{1-2 \lambda} \pi \Gamma(\lambda)^{-2} \frac{\Gamma(n+2 \lambda)}{(n+\lambda) \Gamma(n+1)}
$$

It follows that we have

$$
\varphi_{n}^{(\lambda)}=2^{\lambda-\frac{1}{2}} \pi^{-\frac{1}{2}} \Gamma(\lambda)\left(\frac{(n+\lambda) \Gamma(n+1)}{\Gamma(n+2 \lambda)}\right)^{1 / 2} P_{n}^{(\lambda)}
$$

We now recall Theorem 8.21.11 of [14, p. 197].
Proposition 2.1. Suppose $0<\lambda<1$. Then for $0 \leq \theta \leq \pi$ we have

$$
\begin{aligned}
\left\lvert\, P_{n}^{(\lambda)}(\cos \theta)-2 \frac{\Gamma(n+2 \lambda)}{\Gamma(\lambda) \Gamma(n+\lambda+1)}\right. & \cos ((n+\lambda) \theta-\lambda \pi / 2)(2 \sin \theta)^{-\lambda} \mid \\
& \leq \frac{4 \lambda(1-\lambda) \Gamma(n+2 \lambda)}{\Gamma(\lambda)(n+\lambda+1) \Gamma(n+\lambda+1)}(2 \sin \theta)^{-\lambda-1}
\end{aligned}
$$

REMARK. Note we have used that $\Gamma(\lambda) \Gamma(1-\lambda)=\pi / \sin (\lambda \pi)$.
The next Proposition is a combination of results on p. 80 (4.7.14) and p. 168 (7.32.1) of [14].

PROPOSITION 2.2. If $0<\lambda<\infty$ then we have

$$
\max _{-1 \leq x \leq 1}\left|P_{n}^{(\lambda)}(x)\right|=P_{n}^{(\lambda)}(1)=\binom{n+2 \lambda-1}{n}
$$

Here we write

$$
\binom{u}{v}=\frac{\Gamma(u+1)}{\Gamma(u-v+1) \Gamma(v+1)}
$$

For our purposes it will be useful to simplify the Gamma function replacing it by asymptotic estimates. For this purpose we note that

$$
\frac{\Gamma(n+\sigma)}{\Gamma(n)}=n^{\sigma}+O\left(n^{\sigma-1}\right)
$$

Proposition 2.3. Suppose $0<\lambda<\infty$. Then there exists a positive constant $C=C(\lambda)$ such that
$\left|\varphi_{n}^{(\lambda)}(\cos \theta)-(2 / \pi)^{1 / 2} \cos ((n+\lambda) \theta-\lambda \pi / 2)(\sin \theta)^{-\lambda}\right| \leq C(\sin \theta)^{-\lambda}\left(\min \left((n \sin \theta)^{-1}, 1\right)\right.$.
Proof. Using the remark preceding the Proposition, we can deduce from Proposition 2.1 that

$$
\begin{equation*}
\left|P_{n}^{(\lambda)}(\cos \theta)-2^{1-\lambda} n^{\lambda-1} \Gamma(\lambda)^{-1} \cos ((n+\lambda) \theta-\lambda \pi / 2)(\sin \theta)^{-\lambda}\right| \leq C n^{\lambda-2}(\sin \theta)^{-1-\lambda} \tag{2.1}
\end{equation*}
$$

where $C=C(\lambda)$, for $0<\lambda<1$. This estimate also holds when $\lambda=1$ trivially (with $C=0$).

We now prove the same estimate provided $n \sin \theta \geq 1$ for all $\lambda>0$ by using the recurrence relation

$$
\begin{equation*}
2(\lambda-1)\left(1-x^{2}\right) P_{n}^{(\lambda)}(x)=(n+2 \lambda-2) P_{n}^{(\lambda-1)}(x)-(n+1) x P_{n+1}^{(\lambda-1)}(x) \tag{2.2}
\end{equation*}
$$

for which we refer to [14, p. 83 (4.7.27)].
Indeed assume the estimate (2.1) is known for $\lambda-1$. Then with $x=\cos \theta$,

$$
\begin{aligned}
& \left|P_{n}^{(\lambda-1)}(x)-x P_{n+1}^{(\lambda-1)}(x)-2^{-\lambda} n^{\lambda-2} \Gamma(\lambda-1)^{-1} \cos ((n+\lambda-1) \theta-\lambda \pi / 2)(\sin \theta)^{1-\lambda}\right| \\
& \quad \leq C n^{\lambda-3}(\sin \theta)^{-\lambda} .
\end{aligned}
$$

We also have

$$
\left|P_{n}^{(\lambda-1)}(x)\right| \leq C n^{\lambda-3}(\sin \theta)^{-\lambda} \leq C n^{\lambda-2}(\sin \theta)^{1-\lambda}
$$

provided $n \sin \theta \geq 1$. Now using the recurrence relation (2) we obtain an estimate of the form (2.1) provided $n \sin \theta \geq 1$.

Next we observe that for all $\lambda>0$ we have by Proposition 2.2,

$$
\left|P_{n}^{(\lambda)}(x)\right| \leq P_{n}^{(\lambda)}(1) \leq C n^{2 \lambda-1}
$$

where C depends only on λ. Hence if $n \sin \theta<1$ we have an estimate

$$
\begin{equation*}
\left|P_{n}^{(\lambda)}(\cos \theta)-2 n^{\lambda-1} \Gamma(\lambda)^{-1} \cos ((n+\lambda) \theta-\lambda \pi / 2)(\sin \theta)^{-\lambda}\right| \leq C n^{\lambda-1}(\sin \theta)^{-\lambda} . \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3) gives us an estimate

$$
\begin{align*}
\mid P_{n}^{(\lambda)}(\cos \theta)-2^{1-\lambda} n^{\lambda-1} \Gamma(\lambda)^{-1} & \cos ((n+\lambda) \theta-\lambda \pi / 2)(\sin \theta)^{-\lambda} \mid \tag{2.4}\\
\leq & C \min \left(n^{\lambda-2}(\sin \theta)^{-1-\lambda}, n^{\lambda-1}(\sin \theta)^{-\lambda}\right)
\end{align*}
$$

Recalling the relationship between $\varphi_{n}^{(\lambda)}$ and $P_{n}^{(\lambda)}$ we obtain the result.
Proposition 2.4. Suppose $-1 / 2<\lambda, \mu<\infty$. Then the orthonormal system $\left(\varphi_{n}^{(\lambda)}\right)_{n=0}^{\infty}$ is a basis of $L_{r}\left([-1,1],\left(1-x^{2}\right)^{\mu-\frac{1}{2}}\right)$ if and only if

$$
\left|\frac{2 \mu+1}{2 r}-\frac{2 \lambda+1}{4}\right|<\min \left(\frac{1}{4}, \frac{2 \lambda+1}{4}\right) .
$$

In particular, if $\lambda \geq 0$ and $r>2$ then $\left(\varphi^{(\lambda)}\right)_{n=0}^{\infty}$ is a basis of $L_{r}\left([-1,1],\left(1-x^{2}\right)^{\lambda-\frac{1}{2}}\right)$ if and only if $r<2+\lambda^{-1}$.

Proof. This theorem is a special case of a very general result of Badkov [1, Theorem 5.1]. The second part is much older: see Pollard [9], [10] and [11], Newman-Rudin [8] and Muckenhaupt [7].

We will also need some results on Gauss-Jacobi mechanical quadrature. To this end let $\left(\tau_{n k}^{(\lambda)}=\cos \theta_{n k}^{(\lambda)}\right)_{k=1}^{n}$ be the zeros of the polynomial $\varphi_{n}^{(\lambda)}$ ordered so that $0<\theta_{n, 1}^{(\lambda)}<$ $\theta_{n, 2}^{\lambda)}<\cdots<\theta_{n n}^{(\lambda)}<\pi$. (We remark that the zeros are necessarily distinct and are all located in $(-1,1)$; see Szegö [14, p. 44].)

Proposition 2.5. Suppose $-\frac{1}{2}<\lambda<\infty$. Then there exists a constant C depending only on λ so that

$$
\left|\theta_{n k}^{(\lambda)}-\frac{k \pi}{n}\right| \leq \frac{C}{n}
$$

Furthermore, there exists $c>0$ so that

$$
\left|\theta_{n k}^{(\lambda)}\right| \geq \frac{c k}{n}
$$

if $k<n / 2$.
Proof. The following result is contained in Theorem 8.9.1 of Szegö [14, p. 238]. The second part follows easily from the first and the fact that $\lim _{n \rightarrow \infty} n \theta_{n 1}^{(\lambda)}$ exists and is the first positive zero of the Bessel function $J_{\lambda+\frac{1}{2}}(t)$ (see Szegö [14, Theorem 8.1.2, pp. 192-193]).

We will denote by \mathcal{P}_{n} the space of polynomials of degree at most $n-1$ so that $\operatorname{dim} \mathcal{P}_{n}=n$.

Proposition 2.6. Suppose that $-\frac{1}{2}<\lambda<\infty$. Then there exist positive constants $\left(\alpha_{n k}^{(\lambda)}\right)_{1 \leq k \leq n<\infty}$ such that if $f \in \mathcal{P}_{2 n}$ then

$$
\int_{-1}^{1} f(x)\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x=\sum_{k=1}^{n} \alpha_{n k}^{(\lambda)} f\left(\tau_{n k}^{(\lambda)}\right) .
$$

Furthermore there is a constant C depending only on λ such that

$$
\alpha_{n k}^{(\lambda)} \leq C\left(\sin \theta_{n k}\right)^{2 \lambda} n^{-1}
$$

Proof. This is known as Gauss-Jacobi mechanical quadrature. See Szegö [14, pp. 47-50]. The estimate on the size of $\left(\alpha_{n k}^{(\lambda)}\right)$ may be found on p. 354. However this estimate is perhaps most easily seen by combining the Tchebicheff-Markov-Stieltjes separation theorem (Szegö, p. 50) with the estimate on the zeros (Proposition 2.5). More precisely there exist $\left(y_{k}\right)_{k=0}^{n}$ such that $1=y_{0}>\tau_{n, 1}^{(\lambda)}>y_{1}>\tau_{n, 2}^{(\lambda)}>\cdots>\tau_{n n}^{(\lambda)}>y_{n}=-1$ so that

$$
\alpha_{n k}^{(\lambda)}=\int_{y_{k-1}}^{y_{k}}\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x
$$

The estimate follows from Proposition 2.5.
3. The $\Lambda(p)$ problem. We first note that by Proposition 2.4 , in order that $\left(\varphi_{n}^{(\lambda)}\right)_{n=1}^{\infty}$ be a basis in $L_{p}\left([-1,1],\left(1-x^{2}\right)^{\lambda-\frac{1}{2}}\right)$, it is necessary and sufficient that $2<p<2+\lambda^{-1}$. Let us denote this critical index by $r=r(\lambda)=2+\lambda^{-1}$.

Let \mathbb{A} be a subset of \mathbb{N}, and $2<p<r$. We will say that \mathbb{A} is a $\Lambda(p, \lambda)$-set if there is a constant C so that for any finite-sequence $\left(\xi_{n}: n \in \mathbb{A}\right)$ we have

$$
\left(\int_{-1}^{+1}\left|\sum_{n \in \mathbb{A}} \xi_{n} \varphi_{n}^{(\lambda)}(x)\right|^{p}\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x\right)^{1 / p} \leq C\left(\sum_{n \in A}\left|\xi_{n}\right|^{2}\right)^{1 / 2}
$$

This means that the operator $T: \ell_{2}(\mathbb{A}) \rightarrow L_{p}\left([-1,1],\left(1-x^{2}\right)^{\lambda-\frac{1}{2}}\right)$ defined by $T \xi=$ $\sum_{n \in \mathbb{A}} \xi_{n} \varphi_{n}^{(\lambda)}$ is bounded, and indeed since there is an automatic lower bound, an isomorphic embedding. We denote the least constant C or equivalently $\|T\|$ by $\Lambda_{p, \lambda}(\mathbb{A})$. Note that if $\lambda=0$ then $\varphi_{n}^{(\lambda)}(\cos \theta)=\cos n \theta$ and this definition reduces to the standard definition of a $\Lambda(p)$-set introduced by Rudin [12].

Proposition 3.1. For each $\lambda>0$ there is a constant $C=C(\lambda)$ depending on λ so that if \mathbb{A} is a $\Lambda(p, \lambda)$-set then

$$
|\mathbb{A} \cap[1, N]| \leq C \Lambda_{p, \lambda}(\mathbb{A})^{2} N^{2 \lambda(r / p-1)} .
$$

Proof. Observe first that

$$
\max _{-1 \leq x \leq 1}\left|\varphi_{n}^{(\lambda)}(x)\right|=\varphi(1) \geq c n^{\lambda}
$$

for some constant $c>0$ depending only on λ by Proposition 2.2 and the remark thereafter. It follows from Bernstein's inequality that if $0 \leq \theta \leq(2 n)^{-1}$ then $\varphi_{n}^{(\lambda)}(\cos \theta) \geq c n^{\lambda} / 2$.

In particular let $J=\mathbb{A} \cap[N / 2, N]$. Then for $0 \leq \theta \leq(2 N)^{-1}$ we have

$$
\sum_{n \in J} \varphi_{n}^{(\lambda)}(\cos \theta) \geq c N^{\lambda}|J|
$$

where $c>0$ depends only on λ. Since $d x=(\sin \theta)^{2 \lambda} d \theta$ we therefore have

$$
c N^{\lambda}|J| N^{-(2 \lambda+1) / p} \leq C \Lambda(\mathbb{A})|J|^{1 / 2}
$$

where $0<c, C<\infty$ are again constants depending only on λ. We thus have an estimate $|J| \leq C \Lambda(\mathbb{A})^{2} N^{(4 \lambda+2) / p-2 \lambda)}=C \Lambda(\mathbb{A})^{2} N^{2 \lambda(r / p-1)}$. This clearly implies the result.

Our next Proposition uses the approximation of Proposition 2.3 to transfer the problem to a weighted problem on the circle \mathbf{T} which we here identify with $[-\pi, \pi]$.

Proposition 3.2. Suppose $\lambda>0$ and $2<p<r(\lambda)$. Then \mathbb{A} is a $\Lambda(p, \lambda)-$ set if and only if the operator $S: \ell_{2}(\mathbb{A}) \longrightarrow L_{p}\left(\mathbf{T},|\sin \theta|^{\lambda(2-p)}\right)$ is bounded where $S e_{n}=e^{i n \theta}$, where $\left(e_{n}\right)$ is the canonical basis of $\ell_{2}(\mathbb{A})$. Furthermore there is a constant $C=C(p, \lambda)$ so that $C^{-1}\|S\| \leq \Lambda_{p, \lambda}(\mathbb{A}) \leq C\|S\|$.

Proof. Let us start by proving a similar estimate to Proposition 3.1 for the system $\left\{e^{i n \theta}\right\}$. Suppose S is bounded. If $N \in \mathbb{N}$ then we note that for $1 \leq k \leq N$ we have $\cos k \theta>1 / 2$ if $|\theta|<\pi / 3 N$. Hence if $|\theta|<\pi / 3 N$ we have $\sum_{k \in J} \cos k \theta>\frac{1}{2}|J|$ where $J=\mathbb{A} \cap[1, N]$. It follows that

$$
|J| N^{(\lambda(p-2)-1) / p} \leq C\|S\||J|^{1 / 2}
$$

where C depends only on λ. This yields an estimate

$$
|J| \leq C\|S\|^{2} N^{2 \lambda(r / p-1)}
$$

where C depends only on λ.
Now consider the map $S_{0}: \ell_{2}(\mathbb{A}) \rightarrow L_{p}\left([0, \pi],|\sin \theta|^{2 \lambda}\right)$ defined by $S_{0} e_{n}=$ $\cos ((n+\lambda) \theta-\lambda \pi / 2)(\sin \theta)^{-\lambda}$. We will observe that S_{0} is bounded if and only if S is bounded and indeed $\left\|S_{0}\right\| \leq 2\|S\| \leq C\left\|S_{0}\right\|$ where C depends only on p. In fact if $\left(\xi_{n}\right)_{n \in \mathbb{A}}$ are finitely non-zero and real then

$$
\left\|S_{0} \xi\right\|^{p} \leq \int_{0}^{\pi}\left|\sum_{n \in \mathbb{A}} \xi_{n} e^{i n \theta}\right|^{p}|\sin \theta|^{\lambda(2-p)} d \theta \leq\|S \xi\|^{p}
$$

which leads easily to the first estimate $\left\|S_{0}\right\| \leq 2\|S\|$. For the converse direction, we note that $w(\theta)=|\sin \theta|^{\lambda(2-p)}$ is an A_{p}-weight in the sense of Muckenhaupt (see [3], [4] or [7]), i.e., there is a constant C so that for every interval I on the circle we have

$$
\left(\int_{I} w(\theta) d \theta\right)^{1 / p}\left(\int_{I} w(\theta)^{-p / p^{\prime}} d \theta\right)^{1 / p^{\prime}} \leq C|I|
$$

where $|I|$ denote the length of I. It follows that the Hilbert-transform is bounded on the space $L_{p}(\mathbf{T}, w)$ so that there is a constant $C=C(p, \lambda)$ such that if $\left(\xi_{n}\right)_{n \in \mathbb{A}}$ is finitely non-zero and real then

$$
\begin{aligned}
& \left(\int_{-\pi}^{\pi}\left|\sum_{n \in \mathbb{A}} \xi_{n} \sin ((n+\lambda) \theta-\lambda \pi / 2)\right|^{p}|\sin \theta|^{\lambda(2-p)} d \theta\right)^{1 / p} \\
& \quad \leq C\left(\int_{-\pi}^{\pi}\left|\sum_{n \in \mathbb{A}} \xi_{n} \cos ((n+\lambda) \theta-\lambda \pi / 2)\right|^{p}|\sin \theta|^{\lambda(2-p)} d \theta\right)^{1 / p}
\end{aligned}
$$

This quickly implies an estimate of the form $\|S \xi\| \leq C\left\|S_{0} \xi\right\|$.
Now consider the map $T: \ell_{2}(\mathbb{A}) \rightarrow L_{p}\left([0, \pi],|\sin \theta|^{2 \lambda}\right)$ defined by $T e_{n}=\varphi_{n}^{(\lambda)}(\cos \theta)$. Then for some constant $C=C(\lambda)$ we have (using Proposition 2.3),

$$
\left|\psi_{n}(\theta)\right| \leq C(\sin \theta)^{-\lambda} \min \left((n \sin \theta)^{-1}, 1\right)
$$

where

$$
\psi_{n}(\theta)=\varphi_{n}^{\lambda}(\cos \theta)-\cos ((n+\lambda) \theta-\lambda \pi / 2)(\sin \theta)^{-\lambda}
$$

Now suppose \mathbb{A} satisfies an estimate $|\mathbb{A} \cap[1, N]| \leq K N^{2 \lambda(r / p-1)}$ for some constant K.
We will let $J_{k}=\mathbb{A} \cap\left[2^{k-1}, 2^{k}\right)$ and $E_{k}=\left\{\theta: 2^{-k}<\sin \theta<2^{1-k}\right\}$. Then on E_{k} we have an estimate $|\psi(\theta)| \leq C 2^{\lambda k}$ if $n \leq 2^{k}$ and $\left|\psi_{n}(\theta)\right| \leq C n^{-1} 2^{(1+\lambda) k}$ if $n>2^{k}$. Here C depends a constant depending only on p and λ.

Let $\left(\xi_{n}\right)_{n \in \mathbb{A}}$ be any finitely non-zero sequence and set $u_{k}=\left(\sum_{n \in J_{k}}\left|\xi_{n}\right|^{2}\right)^{1 / 2}$. Note that $\sum_{n \in J_{k}}\left|\xi_{n}\right| \leq\left|J_{k}\right|^{1 / 2} u_{k}$.

It follows that if $1 \leq l \leq k$ we have

$$
\left(\int_{E_{k}}\left|\sum_{n \in J_{l}} \xi_{n} \psi_{n}\right|^{p}(\sin \theta)^{2 \lambda} d \theta\right)^{1 / p} \leq C 2^{\lambda k} 2^{-(1+2 \lambda) k / p}\left|J_{l}\right|^{1 / 2} u_{l}
$$

while if $k+1 \leq l<\infty$

$$
\left(\int_{E_{k}}\left|\sum_{n \in J_{l}} \xi_{n} \psi_{n}\right|^{p}(\sin \theta)^{2 \lambda} d \theta\right)^{1 / p} \leq C 2^{\lambda k+(k-l)} 2^{-(1+2 \lambda) k / p}\left|J_{l}\right|^{1 / 2} u_{l}
$$

Note that $\lambda-(1+2 \lambda) / p=\lambda(1-r / p)$. We also have $\left|J_{l}\right| \leq K 2^{2 \lambda l(r / p-1)}$. Hence we obtain an estimate

$$
\left\|\chi_{E_{k}} \sum_{n \in \mathbb{A}} \xi_{n} \psi_{n}\right\| \leq C K^{1 / 2}\left(\sum_{l=1}^{k} 2^{\lambda(r / p-1)(l-k)} u_{l}+\sum_{l=k+1}^{\infty} 2^{(\lambda(r / p-1)-1)(l-k)} u_{l}\right)
$$

Let $\delta=\min (\lambda(r / p-1), 1-\lambda(r / p-1))$. Then the right-hand side may estimated by

$$
C K^{1 / 2}\left(\sum_{l=1}^{\infty} 2^{-\delta|l-k|} u_{l}\right)=C K^{1 / 2} \sum_{j \in \mathbb{Z}} 2^{-\delta|j|} u_{k+j}
$$

where $u_{j}=0$ for $j \leq 0$. Since $p>2$ we have

$$
\left\|\sum_{n \in \mathbb{A}} \xi_{n} \psi_{n}\right\| \leq\left(\sum_{k=1}^{\infty}\left\|\chi_{E_{k}} \sum_{n \in \mathbb{A}} \xi_{n} \psi_{n}\right\|^{2}\right)^{1 / 2}
$$

Hence by Minkowski's inequality in ℓ_{2} we have

$$
\left\|\sum_{n \in \mathbb{A}} \xi_{n} \psi_{n}\right\| \leq C K^{1 / 2} \sum_{j \in \mathbb{Z}} 2^{-\delta|j|}\left(\sum_{l=1}^{\infty} u_{l}^{2}\right)^{1 / 2}
$$

We conclude that $\left\|S_{0} \xi-T \xi\right\| \leq C K^{1 / 2}$. Now if T is bounded then $K \leq C\|T\|^{2}$ while if S is bounded then $K \leq C\|S\|^{2}$. This yields the estimates promised.

As remarked above, using Proposition 3.2 we can transfer the problem of identifying $\Lambda(p, \lambda)$-sets to a similar problem concerning the standard characters $\left\{e^{i n \theta}\right\}$ in a weighted $L_{p}-$ space. We will now solve a corresponding problem in the case when $p=2$ and then use the solution to obtain our main result in the case $p>2$. To this end we will first prove a result concerning weighted norm inequalities for an operator on the sequence space $\ell_{2}(\mathbb{Z})$ which is the discrete analogue of a Riesz potential.

Suppose $0<\alpha<1 / 2$. For $m, n \in \mathbb{Z}$ we define $K(m, n)=|m-n|^{\alpha-1}$ when $m \neq n$ and $K(m, n)=1$ if $m=n$. Let $c_{00}(\mathbb{Z})$ be the space of finitely non-zero sequences. Then we can define a map $K: c_{00}(\mathbb{Z}) \longrightarrow \ell_{2}(\mathbb{Z})$ by $K \xi(m)=\sum_{n \in \mathbb{Z}} K(m, n) \xi(n)$.

Now suppose $v \in \ell_{\infty}(\mathbb{Z})$. We define $L(v)$ to be the norm in $\ell_{2}(\mathbb{Z})$ of the operator $\xi \rightarrow v K \xi$ which we take to be ∞ if this operator is unbounded. Thus $L(v)=\sup \{\|v K \xi\|:$ $\|\xi\| \leq 1\}$.

The following result can be derived from similar results in potential theory (for example, [13]). For more general results we refer to [5]. However we will give a selfcontained exposition.

THEOREM 3.3. Let $0 \leq M(v) \leq \infty$ be the least constant so that for every finite interval $I \subset \mathbb{Z}$ we have

$$
\sum_{m, n \in I} v_{m}^{2} v_{n}^{2} \min \left(1,|m-n|^{2 \alpha-1}\right) \leq M^{2} \sum_{n \in I} v_{n}^{2} .
$$

Then for a constant C depending only on α we have $C^{-1} M(v) \leq L(v) \leq C M(v)$.
Proof. First suppose $L(v)<\infty$. Then by taking adjoints the map $\xi \rightarrow K(v \xi)$ is bounded on $\ell_{2}(\mathbb{Z})$ with norm $L(v)$. In particular we have for any interval $I,\left\|K\left(v^{2} \chi_{I}\right)\right\| \leq$ $L(v)\left\|v \chi_{I}\right\|$. Let us write $\langle\xi, \eta\rangle=\sum_{n \in \mathbb{Z}} \xi_{n} \eta_{n}$ where this is well-defined. Thus

$$
\left\langle K^{2}\left(v^{2} \chi_{I}\right), v^{2} \chi_{I}\right\rangle \leq L(v)^{2} \sum_{n \in I} v_{n}^{2}
$$

Now observe that $K^{2}(m, n)=\sum_{l=1}^{\infty} K(m, l) K(l, n) \geq c \min \left(1,|m-n|^{2 \alpha-1}\right)$ where $c>0$ depends only on α. Expanding out we obtain that $M(v) \leq C L(v)$ for some $C=C(\alpha)$.

We now turn to the opposite direction. By homogeneity it is only necessary to bound $L(v)$ when $M(v)=1$. We therefore assume $M(v)=1$. Notice that it follows from the definition of $M(v)$ that for any interval I, we have $|I|^{2 \alpha-1} \sum_{m, n \in I} v_{m}^{2} v_{n}^{2} \leq \sum_{n \in I} v_{n}^{2}$ and so $\sum_{n \in I} v_{n}^{2} \leq|I|^{1-2 \alpha}$.

Now let $u=K v^{2}$. This can be computed formally, with the possibility of some entries being infinite, but the calculations below will show that the entries of u are finite; alternatively the estimate above leads quickly to the same conclusion. Suppose $m \in \mathbb{Z}$ and define sets $I_{0}=\{m\}$ and then $I_{k}=\left\{n: 2^{k-1} \leq|m-n|<2^{k}\right\}$ for $k \geq 1$. Note that if $k \geq 1 I_{k}$ is the union of two intervals of length 2^{k-1}. Let $J_{k}=I_{0} \cup \cdots \cup I_{k}$.

For any k we have

$$
u=K\left(v^{2} \chi_{J_{k+1}}\right)+\sum_{l=k+2} K\left(v^{2} \chi_{I_{l}}\right) .
$$

Let us write $u_{1}=K\left(v^{2} \chi_{J_{k+1}}\right)$ and $u_{2}=u-u_{1}$.
Now if $l \geq k+2$ and $j \in I_{k}$ we have

$$
K\left(v^{2} \chi_{I_{l}}\right)(j) \leq C 2^{(\alpha-1) l} \sum_{n \in I_{l}} v_{n}^{2}
$$

Hence

$$
u_{2}(j) \leq C \sum_{l=k+2}^{\infty} 2^{(\alpha-1) l} \sum_{n \in I_{l}} v_{n}^{2}
$$

Squaring and summing, and estimating $\sum_{n \in I_{i}} v_{n}^{2}$, we have

$$
\sum_{j \in I_{k}} u_{2}(j)^{2} \leq C 2^{k} \sum_{i \geq l \geq k+2} 2^{(\alpha-1)(i+l)} 2^{i(1-2 \alpha)} \sum_{n \in I_{l}} v_{n}^{2}
$$

Summing out over $i \geq l$ we have

$$
\sum_{j \in I_{k}} u_{2}(j)^{2} \leq C 2^{k} \sum_{l \geq k+2} 2^{-l} \sum_{n \in I_{l}} v_{n}^{2}
$$

On the other hand

$$
\begin{aligned}
\sum_{j \in I_{k}} u_{1}^{2}(j) & =\sum_{j \in I_{k}} \sum_{i \in J_{k+1}} \sum_{l \in J_{k+1}} K(j, i) K(j, l) v_{i}^{2} v_{l}^{2} \\
& \leq C \sum_{i \in J_{k+1}} \sum_{l \in J_{k+1}} \min \left(1,|i-l|^{2 \alpha-1}\right) v_{i}^{2} v_{l}^{2} \\
& \leq C \sum_{n \in J_{k+1}} v_{n}^{2}
\end{aligned}
$$

where C depends only on α. In particular $u(j)<\infty$ for all j.
Hence

$$
\sum_{j \in I_{k}} u(j)^{2} \leq C\left(\sum_{n \in J_{k+1}} v_{n}^{2}+2^{k}\left(\sum_{l=k+2}^{\infty} 2^{-l} \sum_{n \in I_{l}} v_{n}^{2}\right)\right)
$$

This can be written as

$$
\sum_{j \in I_{k}} u(j)^{2} \leq C \sum_{l=0}^{\infty} \min \left(1,2^{k-l}\right) \sum_{n \in I_{l}} v_{n}^{2}
$$

Let us use this to estimate $K u^{2}(m)$; we have (letting C be a constant which depends only on α but may vary from line to line),

$$
\begin{aligned}
K u^{2}(m) & \leq C \sum_{k=0}^{\infty} 2^{(\alpha-1) k} \sum_{n \in I_{k}} u_{n}^{2} \\
& \leq C \sum_{k=0}^{\infty} 2^{(\alpha-1) k} \sum_{l=0}^{\infty} \min \left(1,2^{k-l}\right) \sum_{n \in I_{l}} v_{n}^{2} \\
& \leq C \sum_{l=0}^{\infty} \sum_{n \in I_{l}} v_{n}^{2} \sum_{k=0}^{\infty} 2^{(\alpha-1) k} \min \left(1,2^{k-l}\right) \\
& \leq C \sum_{l=0}^{\infty} 2^{(\alpha-1) l} \sum_{n \in I_{l}} v_{n}^{2} \\
& \leq C K v^{2}(m)
\end{aligned}
$$

We thus have $K u^{2} \leq C K v^{2}$.
Now put $w=v+K v^{2}$. Then $K w^{2} \leq 2\left(K v^{2}+K u^{2}\right) \leq C K v^{2} \leq C w$. We will show this implies an estimate on $L(v)$.

Indeed if $\xi \in c_{00}(\mathbb{Z})$ is positive then

$$
\langle w K \xi, w K \xi\rangle=\left\langle w^{2},(K \xi)^{2}\right\rangle
$$

Now

$$
(K \xi)^{2}(m)=\sum_{i, j} K(m, i) K(m, j) \xi(i) \xi(j) \leq C \sum_{i, j} K(i, j)(K(m, i)+K(m, j)) \xi(i) \xi(j)
$$

This implies $(K \xi)^{2} \leq C K(\xi K \xi)$. Hence

$$
\|w K \xi\|^{2} \leq C\left\langle w^{2}, K(\xi K \xi)\right\rangle=C\left\langle K w^{2}, \xi K \xi\right\rangle
$$

and hence as $K w^{2} \leq C w$

$$
\|w K \xi\|^{2} \leq C\langle w, \xi K \xi\rangle=C\langle\xi, w K \xi\rangle \leq C\|\xi\|\|w K \xi\|
$$

which leads to $\|w K \xi\| \leq C\|\xi\|$ or $L(v) \leq L(w) \leq C$ where C depends only on α.
Theorem 3.4. Suppose $0<\alpha<1 / 2$. Let \mathbb{A} be a subset of \mathbb{Z}. Let $\kappa(\mathbb{A})=\kappa_{\alpha}(\mathbb{A})$ be the least constant (possibly infinite) such that for any finitely nonzero sequence $\left(\xi_{n}\right)_{n \in \mathbb{A}}$ we have

$$
\left(\int_{-\pi}^{\pi}\left|\sum_{n \in \mathbb{A}} \xi_{n} e^{i n \theta}\right|^{2}|\sin \theta|^{-2 \alpha} d \theta\right)^{1 / 2} \leq \kappa\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)^{1 / 2}
$$

Let $M=M(\mathbb{A})=M\left(\chi_{A}\right)$, be defined as the least constant M so that for any finite interval I we have, setting $F=\mathbb{A} \cap I$,

$$
\sum_{m, n \in F} \min \left(1,|m-n|^{2 \alpha-1}\right) \leq M^{2}|F| .
$$

Then $\kappa(\mathbb{A})<\infty$ if and only if $M(\mathbb{A})<\infty$ and there is constant C depending only on α such that $C^{-1} M(\mathbb{A}) \leq \kappa(\mathbb{A}) \leq C M(\mathbb{A})$.

Proof. First suppose $M(\mathbb{A})<\infty$. Note that $\psi(\theta)=|\theta|^{-\alpha}$ is an L_{2}-function whose Fourier transform satisfies the property that $\lim _{|n| \rightarrow \infty}|n|^{1-\alpha} \hat{\psi}(n)$ exists and is positive. Now suppose $\left(\xi_{n}\right) \in c_{00}(\mathbb{A})$ and let $g=\sum_{n \in \mathbb{A}} \xi_{n} e^{i n \theta}$. Suppose $f \in L_{2}[-\pi, \pi]$. Then

$$
\left.\left.\langle | \theta\right|^{-\alpha} g, f\right\rangle=\langle\hat{\psi} * \hat{g}, \hat{f}\rangle
$$

Hence for a suitable $C=C(\alpha)$ we have, using Plancherel's theorem, with K as in Theorem 3.3,

$$
\left.\left.\langle | \theta\right|^{-\alpha} g, f\right\rangle \leq C\langle K| \hat{g}|,|\hat{f}|\rangle=C\langle | \hat{g}\left|, \chi_{\mathbb{A}} K\right| \hat{f}| \rangle .
$$

We deduce

$$
\left.\left.\langle | \theta\right|^{-\alpha} g, f\right\rangle \leq C M(\mathbb{A})\|g\|_{2}\|f\|_{2}
$$

Thus

$$
\int_{-\pi}^{\pi}|g(\theta)|^{2}|\theta|^{-2 \alpha} d \theta \leq C^{2} M^{2}\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)
$$

By translation we also have

$$
\int_{-\pi}^{\pi}|g(\theta)|^{2}(\pi-|\theta|)^{-2 \alpha} d \theta \leq C^{2} M^{2}\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)
$$

Since $|\theta|^{-2 \alpha}+(\pi-|\theta|)^{-2 \alpha} \geq|\sin \theta|^{-2 \alpha}$ we obtain immediately $\kappa(\mathbb{A}) \leq C M(\mathbb{A})$ where C depends only on α.

Conversely suppose $\kappa(\mathbb{A})<\infty$. Note first that there is positive-definite and nonnegative trigonometric polynomial h so that $h+\psi$ satisfies $\hat{h}(n)+\hat{\psi}(n) \geq c \min \left(1,|n|^{\alpha-1}\right)$ where $c>0$. Now clearly for $\left(\xi_{n}\right) \in c_{00}(\mathbb{A})$,

$$
\int_{-\pi}^{\pi}|g|^{2}(\psi+h)^{2} d \theta \leq C \kappa\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)^{1 / 2}
$$

Thus again by Plancherel's theorem, if $\xi \geq 0$,

$$
\|K \xi\|_{2}^{2} \leq C \kappa\|\xi\|_{2}^{2}
$$

A similar inequality then applies for general ξ.
It follows quickly by taking adjoints that $L\left(\chi_{\mathbb{A}}\right) \leq C \kappa$ and hence $M(\mathbb{A}) \leq C \kappa(\mathbb{A})$.
THEOREM 3.5. Suppose \mathbb{F} is a finite subset of \mathbb{Z} and $|\mathbb{F}|=N$. Let $\left(\eta_{j}\right)_{j \in \mathbb{F}}$ be a sequence of independent $0-1$-valued random variables (or selectors) with $\mathbf{E}\left(\eta_{j}\right)=\sigma=N^{-2 \alpha}$ for $j \in \mathbb{F}$. Let $\mathbb{A}=\left\{j \in \mathbb{F}: \eta_{j}=1\right\}$ be the corresponding random subset of \mathbb{F}. Then $\mathbf{E}\left(M(\mathrm{~A})^{2}\right) \leq C$ where C depends only on α.

Proof. It is easy to see that if this statement is proved for the set $\mathbb{F}=\{1,2, \ldots, N\}$ then it is true for every interval \mathbb{F} and then for every finite subset of \mathbb{Z}. It is also easy to see that it suffices to prove the result for $N=2^{n}$ for some n.

Note next that

$$
M^{2}(\mathbb{A}) \leq \sup _{1 \leq k \leq N} \sum_{n \in \mathbb{A}} \min \left(|k-n|^{2 \alpha-1}, 1\right)
$$

Hence

$$
M^{2}(\mathbb{A}) \leq C \sum_{k=0}^{n} \max _{1 \leq j \leq 2^{n-k}} 2^{k(2 \alpha-1)}\left|\mathbb{A} \cap\left[(j-1) 2^{k}+1, j 2^{k}\right]\right|
$$

where C depends only on α.
Fix an integer s. We estimate, for fixed k,

$$
\begin{aligned}
\mathbf{E}\left(\max _{1 \leq j \leq 2^{n-k}}\left|\mathbb{A} \cap\left[(j-1) 2^{k}+1, j 2^{k}\right]\right|\right) & \leq \mathbf{E}\left(\sum_{j=1}^{2^{n-k}}\left(\sum_{l=(j-1) 2^{k}+1}^{j 2^{k}} \eta_{l}\right)^{s}\right)^{1 / s} \\
& \leq\left(\mathbf{E}\left(\sum_{j=1}^{2^{n-k}}\left(\sum_{l=(j-1) 2^{k}+1}^{j 2^{k}} \eta_{l}\right)^{s}\right)\right)^{1 / s} \\
& \leq 2^{(n-k) / s}\left(\mathbf{E}\left(\sum_{j=1}^{2^{k}} \eta_{j}\right)^{s}\right)^{1 / s}
\end{aligned}
$$

Let us therefore estimate, setting $m=2^{k}$,

$$
\begin{aligned}
\mathbf{E}\left(\sum_{j=1}^{m} \eta_{j}\right)^{s} & =\sum_{l \leq \min (s, m)} \sum_{j_{1}+\cdots+j_{l}=s} \frac{s!}{j_{1}!\ldots j_{l}!} \sigma^{l} \\
& \leq \sum_{l=1}^{s}\binom{m}{l} l^{s} \sigma^{l} \\
& \leq \sum_{l=1}^{s} l^{s}(m \sigma)^{l} \\
& \leq s \max _{1 \leq l \leq m}\left(l^{s}(m \sigma)^{l}\right) .
\end{aligned}
$$

By maximizing the function $x^{s} e^{-a x}$ we see that if $m \sigma \geq e^{-1}$ we can estimate this by

$$
\mathbf{E}\left(\sum_{j=1}^{m} \eta_{j}\right)^{s} \leq s^{s+1}(m \sigma)^{s}
$$

On the other hand if $m \sigma<e^{-1}$

$$
\mathbf{E}\left(\sum_{j=1}^{m} \eta_{j}\right)^{s} \leq s\left(s|\log m \sigma|^{-1}\right)^{s /|\log m \sigma|} \leq s^{s+1}|\log m \sigma|^{-s}
$$

Suppose $k<n$. Put $s=n-k$. We have

$$
\mathbf{E}\left(\max _{1 \leq j \leq 2^{n-k}}\left|\mathbb{A} \cap\left[(j-1) 2^{k}+1, j 2^{k}\right]\right|\right) \leq C(n-k) 2^{k} \sigma
$$

whenever $2^{k} \sigma \geq e^{-1}$ where $C=C(\alpha)$. If $2^{k} \sigma<e^{-1}$,

$$
\mathbf{E}\left(\max _{1 \leq j \leq 2^{n-k}}\left|A \cap\left[(j-1) 2^{k}+1, j 2^{k}\right]\right|\right) \leq C \frac{n-k}{\left|\log \left(\sigma 2^{k}\right)\right|}
$$

Hence

$$
\mathbf{E}\left(M(\mathrm{~A})^{2}\right) \leq \sum_{2^{k} \sigma<e^{-1}} \frac{n-k}{\left|\log \left(\sigma 2^{k}\right)\right|} 2^{(2 \alpha-1) k}+\sum_{2^{k} \sigma \geq e^{-1}}(n-k+1) 2^{2 \alpha k} \sigma .
$$

We can estimate this further by

$$
\mathbf{E}\left(M(\mathbb{A})^{2}\right) \leq C\left(\sum_{2^{k} \sigma<e^{-n}} 2^{(2 \alpha-1) k}+n \sigma^{1-2 \alpha}+2^{2 \alpha n} \sigma\right)
$$

where $C=C(\alpha)$.
We now recall that $\sigma=N^{-2 \alpha}=2^{-2 \alpha n}$. We then obtain an estimate

$$
\mathbf{E}\left(M(\mathbb{A})^{2}\right) \leq C(\alpha)
$$

TheOrem 3.6. Suppose $0<\lambda<\infty$ and that $2<p<r=2+\lambda^{-1}$. Let $\mathbb{F} \subset \mathbb{N}$ be a finite set with $|\mathbb{F}|=N$. Let $\left(\eta_{j}\right)_{j \in \mathbb{F}}$ be a sequence of independent $0-1$-valued random variables (or selectors) with $\mathbf{E}\left(\eta_{j}\right)=\sigma=N^{(1 / p-1 / 2) /(1 / 2-1 / r)}$ for $j \in \mathbb{F}$. Let $\mathbb{A}=\{j \in \mathbb{F}$: $\left.\eta_{j}=1\right\}$ be the corresponding random subset of \mathbb{F} (so that $\left.\mathbf{E}(|\mathbb{A}|)=N^{(1 / p-1 / r) /(1 / 2-1 / r)}\right)$. Then $\mathbf{E}\left(\Lambda_{p, \lambda}(\mathbb{A})^{p}\right) \leq C$ where C depends only on p and λ.

Proof. Suppose $\left(\xi_{n}\right)_{n \in \mathbb{A}}$ are any (complex) scalars and let $f=\sum_{n \in \mathbb{A}} \xi_{n} e^{i n \theta}$. Let $\alpha=(1 / 2-1 / p) /(1-2 / r)$, and let $\frac{1}{q}=\frac{1}{2}-\alpha$. Then by Holder's inequality, since $\frac{1}{p}=\left(1-\frac{2}{r}\right) \frac{1}{q}+\frac{2}{r} \frac{1}{2}$

$$
\begin{aligned}
& \left(\int_{-\pi}^{\pi}\left(|f||\sin \theta|^{\lambda(2 / p-1)}\right)^{p} d \theta\right)^{1 / p} \\
& \quad \leq\left(\int_{-\pi}^{\pi}|f|^{q} d \theta\right)^{(1-2 / r) / q}\left(\int_{-\pi}^{\pi}\left(|f||\sin \theta|^{r \lambda(1 / p-1 / 2)}\right)^{2} d \theta\right)^{1 / r}
\end{aligned}
$$

Note that $r \lambda(1 / p-1 / 2)=(1 / p-1 / 2) /(1-2 / r)=\alpha$. Hence

$$
\left(\int_{-\pi}^{\pi}\left(|f||\sin \theta|^{\lambda(2 / p-1)}\right)^{p} d \theta\right)^{1 / p} \leq \Lambda_{q, 0}(\mathbb{A})^{1-2 / r} \kappa_{\alpha}(\mathbb{A})^{2 / r}\left(\sum_{n \in \mathbb{A}}\left|\xi_{n}\right|^{2}\right)^{1 / 2}
$$

Thus we deduce

$$
\Lambda_{p, \lambda}(\mathbb{A}) \leq \Lambda_{q, 0}(\mathbb{A})^{1-2 / r} \kappa_{\alpha}(\mathbb{A})^{2 / r}
$$

It follows further from Holder's inequality that

$$
\left(\mathbf{E}\left(\Lambda_{p, \lambda}(\mathbb{A})\right)^{p}\right)^{1 / p} \leq \mathbf{E}\left(\Lambda_{q, 0}(\mathbb{A})^{q}\right)^{(1-2 / r) / q} \mathbf{E}\left(\kappa_{\alpha}(\mathbb{A})^{2}\right)^{1 / r}
$$

As $\mathbf{E}(|\mathbb{A}|)=N^{2 / q}$, we have by the $\Lambda(p)$ theorem of Bourgain [2] that $\mathbf{E}\left(\Lambda_{q, 0}(\mathbb{A})^{q}\right)^{1 / q} \leq$ $C=C(q)$. By Theorem 3.5 above we obtain:

$$
\left(\mathbf{E}\left(\Lambda_{p, \lambda}(\mathbb{A})\right)^{p}\right)^{1 / p} \leq C
$$

where $C=C(\lambda, p)$.
4. The structure of the space of polynomials. We recall that $\left(\tau_{n k}^{(\lambda)}=\cos \theta_{n k}^{(\lambda)}\right)_{k=1}^{n}$ are the zeros of the polynomial $\varphi_{n}^{(\lambda)}$ ordered so that $0<\theta_{n, 1}^{(\lambda)}<\theta_{n, 2}^{(\lambda)}<\cdots<\theta_{n n}^{(\lambda)}<\pi$.

THEOREM 4.1. Suppose $1<p<\infty,-\frac{1}{2}<\lambda, \mu<\infty$ and that the ultraspherical polynomials $\left(\varphi_{n}^{(\lambda)}\right)_{n=0}^{\infty}$ form a basis of $L_{p}\left([-1,1],\left(1-x^{2}\right)^{\mu-\frac{1}{2}}\right)$ or, equivalently that

$$
\begin{equation*}
\left|\frac{2 \mu+1}{2 p}-\frac{2 \lambda+1}{4}\right|<\min \left(\frac{1}{4}, \frac{2 \lambda+1}{4}\right) . \tag{4.1}
\end{equation*}
$$

Let $\tau_{n k}=\tau_{n k}^{(\lambda)}$. Then there is a constant $C=C(\lambda, \mu, p)$ independent of n so that if $f \in \mathcal{P}_{n}$ then

$$
\begin{aligned}
\frac{1}{C}\left(\frac{1}{n} \sum_{k=1}^{n}\left(1-\tau_{n k}^{2}\right)^{\mu}\left|f\left(\tau_{n k}\right)\right|^{p}\right)^{1 / p} & \leq\left(\int_{-1}^{1}|f(x)|^{p}\left(1-x^{2}\right)^{\mu-\frac{1}{2}} d x\right)^{1 / p} \\
& \leq C\left(\frac{1}{n} \sum_{k=1}^{n}\left(1-\tau_{n k}^{2}\right)^{\mu}\left|f\left(\tau_{n k}\right)\right|^{p}\right)^{1 / p}
\end{aligned}
$$

In particular $d\left(\mathcal{P}_{n}, \ell_{p}^{n}\right) \leq C^{2}$.
Proof. We will start by supposing that μ is not of the form $\frac{1}{2}(m p-1)$ for $m \in \mathbb{N}$ and that $-\frac{1}{2}<\lambda$ is arbitrary (i.e., we do not assume (4.1)). In this case we can find $m \in \mathbb{N}$ so that $-\frac{1}{2}<\mu-\frac{1}{2} m p<\frac{1}{2}(p-1)$. Then $w(\theta)=(\sin \theta)^{2 \mu-m p}$ is an A_{p}-weight. This implies (cf. [4]) that there is a constant $C=C(\mu, p)$ so that for any trigonometric polynomial $h(\theta)=\sum_{k=-N}^{N} \hat{h}(k) e^{i k \theta}$ of degree N, and any $1 \leq l \leq N$ we have

$$
\left(\int_{-\pi}^{\pi}\left|i \sum_{k \geq l} \hat{h}(k) e^{i k \theta}-i \sum_{k \leq-l} \hat{h}(k) e^{i k \theta}\right|^{p} w(\theta) d \theta\right)^{1 / p} \leq C\left(\int_{-\pi}^{\pi}|h(\theta)|^{p} w(\theta) d \theta\right)^{1 / p}
$$

Summing over $l=1,2, \ldots, N$ we obtain

$$
\left(\int_{-\pi}^{\pi}\left|\sum_{k=-N}^{N} i k \hat{h}(k) e^{i k \theta}\right|^{p} w(\theta) d \theta\right)^{1 / p} \leq C N\left(\int_{-\pi}^{\pi}|h(\theta)|^{p} w(\theta) d \theta\right)^{1 / p}
$$

i.e.,

$$
\begin{equation*}
\left(\int_{-\pi}^{\pi}\left|h^{\prime}(\theta)\right|^{p} w(\theta) d \theta\right)^{1 / p} \leq C N\left(\int_{-\pi}^{\pi}|h(\theta)|^{p} w(\theta) d \theta\right)^{1 / p} \tag{4.2}
\end{equation*}
$$

Now suppose $f \in \mathcal{P}_{n}$ and let $h(\theta)=(\sin \theta)^{m} f(\cos \theta)$ so that h is a trigonometric polynomial of degree at most $m+n-1 \leq C(\mu, p) n$. Let I_{k} be the interval $\left|\theta-\theta_{n k}\right| \leq \frac{\pi}{n}$ for $1 \leq k \leq n$. Then

$$
\begin{aligned}
\int_{I_{k}}|h(\theta)| d \theta & \leq\left(\int_{I_{k}} w(\theta)^{-p^{\prime} / p} d \theta\right)^{1 / p^{\prime}}\left(\int_{I_{k}}|h(\theta)|^{p} w(\theta) d \theta\right)^{1 / p} \\
& \leq C \frac{1}{n^{1 / p^{\prime}}}\left(\sin \theta_{n k}\right)^{m-2 \mu / p}\left(\int_{I_{k}}|h|^{p} w(\theta) d \theta\right)^{1 / p}
\end{aligned}
$$

Here we use the properties of $\left(\tau_{n k}\right)$ and $\left(\theta_{n k}\right)$ from Proposition 2.5. On the other hand,

$$
\begin{aligned}
\int_{I_{k}}\left|h(\theta)-h\left(\theta_{n k}\right)\right| d \theta & \leq \frac{\pi}{n} \int_{I_{k}}\left|h^{\prime}(\theta)\right| d \theta \\
& \leq C \frac{1}{n^{1+1 / p^{\prime}}}\left(\sin \theta_{n k}\right)^{m-2 \mu / p}\left(\int_{I_{k}}\left|h^{\prime}\right|^{p} w d \theta\right)^{1 / p}
\end{aligned}
$$

Putting these together we conclude that

$$
\frac{1}{n}\left|h\left(\theta_{n k}\right)\right|^{p}\left(\sin \theta_{n k}\right)^{2 \mu-m p} \leq C^{p}\left(\int_{I_{k}}|h|^{p} w(\theta) d \theta+\frac{1}{n^{p}} \int_{I_{k}}\left|h^{\prime}\right|^{p} w d \theta\right)
$$

On summing we obtain

$$
\frac{1}{n} \sum_{k=1}^{n}\left|f\left(\tau_{n k}\right)\right|^{p}\left(1-\tau_{n k}^{2}\right)^{\mu} \leq C^{p}\left(\int_{-\pi}^{\pi}|h|^{p} w d \theta+\frac{1}{n^{p}} \int_{-\pi}^{\pi}\left|h^{\prime}\right|^{p} w d \theta\right)
$$

since $\sum_{k=1}^{n} \chi_{I_{k}}$ is uniformly bounded by Proposition 2.5. Now appealing to (4.2) we have

$$
\frac{1}{n} \sum_{k=1}^{n}\left|f\left(\tau_{n k}\right)\right|^{p}\left(1-\tau_{n k}^{2}\right)^{\mu} \leq C^{p} \int_{-\pi}^{\pi}|h|^{p} w d \theta
$$

Recalling the definition of w and h this implies

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{k=1}^{n}\left|f\left(\tau_{n k}\right)\right|^{p}\left(1-\tau_{n k}^{2}\right)^{\mu}\right)^{1 / p} \leq C\left(\int_{-1}^{+1}|f(x)|^{p}\left(1-x^{2}\right)^{\mu-\frac{1}{2}} d x\right)^{1 / p} \tag{4.3}
\end{equation*}
$$

Note that we only have (4.3) when μ is not of the form $\frac{1}{2}(m p-1)$. We now prove (4.3) for μ in the exceptional case. We observe that if $\nu=\frac{2}{r} \mu+\frac{1}{r}-\frac{1}{2}$ then $\nu>-\frac{1}{2}$ and (4.1) holds for $\lambda=\nu$. In fact there exists $0<\delta<\frac{p}{2}$ so that ($\varphi_{n}^{(\nu)}$) is a basis of both $L_{p}\left([-1,1],\left(1-x^{2}\right)^{\mu-\delta}\right)$ and of $L_{p}\left([-1,1],\left(1-x^{2}\right)^{\mu+\delta}\right)$. Let

$$
S_{n}^{\nu}(f)=\sum_{k=0}^{n-1} \varphi_{n}^{(\lambda)} \int_{-1}^{+1} f(x) \varphi_{n}^{\nu}(x)\left(1-x^{2}\right)^{\nu-\frac{1}{2}} d x
$$

be the partial sum operator associated with this basis. Let us consider the map T_{n} : $L_{p}\left([-1,1],\left(1-x^{2}\right)^{\mu \pm \delta}\right) \rightarrow \mathbf{R}^{n}$ defined by

$$
T_{n}(f)_{k}=\left(S_{n}^{(\nu)} f\right)\left(\tau_{n k}\right)
$$

Then there is a constant C independent of n so that

$$
\left(\frac{1}{n} \sum_{k=1}^{n}\left|T_{n}(f)_{k}\right|^{p}\left(1-\tau_{n k}^{2}\right)^{\mu \pm \delta}\right)^{1 / p} \leq C\left(\int_{-1}^{+1}|f(x)|^{p}\left(1-x^{2}\right)^{\mu \pm \delta-\frac{1}{2}}\right)^{1 / p}
$$

It follows by interpolation that we obtain

$$
\left(\frac{1}{n} \sum_{k=1}^{n}\left|T_{n}(f)_{k}\right|^{p}\left(1-\tau_{n k}^{2}\right)^{\mu}\right)^{1 / p} \leq C\left(\int_{-1}^{+1}|f(x)|^{p}\left(1-x^{2}\right)^{\mu-\frac{1}{2}}\right)^{1 / p}
$$

and on restricting to P_{n} we have (4.3) for all μ.
We now assume λ satisfies (4.1) and complete the proof by duality. Let σ be defined by $\frac{\sigma}{p^{\prime}}+\frac{\mu}{p}=\lambda$. Then (4.1) also holds if we replace p, μ by p^{\prime}, σ.

Suppose $f \in \mathcal{P}_{n}$. Then there exists $h \in L_{p}\left([-1,1],\left(1-x^{2}\right)^{\sigma-\frac{1}{2}}\right)$ so that

$$
\int_{-1}^{+1}|h(x)|^{p^{\prime}}\left(1-x^{2}\right)^{\sigma-\frac{1}{2}} d x=1
$$

and

$$
\int_{-1}^{+1} h(x) f(x)\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x=\left(\int_{-1}^{+1}|f(x)|^{p}\left(1-x^{2}\right)^{\mu-\frac{1}{2}} d x\right)^{1 / p}
$$

Let $g=S_{n}^{(\lambda)} f$. Then

$$
\int_{-1}^{+1}|g(x)|^{p^{\prime}}\left(1-x^{2}\right)^{\sigma-\frac{1}{2}} d x \leq C^{p}
$$

where $C=C(p, \lambda, \mu)$ is independent of n. Now using Gauss-Jacobi quadrature (see Proposition 2.6) we have

$$
\frac{1}{n} \sum_{k=1}^{n} \alpha_{n k}^{(\lambda)} f\left(\tau_{n k}\right) g\left(\tau_{n k}\right)=\int_{-1}^{+1} f(x) h(x)\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x
$$

We recall that

$$
0 \leq \alpha_{n k}^{(\lambda)} \leq C\left(1-\tau_{n k}^{2}\right)^{\lambda} n^{-1}
$$

where C is again independent of n. It follows that

$$
\begin{aligned}
& \left(\int_{1}^{+1}|f(x)|^{p}\left(1-x^{2}\right)^{\mu-\frac{1}{2}} d x\right)^{1 / p} \\
& \quad \leq C\left(\frac{1}{n} \sum_{k=1}^{n}\left|f\left(\tau_{n k}\right)\right|^{p}\left(1-\tau_{n k}^{2}\right)^{\mu}\right)^{1 / p}\left(\frac{1}{n} \sum_{k=1}^{n}\left|g\left(\tau_{n k}\right)\right|^{p^{\prime}}\left(1-\tau_{n k}^{2}\right)^{\sigma}\right)^{1 / p^{\prime}}
\end{aligned}
$$

Now applying (4.3) we can estimate the last term by a constant independent of n. Thus we have

$$
\left(\int_{1}^{+1}|f(x)|^{p}\left(1-x^{2}\right)^{\mu-\frac{1}{2}} d x\right)^{1 / p} \leq C\left(\frac{1}{n} \sum_{k=1}^{n}\left|f\left(\tau_{n k}\right)\right|^{p}\left(1-\tau_{n k}^{2}\right)^{\mu}\right)^{1 / p}
$$

This completes the proof.

References

1. V. M. Badkov, Convergence in mean and almost everywhere of Fourier series in polynomials orthogonal on an interval. Math. USSR Sbornik 24(1974), 223-256.
2. J. Bourgain, Bounded orthogonal sets and the $\Lambda(p)$-problem. Acta Math. 162(1989), 227-246.
3. J. Garnett, Bounded analytic functions. Academic Press, Orlando, 1981.
4. R. A. Hunt, B. Muckenhaupt and R. L. Wheeden, Weighted norm inequalities for the conjugate function and the Hilbert transfrom. Trans. Amer. Math. Soc. 176(1973), 227-251.
5. N. J. Kalton and I. Verbitsky, Weighted norm inequalities and nonlinear equations. Trans. Amer. Math. Soc. (To appear.)
6. B. Muckenhaupt, Mean convergence of Jacobi series. Proc. Amer. Math. Soc. 24(1970), 288-292.
7. __ Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165(1972), 207-226.
8. D. J. Newman and W, Rudin, Mean convergence of orthogonal series. Proc. Amer. Math. Soc. 3(1952), 219-222.
9. H. Pollard, The mean convergence of orthogonal series I. Trans. Amer. Math. Soc. 62(1947), 387-403.
10. \qquad The mean convergence of orthogonal series II. Trans. Amer. Math. Soc. 63(1948), 355-367.
11. \quad, The mean convergence of orthogonal series III. Duke Math. J. 16(1949), 189-191.
12. W. Rudin, Trigonometric series with gaps. J. Math. Mech. 9(1960), 203-227.
13. E. T. Sawyer, A two-weight weak type inequality for fractional integrals. Trans. Amer. Math. Soc. 281(1984), 339-345.
14. G. Szegö, Orthogonal polynomials. 4th edn, Amer. Math. Soc. Colloq. Publ. 23, Providence, 1975.
15. M. Talagrand, Sections of smooth convex bodies via majorizing measures. Acta Math. 175(1995), 273300.

Department of Mathematics
University of Missouri
Columbia, MO 65211
USA
email: nigel@math.missouri.edu

Department of Mathematics
The Hebrew University
Jerusalem
Israel
email: liortz@math.huji.ac.il

[^0]: Received by the editors March 31, 1998; revised July 6, 1998.
 The first author was supported by NSF grant DMS-9500125. The second author was partially supported by the Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).

 AMS subject classification: 42C10, 33C45, 46B07.
 (C)Canadian Mathematical Society 1998.

