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Introduction. In [7] the level, sublevel, and product level of finite dimensional
central division algebras D over a field F were calculated when F is a local or global field.
In Theorem 1.4 of this paper we calculate the same quantities if all finite extensions K of
F satisfy u(/C)<2, where u is the Hasse number of a field as defined in [2]. This occurs,
for example, if F is an algebraic extension of the function field R(x) where R is a real
closed field or hereditarily Euclidean field (see [4]).

We recall the main definitions here. The level of D, s(D), is the least integer s such
that —1 is a sum of s squares in D. The sublevel of D, s(D), is the least integer s such that
0 is a sum of s + 1 nonzero squares in D. The product level of D, sn(D), is the least
integer sn such that — 1 is a sum of sn elements which are products of squares in D. In
each case, s, s, or s^ is set equal to °° if no such representation exists. Clearly
s^D) ^ s(D) ^s(D) and if D is a field then all three quantities agree with the usual level
of a field.

Section 1 deals with those properties of formally real fields that are useful in
calculating levels of division algebras. In Sections 2 and 3 we restrict attention to the case
of quaternion division algebras. Additional background to the problem of calculating
levels of division algebras may be found in the introduction to [7]. The main references
for Sections 2 and 3 are [9,10].

We use standard terminology from the theory of quadratic forms and ordered fields
as found in [6] and [11]. Let Fx denote the nonzero elements of F. We shall assume
throughout that char F =£ 2. We let DF(q) denote the nonzero elements of F represented
by a quadratic form q over F. The topological space of orderings of a field F is denoted
XF. Basic properties of XF and basic results on SAP fields can be found in [3] and [11].

1. Levels and sublevels of division algebras over formally real fields. In this section
we shall assume -l$F2, since otherwise s!l{D) = s(D) = s(D) = 1 for any division
algebra D. We recall from [7] that for a cyclic extension K/F of odd degree, t(K/F) is the
least integer t for which there exist au . . . , a, e K such that NK/F(aj) = 1, 1 < i < t, and
- 1 e DK((au ..., a,)). We will use the following two results from [7].

(1) [7, Proposition 2.4] If K/F is a cyclic extension of odd degree n > 1, then
t(K/F)<n-l.

(2) [7, Proposition 2.5, 2.6] Let D be a division algebra of odd degree over its center
F. Then 2<s(D) and min{3, s(F)} <s(D). If, in addition, D is a cyclic division algebra
and K is a maximal subfield cyclic over F, then §(D) ^ t(K/F) and s(D) < t(K/F) + 1.

Let K/F be a cyclic extension of degree n > 1 and let a be an automorphism that
generates Ga\(K/F). If P is an ordering on K, then P, o(P), . . . , a"~l(P) are distinct
orderings of K and if a e Kx, then a{a) e P if and only if a e o~l(P).

Let eKiF:XK^*XF be the continuous map defined by restricting an ordering on K to F.
Then there exists a clopen set Y in XK such that eKIF\Y is a homeomorphism onto
eKiF(.XK). (See [1, p. 139] or [8, Theorem 1.10].)

We claim XK = U o'iY) is a disjoint union of clopen sets. Clearly each <f(Y) is
1=0
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clopen. If PeoJ(Y)noi(Y) then P = &{P') = &{P"), P', P"eY. It follows that
eK/F{o~'{P)) = eK/F{o~'{P)) and this implies o~'{P) = o~'{P) since each lies in Y.
Therefore i=j. Finally, if PeXK, then eK/F(P) = eK/F(P') for some P' e Y. It follows

that P = &{P') for some i, and P e 0 '
01=0

1.1. LEMMA. Using the notation above, assume also that K is a SAP field. Then there
l a B \

exist a, B e Kx such that (1, ———, ) is totally indefinite over K.
\ o(a) o{B)l

a
Proof. If n is even, the lemma is trivial since NK/F{-1) = 1 implies - 1 = for

a{a)
(n-nn

some a- e Kx by Hilbert's Satz 90. Now assume n is odd. Let D, = U °2i{Y) and let
;=o

(n-l)/2

D2= U oli+l(Y). Note that XK = DlUD2, D,nD2=Y and D,, D2 are clopen sets.
i—O

Using the SAP property of K, choose a, /? € Kx such that

a>P0 if P e D , B > P0 if P e D2,

a<P0 if P$Dt 6<P0 if P^D 2 .

Then ~ ^ T < P O if PeljoJ{Y) and -7^7 <pO if Pe\JoJ{Y). Therefore
o{a) ,=i a{B) ,=2

(1, ———, ) is totally indefinite over K.

1.2. PROPOSITION. Suppose K/F is a cyclic extension of odd degree n>\. If K is a
SAP field and K satisfies property Am, m 2:2, {every torsion m-fold Pfister form defined
over K is hyperbolic), then t{K/F) < min{n - 1, 2m~1}.

Proof. In general t{K/F)<n- 1 [7, Proposition 2.4]. Since Kis a SAP field we may

choose a, Be Kx as in Proposition 1.1. Then q = ( l , , —rzr) is a totally indefinite
\ o{a) a{B)l

I acB \
quadratic form defined over K and x = q 1 ( , ^ ) is a torsion 2-fold Pfister form over

\a{aB)l
K. Therefore 2m~2x is hyperbolic over K, since K satisfies Am, and it follows that the
subform (1)12m~3T is isotropic over K if m £: 3 and <y is isotropic over K if m = 2. This
implies - 1 eDAr(2

m"3T) if m > 3 and - 1 e£>*((——-, ——)) if m = 2. In each case
\\o(a) a{B)ll

1.3. COROLLARY. Suppose K/F is a cyclic extension of odd degree n>l. If
u{K) < 2m, m > 2, then t{K/F) < min{n - 1, 2m~x}.

Proof. This follows from Proposition 1.2 since K satisfies property Am, m ^ 2 . Note
that K is a SAP field by [4, Theorems B, C].
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1.4. THEOREM. Let D ¥= F be a finite-dimensional crossed product division algebra
over a field F. Suppose K is a maximal subfield of D, K/F Galois, and u(K) s 2. Then

(1) s(D) = s(D) = sn(D) = 1 if deg D is even,
(2) s(D) = min{3, s(F)} if deg D is odd,
(3) s(D) = sa(D) = 2 if deg D is odd.

(We are still assuming — 1$F2.)

Proof. First assume deg D is even. Then [K: F] is even and Galois theory implies
there exists a subfield L with [K:L] = 2 and u(L)<2 by [5, Proposition 3.3]. The
centralizer of L in D is then a quaternion algebra {a, b)L with a, b e L. The quadratic
form q = {\, a, b, —ab) is isotropic over L since q is totally indefinite over L and
u(L) < 2. Therefore - 1 = aa2 + bfi1 - aby2 = (ai + /3y + ykf for some a, /3, y e L and
where i, y, & = ij is the standard basis of (a, b)L. This shows s{D) = 1 and hence

Now assume deg D is odd. Then Gal(/C/F) has odd order and K contains a subfield L
corresponding to a subgroup of prime order. Thus K/L is a cyclic extension of odd degree
> 1. The centralizer of L in D is a cyclic algebra E of odd degree over its center L. From
[7, Proposition 2.6] we have 2<s(D) and min{3, s{F)}<s{D). From [7, Proposition 2.5]
and Corollary 1.3 we have s(D) < s(E) < t(K/'L) < 2 and s(D)<s(E)<t(K/L) + 1<3 .
Since s(D)^s(F) we conclude that s(£>) = min{3, s(F)} and s(D) = 2. We have

<s(D) since deg D is odd [7, Proposition 1.1] and therefore sn(D) = 2.

2. Levels and sublevels of quaternion algebras. Levels and sublevels of quaternion
algebras were considered in [9] and [10]. We give several additional results in this section.
For convenience we list some of Lewis's results below in Proposition 2.1.

Let D = (-^rJ be a quaternion algebra with standard basis {\,i,j,k = ij} where

i2 = a, j2 = b, ji — —ij. Following the notation in [9,10], let TD = (1 , a, b, —ab) and
n

TP = (a, b, —ab). We will consider the equation c = £ (xk + yki + z^j + wxk) with c — 0

or —1. Let x = (xx, . . . , xn),. . . , w = (wlt.. . , wn). Then this equation is equivalent to
c = E x \ + a E y \ + b E z \ ~ ab E w\ and x.y=x.z=x.w = 0.

Note that s^D) = 1 for all quaternion algebras Z) since i2j2{ij)~2 = - 1 . Also note that if
D is a split algebra, then we may assume a = 1. In this case TP is isotropic and the next
result shows s(D) = 1.

2.1. PROPOSITION. (1) [9, Lemmas 2, 4] / / (1) 1 «rP is isotropic over F, then s(D) s n.
The converse holds if n = 2k - 1, k > 2. If k = l, then s(D) = 1 if and only if either TD is
isotropic or — 1 6 F2.

(2) [10, Proposition 2] / / either {1) ±nTP or (n + l)7> is isotropic over F, then
S(D) < n. The converse holds if n = 2k - 1, k > 1.

Lewis proved the "only i f direction of the following result in [9, Lemma 3].

2.2. THEOREM. For k > 0, s(D) < 2* if and only if either (1) or (2) below holds.
(1) (2* + 1)(1) 1 (2* - \)TP is isotropic over F.
(2) (1)12kTP is isotropic over F.
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Proof. We prove the "if" direction here. If (2) holds then s(D)^2k by Proposition
2.1 (1). Now assume (1) holds. Then there exists -A e DF((1) 1 (2* - l)TP) for some
nonzero A e DF(2k(l)). Hence for some a e F and B, C, D e DF((2k - 1)<1» U {0} we
have

-A = a2 + aB + bC-abD, i.e., - 1 = — {a2A + aAB + bAC -abAD).

2* 2*

Let A = £ x\. We show now there exist y^eF such that £ y \ = AB and x.y = 0. If

5 = 0, let each ^ = 0. If B * 0 , then ( / I , , 4#> = A(1, B) is a subform of A.2k{\) =
2*<1) since B e DF((2k - 1 ) ( 1 ) ) and A e DF(2*<1>). Therefore such a j? exists. Similarly

2* 2*

z, tv exist such that £ z\ = AC, £ w| = >4D and Jc. f = f. w = 0. It follows that

V (^ + y±i+^j + y^k)
2

 = ±(a2A+aAB +bAC-abAD) = -1.
i~, V A A A A / A

Therefore s(D)< 2k.

2.3. LEMMA. Suppose 2kTP is isotropic, k sO. Then (1 + [§ . 2*])TP is isotropic. ([ ] «
//ie greatest integer function.)

/. If 2kTP is isotropic then 2k(-a, -b,ab) is isotropic and 2k((-a, -b)) is
hyperbolic. After multiplying by —1 we see that any subform of 2*( —1, a, b, —ab) of
dimension greater than 2 . 2* is isotropic. The conclusion follows since 3(1 + [§ . 2*]) >
3(§ . 2*) = 2. 2*.

2.4. PROPOSITION. Ifk>2, then s(D) < 2* - 1 imp/ies s(£>) < 2* - 1.

Proo/. If 5(D) <2* - 1 then by Proposition 2.1(2), either (1) 1 (2k - 1)7> or 2kTP is
isotropic. If (1) 1 (2* - l)TP is isotropic, then s(D) < 2k - 1 by Proposition 2.1(1). If 2kTP

is isotropic, then (l + [|.2*])rP is isotropic by Lemma 2.3. Then Proposition 2.1(1)
implies s(D) < 1 + [§ . 2k] < 2* - 1 since A: > 2.

REMARK. This result is a slight improvement of [10, Proposition 4].

2.5. THEOREM. (1) If s(D) = l, then s{D)<2 and if 2<s(D)<oo, then s(D)<
) .
(2) Ifs(D) = 2k-l, k>2, then s(D) = 2" - 1.
(3) lfs{D) = 2k, k > 2, tfie« $(£>) = 2*.
(4) Ifs{D) = 2k + 1, k > 1, fAen $(£>) = 2* or 2* + 1.

Proof. (1) If s{D) = \, then s(£>)^2 by Proposition 2.1(2) and Theorem 2.2. If
2 < $(£>) < c», then s{D) < 2s(D) by Proposition 2.4.

If k>2, then (2), (3), (4) all follow from Proposition 2.4 and the estimate
s{D) <s{D). If k = 1 in (4) and s(D) = 3, then s(D) < 3. Since s(D) = 1 implies s(D) < 2
by (1), it follows that s(D) = 3 implies s(D) = 2 or 3.

The next section deals with examples where the ordered pair (s(D), s(D)) has been
computed.
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3. Examples of levels and sublevels of quaternion division algebras. We continue
the notation of Section 2. If F is a local or global field then (s(D), s(D)) was calculated in
[7] and we had s(D) < s(D) < 2 in all cases. If u(F) s 2, then (s(D), s(D)) was calculated
in Theorem 1.4 and we found (s(D), s(D)) = (1, 1). (The maximal subfield K satisfies

w(/C) < 2 by [5, Proposition 3.3].) In [12], s(D) was calculated if D = (J*' j where a is

a nonsquare in Fx and F((f)) is the field of formal power series over F. We review this
result below and also calculate s(D).

If a e F*, let g(a) be the least integer such that g(a)(l, —a) is isotropic over F and set
g(a) = °° if no such integer exists.

3.1. THEOREM [12]. (1) Let D = I ' 1 where a is a nonsquare in Fx. Then s(D) =

min{g(a), s(F(Va))}.
(2) Let F = U(xi, . . . , xn), the rational function field in n variables over the real

numbers, and assume n > 2 . Let a = £ xj and let D = ( ' .), D' = [ '•—). Then
,--i \F((t))/ \F((t))/

s(D) = 2k + 1 i/2* < n <2*+1 and s(D') = 2" if2k^n<2k+l.

It was shown in [12] that g(a) always has the form 2* + 1 if g(a) is finite. Since the
level of a field is always a power of 2 if finite, we see that for D as in Theorem 3.1(1),

3.2. THEOREM. (1) Let D be as in Theorem 3.1(1). Then

s_(D) = min{g(a) - 1, s(F(Va'))}.

(2) Let D, D' be as in Theorem 3.1(2). Then s(D) = 2k if 2*<n<2* + 1 and
k k k i

We omit the proof of Theorem 3.2 since it is so similar to the proof in [12]. Note that
the result for D' in (2) with k > 2 follows from Theorems 2.5(3) and 3.1(2).

The examples mentioned here show that the following values of the ordered pair
{s(D), s(D)) can occur when D is a quaternion algebra:

(§{D), s(D)) = (2 \ 2k) or (2*. 2* + 1), * > 0 .

The main questions to consider on levels and sublevels of quaternion algebras D are
the following.

(1) Is it always true that s(D) = 2*?
(2) Is it always true that s(D) = 2k or 2* + 1?
(3) Is it always true that s(D) ̂ s(D) + 1?

Added in proof. Kriiskemper and Wadsworth have constructed a quaternion division
algebra D with s(D) = 3. By Theorem 2.5(2), it follows that s(D) = 3. Thus the answer to
question (1) is no.
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