LEVELS OF DIVISION ALGEBRAS

by DAVID B. LEEP

(Received 7 June, 1989)
Introduction. In [7] the level, sublevel, and product level of finite dimensional central division algebras D over a field F were calculated when F is a local or global field. In Theorem 1.4 of this paper we calculate the same quantities if all finite extensions K of F satisfy $\tilde{u}(K) \leq 2$, where \tilde{u} is the Hasse number of a field as defined in [2]. This occurs, for example, if F is an algebraic extension of the function field $R(x)$ where R is a real closed field or hereditarily Euclidean field (see [4]).

We recall the main definitions here. The level of $D, s(D)$, is the least integer s such that -1 is a sum of s squares in D. The sublevel of $D, s(D)$, is the least integer s such that 0 is a sum of $s+1$ nonzero squares in D. The product level of $D, s_{\pi}(D)$, is the least integer s_{π} such that -1 is a sum of s_{π} elements which are products of squares in D. In each case, s, s, or s_{π} is set equal to ∞ if no such representation exists. Clearly $s_{\pi}(D) \leq \underline{s}(D) \leq s(D)$ and if D is a field then all three quantities agree with the usual level of a field.

Section 1 deals with those properties of formally real fields that are useful in calculating levels of division algebras. In Sections 2 and 3 we restrict attention to the case of quaternion division algebras. Additional background to the problem of calculating levels of division algebras may be found in the introduction to [7]. The main references for Sections 2 and 3 are $[9,10]$.

We use standard terminology from the theory of quadratic forms and ordered fields as found in [6] and [11]. Let F^{\times}denote the nonzero elements of F. We shall assume throughout that char $F \neq 2$. We let $D_{F}(q)$ denote the nonzero elements of F represented by a quadratic form q over F. The topological space of orderings of a field F is denoted X_{F}. Basic properties of X_{F} and basic results on SAP fields can be found in [3] and [11].

1. Levels and sublevels of division algebras over formally real fields. In this section we shall assume $-1 \notin F^{2}$, since otherwise $s_{\pi}(D)=\underline{s}(D)=s(D)=1$ for any division algebra D. We recall from [7] that for a cyclic extension K / F of odd degree, $t(K / F)$ is the least integer t for which there exist $a_{1}, \ldots, a_{t} \in K$ such that $N_{K / F}\left(a_{i}\right)=1,1 \leq i \leq t$, and $-1 \in D_{K}\left(\left\langle a_{1}, \ldots, a_{t}\right\rangle\right)$. We will use the following two results from [7].
(1) [7, Proposition 2.4] If K / F is a cyclic extension of odd degree $n>1$, then $t(K / F) \leq n-1$.
(2) [7, Proposition 2.5, 2.6] Let D be a division algebra of odd degree over its center F. Then $2 \leq \underline{s}(D)$ and $\min \{3, s(F)\} \leq s(D)$. If, in addition, D is a cyclic division algebra and K is a maximal subfield cyclic over F, then $\underline{s}(D) \leq t(K / F)$ and $s(D) \leq t(K / F)+1$.

Let K / F be a cyclic extension of degree $n>1$ and let σ be an automorphism that generates $\mathrm{Gal}(K / F)$. If P is an ordering on K, then $P, \sigma(P), \ldots, \sigma^{n-1}(P)$ are distinct orderings of K and if $a \in K^{\times}$, then $\sigma(a) \in P$ if and only if $a \in \sigma^{-1}(P)$.

Let $\epsilon_{K / F}: X_{K} \rightarrow X_{F}$ be the continuous map defined by restricting an ordering on K to F. Then there exists a clopen set Y in X_{K} such that $\left.\epsilon_{K / F}\right|_{Y}$ is a homeomorphism onto $\epsilon_{K / F}\left(X_{K}\right)$. (See [1, p. 139] or [8, Theorem 1.10].)

We claim $X_{K}=\bigcup_{i=0}^{n-1} \sigma^{i}(Y)$ is a disjoint union of clopen sets. Clearly each $\sigma^{i}(Y)$ is
clopen. If $P \in \sigma^{i}(Y) \cap \sigma^{j}(Y)$ then $P=\sigma^{i}\left(P^{\prime}\right)=\sigma^{j}\left(P^{\prime \prime}\right), P^{\prime}, P^{\prime \prime} \in Y$. It follows that $\epsilon_{K / F}\left(\sigma^{-i}(P)\right)=\epsilon_{K / F}\left(\sigma^{-j}(P)\right)$ and this implies $\sigma^{-i}(P)=\sigma^{-j}(P)$ since each lies in Y. Therefore $i=j$. Finally, if $P \in X_{K}$, then $\epsilon_{K / F}(P)=\epsilon_{K / F}\left(P^{\prime}\right)$ for some $P^{\prime} \in Y$. It follows that $P=\sigma^{i}\left(P^{\prime}\right)$ for some i, and $P \in \bigcup_{i=0}^{n-1} \sigma^{i}(Y)$.
1.1. Lemma. Using the notation above, assume also that K is a SAP field. Then there exist $\alpha, \beta \in K^{\times}$such that $\left\langle 1, \frac{\alpha}{\sigma(\alpha)}, \frac{\beta}{\sigma(\beta)}\right\rangle$ is totally indefinite over K.

Proof. If n is even, the lemma is trivial since $N_{K / F}(-1)=1$ implies $-1=\frac{\alpha}{\sigma(\alpha)}$ for some $\alpha \in K^{\times}$by Hilbert's Satz 90 . Now assume n is odd. Let $D_{1}=\bigcup_{i=0}^{(n-1) / 2} \sigma^{2 i}(Y)$ and let $D_{2}=\bigcup_{i=0}^{(n-1)^{\prime 2}} \sigma^{2 i+1}(Y)$. Note that $X_{K}=D_{1} \cup D_{2}, D_{1} \cap D_{2}=Y$ and D_{1}, D_{2} are clopen sets. Using the SAP property of K, choose $\alpha, \beta \in K^{\times}$such that

$$
\begin{array}{llllll}
\alpha>_{P} 0 & \text { if } & P \in D_{1} & \beta>_{P} 0 & \text { if } & P \in D_{2}, \\
\alpha<_{P} 0 & \text { if } & P \notin D_{1} & \beta<_{P} 0 & \text { if } & P \notin D_{2} .
\end{array}
$$

Then $\frac{\alpha}{\sigma(\alpha)}<{ }_{P} 0 \quad$ if $\quad P \in \bigcup_{i=1}^{n-1} \sigma^{i}(Y)$ and $\quad \frac{\beta}{\sigma(\beta)}<{ }_{P} 0 \quad$ if $\quad P \in \bigcup_{i=2}^{n} \sigma^{i}(Y)$. Therefore $\left\langle 1, \frac{\alpha}{\sigma(\alpha)}, \frac{\beta}{\sigma(\beta)}\right\rangle$ is totally indefinite over K.
1.2. Proposition. Suppose K / F is a cyclic extension of odd degree $n>1$. If K is a SAP field and K satisfies property $A_{m}, m \geq 2$, (every torsion m-fold Pfister form defined over K is hyperbolic), then $t(K / F) \leq \min \left\{n-1,2^{m-1}\right\}$.

Proof. In general $t(K / F) \leq n-1$ [7, Proposition 2.4]. Since K is a SAP field we may choose $\alpha, \beta \in K^{\times}$as in Proposition 1.1. Then $q=\left\langle 1, \frac{\alpha}{\sigma(\alpha)}, \frac{\beta}{\sigma(\beta)}\right\rangle$ is a totally indefinite quadratic form defined over K and $\tau=q \perp\left\langle\frac{\alpha \beta}{\sigma(\alpha \beta)}\right\rangle$ is a torsion 2-fold Pfister form over K. Therefore $2^{m-2} \tau$ is hyperbolic over K, since K satisfies A_{m}, and it follows that the subform $\langle 1\rangle \perp 2^{m-3} \tau$ is isotropic over K if $m \geq 3$ and q is isotropic over K if $m=2$. This implies $-1 \in D_{K}\left(2^{m-3} \tau\right)$ if $m \geq 3$ and $-1 \in D_{K}\left(\left\langle\frac{\alpha}{\sigma(\alpha)}, \frac{\beta}{\sigma(\beta)}\right\rangle\right)$ if $m=2$. In each case $t(K / F) \leq 2^{m-1}$.
1.3. Corollary. Suppose K / F is a cyclic extension of odd degree $n>1$. If $\tilde{u}(K)<2^{m}, m \geq 2$, then $t(K / F) \leq \min \left\{n-1,2^{m-1}\right\}$.

Proof. This follows from Proposition 1.2 since K satisfies property $A_{m}, m \geq 2$. Note that K is a SAP field by [4, Theorems B, C].
1.4. Theorem. Let $D \neq F$ be a finite-dimensional crossed product division algebra over a field F. Suppose K is a maximal subfield of $D, K / F$ Galois, and $\tilde{u}(K) \leq 2$. Then
(1) $s(D)=\underline{s}(D)=s_{\pi}(D)=1$ if deg D is even,
(2) $s(D)=\min \{3, s(F)\}$ if $\operatorname{deg} D$ is odd,
(3) $\underline{s}(D)=s_{\pi}(D)=2$ if $\operatorname{deg} D$ is odd.
(We are still assuming $-1 \notin F^{2}$.)
Proof. First assume $\operatorname{deg} D$ is even. Then $[K: F]$ is even and Galois theory implies there exists a subfield L with $[K: L]=2$ and $\tilde{u}(L) \leq 2$ by [5, Proposition 3.3]. The centralizer of L in D is then a quaternion algebra $(a, b)_{L}$ with $a, b \in L$. The quadratic form $q=\langle 1, a, b,-a b\rangle$ is isotropic over L since q is totally indefinite over L and $\bar{u}(L) \leq 2$. Therefore $-1=a \alpha^{2}+b \beta^{2}-a b \gamma^{2}=(\alpha i+\beta j+\gamma k)^{2}$ for some $\alpha, \beta, \gamma \in L$ and where $i, j, k=i j$ is the standard basis of $(a, b)_{L}$. This shows $s(D)=1$ and hence $s(D)=s_{\pi}(D)=1$.

Now assume deg D is odd. Then $\operatorname{Gal}(K / F)$ has odd order and K contains a subfield L corresponding to a subgroup of prime order. Thus K / L is a cyclic extension of odd degree >1. The centralizer of L in D is a cyclic algebra E of odd degree over its center L. From [7, Proposition 2.6] we have $2 \leq \underline{s}(D)$ and $\min \{3, s(F)\} \leq s(D)$. From [7, Proposition 2.5] and Corollary 1.3 we have $s(D) \leq \underline{s}(E) \leq t(K / L) \leq 2$ and $s(D) \leq s(E) \leq t(K / L)+1 \leq 3$. Since $s(D) \leq s(F)$ we conclude that $s(D)=\min \{3, s(F)\}$ and $s(D)=2$. We have $2 \leq s_{\pi}(D) \leq \underline{s}(D)$ since deg D is odd [7, Proposition 1.1] and therefore $s_{\pi}(D)=2$.
2. Levels and sublevels of quaternion algebras. Levels and sublevels of quaternion algebras were considered in [9] and [10]. We give several additional results in this section. For convenience we list some of Lewis's results below in Proposition 2.1.

Let $D=\left(\frac{a, b}{F}\right)$ be a quaternion algebra with standard basis $\{1, i, j, k=i j\}$ where $i^{2}=a, j^{2}=b, j i=-i j$. Following the notation in $[9,10]$, let $T_{D}=\langle 1, a, b,-a b\rangle$ and $T_{P}=\langle a, b,-a b\rangle$. We will consider the equation $c=\sum_{\lambda=1}^{n}\left(x_{\lambda}+y_{\lambda} i+z_{\lambda} j+w_{\lambda} k\right)^{2}$ with $c=0$ or -1 . Let $\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \ldots, \vec{w}=\left(w_{1}, \ldots, w_{n}\right)$. Then this equation is equivalent to $c=\sum x_{\lambda}^{2}+a \sum y_{\lambda}^{2}+b \sum z_{\lambda}^{2}-a b \sum w_{\lambda}^{2}$ and $\vec{x} \cdot \vec{y}=\vec{x} \cdot \vec{z}=\vec{x} \cdot \vec{w}=0$.

Note that $s_{\pi}(D)=1$ for all quaternion algebras D since $i^{2} j^{2}(i j)^{-2}=-1$. Also note that if D is a split algebra, then we may assume $a=1$. In this case T_{P} is isotropic and the next result shows $s(D)=1$.
2.1. Proposition. (1) [9, Lemmas 2, 4] If $\langle 1\rangle \perp n T_{P}$ is isotropic over F, then $s(D) \leq n$. The converse holds if $n=2^{k}-1, k \geq 2$. If $k=1$, then $s(D)=1$ if and only if either T_{D} is isotropic or $-1 \in F^{2}$.
(2) [10, Proposition 2] If either $\langle 1\rangle \perp n T_{P}$ or $(n+1) T_{P}$ is isotropic over F, then $s(D) \leq n$. The converse holds if $n=2^{k}-1, k \geq 1$.
Lewis proved the "only if" direction of the following result in [9, Lemma 3].
2.2. Theorem. For $k \geq 0, s(D) \leq 2^{k}$ if and only if either (1) or (2) below holds.
(1) $\left(2^{k}+1\right)\langle 1\rangle \perp\left(2^{k}-1\right) T_{P}$ is isotropic over F.
(2) $\langle 1\rangle \perp 2^{k} T_{P}$ is isotropic over F.

Proof. We prove the "if" direction here. If (2) holds then $s(D) \leqq 2^{k}$ by Proposition 2.1 (1). Now assume (1) holds. Then there exists $-A \in D_{F}\left(\langle 1\rangle \perp\left(2^{k}-1\right) T_{P}\right)$ for some nonzero $A \in D_{F}\left(2^{k}\langle 1\rangle\right)$. Hence for some $\alpha \in F$ and $B, C, D \in D_{F}\left(\left(2^{k}-1\right)\langle 1\rangle\right) \cup\{0\}$ we have

$$
-A=\alpha^{2}+a B+b C-a b D, \quad \text { i.e., } \quad-1=\frac{1}{A^{2}}\left(\alpha^{2} A+a A B+b A C-a b A D\right)
$$

Let $A=\sum_{\lambda=1}^{2^{k}} x_{\lambda}^{2}$. We show now there exist $y_{\lambda} \in F$ such that $\sum_{\lambda=1}^{2^{k}} y_{\lambda}^{2}=A B$ and $\vec{x} \cdot \vec{y}=0$. If $B=0$, let each $y_{\lambda}=0$. If $B \neq 0$, then $\langle A, A B\rangle \cong A\langle 1, B\rangle$ is a subform of $A \cdot 2^{k}\langle 1\rangle \cong$ $2^{k}\langle 1\rangle$ since $B \in D_{F}\left(\left(2^{k}-1\right)\langle 1\rangle\right)$ and $A \in D_{F}\left(2^{k}\langle 1\rangle\right)$. Therefore such a \vec{y} exists. Similarly \vec{z}, \vec{w} exist such that $\sum_{\lambda=1}^{2^{k}} z_{\lambda}^{2}=A C, \sum_{\lambda=1}^{2^{k}} w_{\lambda}^{2}=A D$ and $\vec{x} \cdot \vec{z}=\vec{x} \cdot \vec{w}=0$. It follows that

$$
\sum_{\lambda=1}^{2^{k}}\left(\frac{\alpha x_{\lambda}}{A}+\frac{y_{\lambda}}{A} i+\frac{z_{\lambda}}{A} j+\frac{w_{\lambda}}{A} k\right)^{2}=\frac{1}{A^{2}}\left(\alpha^{2} A+a A B+b A C-a b A D\right)=-1
$$

Therefore $s(D) \leq 2^{k}$.
2.3. Lemma. Suppose $2^{k} T_{P}$ is isotropic, $k \geq 0$. Then $\left(1+\left[\frac{2}{3} .2^{k}\right]\right) T_{P}$ is isotropic. ([] is the greatest integer function.)

Proof. If $2^{k} T_{P}$ is isotropic then $2^{k}\langle-a,-b, a b\rangle$ is isotropic and $2^{k}\langle\langle-a,-b\rangle\rangle$ is hyperbolic. After multiplying by -1 we see that any subform of $2^{k}\langle-1, a, b,-a b\rangle$ of dimension greater than 2.2^{k} is isotropic. The conclusion follows since $3\left(1+\left[\frac{2}{3} \cdot 2^{k}\right]\right)>$ $3\left(\frac{2}{3} \cdot 2^{k}\right)=2.2^{k}$.
2.4. Proposition. If $k \geq 2$, then $\underline{s}(D) \leq 2^{k}-1$ implies $s(D) \leq 2^{k}-1$.

Proof. If $\underline{s}(D) \leq 2^{k}-1$ then by Proposition 2.1(2), either $\langle 1\rangle \perp\left(2^{k}-1\right) T_{P}$ or $2^{k} T_{P}$ is isotropic. If $\langle 1\rangle \perp\left(2^{k}-1\right) T_{P}$ is isotropic, then $s(D) \leq 2^{k}-1$ by Proposition 2.1(1). If $2^{k} T_{P}$ is isotropic, then $\left(1+\left[\frac{2}{3} .2^{k}\right]\right) T_{P}$ is isotropic by Lemma 2.3. Then Proposition $2.1(1)$ implies $s(D) \leq 1+\left[\frac{2}{3} \cdot 2^{k}\right] \leq 2^{k}-1$ since $k \geq 2$.

Remark. This result is a slight improvement of [10, Proposition 4].
2.5. Theorem. (1) If $\underline{s}(D)=1$, then $s(D) \leq 2$ and if $2 \leq \underline{s}(D)<\infty$, then $s(D)<$ $2 s(D)$.
(2) If $\underline{s}(D)=2^{k}-1, k \geq 2$, then $s(D)=2^{k}-1$.
(3) If $s(D)=2^{k}, k \geq 2$, then $s(D)=2^{k}$.
(4) If $s(D)=2^{k}+1, k \geq 1$, then $s(D)=2^{k}$ or $2^{k}+1$.

Proof. (1) If $s(D)=1$, then $s(D) \leqq 2$ by Proposition $2.1(2)$ and Theorem 2.2. If $2 \leq \underline{s}(D)<\infty$, then $s(D)<2 \underline{s}(D)$ by Proposition 2.4.

If $k \geq 2$, then (2), (3), (4) all follow from Proposition 2.4 and the estimate $\underline{s}(D) \leq s(D)$. If $k=1$ in (4) and $s(D)=3$, then $\underline{s}(D) \leq 3$. Since $\underline{s}(D)=1$ implies $s(D) \leq 2$ by (1), it follows that $s(D)=3$ implies $\underline{s}(D)=2$ or 3 .

The next section deals with examples where the ordered pair $(s(D), s(D))$ has been computed.
3. Examples of levels and sublevels of quaternion division algebras. We continue the notation of Section 2. If F is a local or global field then ($(\underline{s}(D), s(D)$) was calculated in [7] and we had $\underline{s}(D) \leq s(D) \leq 2$ in all cases. If $\tilde{u}(F) \leq 2$, then $(\underline{s}(D), s(D)$) was calculated in Theorem 1.4 and we found $(s(D), s(D))=(1,1)$. (The maximal subfield K satisfies $\vec{u}(K) \leq 2$ by [5, Proposition 3.3].) In [12], $s(D)$ was calculated if $D=\left(\frac{a, t}{F((t))}\right)$ where a is a nonsquare in F^{\times}and $F((t))$ is the field of formal power series over F. We review this result below and also calculate $\underline{s}(D)$.

If $a \in F^{\times}$, let $g(a)$ be the least integer such that $g(a)\langle 1,-a\rangle$ is isotropic over F and set $g(a)=\infty$ if no such integer exists.
3.1. Theorem [12]. (1) Let $D=\left(\frac{a, t}{F((t))}\right)$ where a is a nonsquare in F^{\times}. Then $s(D)=$ $\min \{g(a), s(F(\sqrt{a}))\}$.
(2) Let $F=\mathbb{R}\left(x_{1}, \ldots, x_{n}\right)$, the rational function field in n variables over the real numbers, and assume $n \geq 2$. Let $a=\sum_{i=1}^{n} x_{i}^{2}$ and let $D=\left(\frac{a, t}{F((t))}\right), D^{\prime}=\left(\frac{-a, t}{F((t))}\right)$. Then $s(D)=2^{k}+1$ if $2^{k}<n \leq 2^{k+1}$ and $s\left(D^{\prime}\right)=2^{k}$ if $2^{k} \leq n<2^{k+1}$.

It was shown in [12] that $g(a)$ always has the form $2^{k}+1$ if $g(a)$ is finite. Since the level of a field is always a power of 2 if finite, we see that for D as in Theorem 3.1(1), $s(D)=2^{k}$ or $2^{k}+1$ if $s(D)<\infty$.
3.2. Theorem. (1) Let D be as in Theorem 3.1(1). Then

$$
\underline{s}(D)=\min \{g(a)-1, s(F(\sqrt{a}))\}
$$

(2) Let D, D^{\prime} be as in Theorem 3.1(2). Then $s(D)=2^{k}$ if $2^{k}<n \leq 2^{k+1}$ and $\underline{s}\left(D^{\prime}\right)=2^{k}$ if $2^{k} \leq n<2^{k+1}$.

We omit the proof of Theorem 3.2 since it is so similar to the proof in [12]. Note that the result for D^{\prime} in (2) with $k \geq 2$ follows from Theorems 2.5(3) and 3.1(2).

The examples mentioned here show that the following values of the ordered pair $(s(D), s(D))$ can occur when D is a quaternion algebra:

$$
(\underline{s}(D), s(D))=\left(2^{k}, 2^{k}\right) \quad \text { or } \quad\left(2^{k}, 2^{k}+1\right), \quad k \geq 0 .
$$

The main questions to consider on levels and sublevels of quaternion algebras D are the following.
(1) Is it always true that $\underline{s}(D)=2^{k}$?
(2) Is it always true that $s(D)=2^{k}$ or $2^{k}+1$?
(3) Is it always true that $s(D) \leq \underline{s}(D)+1$?

Added in proof. Krüskemper and Wadsworth have constructed a quaternion division algebra D with $\underline{s}(D)=3$. By Theorem $2.5(2)$, it follows that $s(D)=3$. Thus the answer to question (1) is no.

REFERENCES

1. R. Bos, Quadratic forms, orderings and abstract Witt rings, Dissertation (Rijksuniversiteit te Utrecht, 1984).
2. R. Elman, Quadratic forms and the u-invariant III, in G. Orzech, editor, Quadratic forms conference, 1976, Queen's Papers in Pure and Applied Mathematics 46 (1977), 422-444.
3. R. Elman and T. Y. Lam, Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
4. R. Elman, T. Y. Lam and A. Prestel, On some Hasse principles over formally real fields, Math. Z. 134 (1973), 291-301.
5. R. Elman, T. Y. Lam and A. Wadsworth, Quadratic forms under multiquadratic extensions, Nederl. Akad. Wetensch. Indag. Math. 42 (1980), 131-145.
6. T. Y. Lam, The algebraic theory of quadratic forms (Benjamin, 1973).
7. D. B. Leep, J.-P. Tignol and N. Vast, The level of division algebras over local and global fields. J. Number. Theory 33 (1989), 53-70.
8. D. B. Leep and A. R. Wadsworth, The transfer ideal of quadratic forms and a Hasse norm theorem mod squares, Trans. Amer. Math. Soc. 315 (1989), 415-431.
9. D. W. Lewis, Levels of quaternion algebras, Rocky Mountain J. Math., 19 (1989), 787-792.
10. D. W. Lewis, Levels and sublevels of division algebras, Proc. Roy. Irish Acad. Sect. A 87 (1987), 103-106.
11. W. Scharlau, Quadratic forms and hermitian forms (Springer, 1985).
12. J.-P. Tignol and N. Vast, Représentation de -1 comme somme de carrés dans certaines algèbres de quaternions, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 583-586.

Department of Mathematics

University of Kentucky
Lexington KY 40506
USA

