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Exotic wakes of an oscillating circular cylinder:
how singles pair up

Kerry Hourigan†

Department of Mechanical and Aerospace Engineering, Fluids Laboratory for Aeronautical and Industrial
Research (FLAIR), Monash University, Clayton, Victoria 3800, Australia

Fascinating wake vortex patterns emerge when a circular cylinder is forced to vibrate
laterally to a uniform fluid flow, deviating from the well-known Kármán vortex street
and first reported by Williamson & Roshko (J. Fluids Struct., vol. 2, 1988, pp. 355–381).
The two rows of single vortices (2S mode) can suddenly transition to a row of paired
vortices and a row of single vortices (P+S mode) as the forcing amplitude is increased.
Further increase in amplitude finds another sudden jump back to the 2S mode. Through
a series of elegant and carefully crafted numerical simulations, Matharu et al. (J. Fluid
Mech., vol. 918, 2021, A42) determine that the transitions occur via bifurcations, but that
underlying these observed ‘jumps’, a continuous evolution of the vortex street between
the modes is seen along unstable branches connecting the two modes. As the Reynolds
number decreases from 100, bistability and the P+S mode are eventually suppressed.

Key words: bifurcation, vortex shedding, computational methods

1. Introduction

The rhythmic transverse vibration of a circular cylinder in a flow, and the whirls of fluid of
opposite swirl alternately shed into the wake as this bluff body undergoes flow-induced
vibration, are aesthetically beautiful and mesmerising to the observer. Although such
flow-induced vibrations may have utility for energy harvesting, they also have the potential
to cause destruction to engineering structures.

Applying forced vibrations to a cylinder at different frequencies and amplitudes can
provide a strictly periodic flow that can mimic that due to flow-induced vibrations, as
well as expanding the amplitude–frequency parameter space. A variety of vortex patterns,
including two parallel rows of either single vortices of opposite spin (2S mode) or pairs
of both spins (2P), or a row with single vortices of one spin and a parallel row of pairs of
vortices with the opposite spin (P+S mode), have been observed in the pioneering studies
of Williamson & Roshko (1988) and Williamson & Govardhan (2004) in meticulous
experiments using aluminium particles or dye as tracers (see figure 1a). These were later
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Figure 1. Parameter map of normalised forcing amplitude, A, versus forcing period, Te, showing different
wake modes. (a) Adapted from Williamson & Roshko (1988) for Re ∈ (300, 1000). (b) Adapted from Matharu
et al. (2021) and Leontini et al. (2006).

reproduced using time-dependent computational simulations by Leontini et al. (2006) (see
figure 1b).

What have not been understood are the precise details of the transition from 2S shedding
to P+S shedding for a circular cylinder undergoing forced transverse oscillations. In
particular, Matharu, Hazel & Heil (2021) examine two scenarios via which the transition
might proceed. Scenario (i) is the evolution of a single solution that leads to quantifiable,
discrete changes to the topology of the flow field, and scenario (ii) comprises bifurcations
with additional solutions with distinct new features arising, disappearing or changing
stability.
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In the experiments of Williamson & Roshko (1988) and Williamson & Govardhan
(2004), and in the computational predictions of Leontini et al. (2006), there appears a
sharp discrete transition between the 2S mode and the P+S mode, which may at first glance
suggest scenario (i). However, by using an alternative computational technique that allows
the capture of unstable solutions, Matharu et al. (2021) show that scenario (ii) underpins
the transition. Matharu et al. (2021) consider this case for ‘moderate’ Reynolds number,
based on cylinder diameter and upstream flow velocity, of 100 and less. In particular, the
cases simulated previously by Leontini et al. (2006) are considered for the particular case
of forcing at the natural vortex shedding frequency (i.e. the Strouhal shedding frequency
for a fixed circular cylinder) and varying the amplitude of oscillation. Leontini et al. (2006)
did not attempt to determine unstable solutions or regions of bistability. The parameter
space explored by Leontini et al. (2006) and the specific path of the stability study of
Matharu et al. (2021) are shown in figure 1(b).

2. Overview

Matharu et al. (2021) investigate the nature of the transitions between the 2S and P+S
modes in an elegant and rigorous approach. By employing a time-integration of the
Navier–Stokes equations, they are able to reproduce the sharp jumps between modes found
by the previous simulations of Leontini et al. (2006) and experiments of Williamson &
Roshko (1988) and Williamson & Govardhan (2004). These solutions, however, reflect
only stable solutions.

Through the clever use also of a numerical method based on space–time discretisation,
Matharu et al. (2021) are able to track the evolution of wake structures along both
stable and unstable branches. By mapping the magnitude of the symmetry-breaking
perturbation, ε(A), against the normalised amplitude of vibration, A, they are able clearly
to distinguish the 2S mode (ε = 0) and P+S mode (ε /= 0). The inferred stability of the
various time-periodic solution branches was confirmed through time-integration of the
Navier–Stokes equations.

An amalgam of some of the key results of Matharu et al. (2021) is shown in figure 2. The
solutions above and below the horizontal axis are conjugate solutions – that is, the vortex
pair can appear in the upper or lower row of vortices, depending on initial conditions.

At low vibration amplitudes A, the only solution is a stable 2S mode. As the amplitude
increases, a subcritical pitchfork bifurcation (characterised by the square root growth of ε)
occurs at A ≈ 1.0855, and two unstable conjugate branches then join stable conjugate P+S
branches via a fold bifurcation at A ≈ 1.0680. A small region of bistability occurs over
this range of the unstable branches.

The transition is repeated when A decreases from values larger than ≈ 1.5, where a
second subcritical pitchfork bifurcation occurs at A ≈ 1.316, leading to unstable conjugate
branches joining the stable P+S conjugate branches at A ≈ 1.5 via a fold bifurcation.
A larger region of bistability exists over this range of unstable branches.

The question then remains as to the evolution of the vortex structures in the transition
along the unstable branches joining the 2S and P+S modes. First, Matharu et al. (2021)
show that by following the ‘2S path’ ((α)–(γ ) in figure 2, i.e. ε = 0), the 2S mode is
maintained in both the stable and unstable branches. The wake structures corresponding
to the points (α)–(γ ) are shown in figure 3. Note, however, that at points (β) and
(γ ), the near-wakes in figures 3(β)–3(γ ) show a weak secondary vorticity maximum
associated with each shed vortex. These near-wake structures are reminiscent of a 2P
wake mode. However, the evolution between the 2S and 2P occurs continuously and not
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Figure 2. Bifurcation diagram, symmetry-breaking perturbation ε(A) versus normalised vibration amplitude
A, showing regions of bistability and stable and unstable branches. The red markers and labels (α)–(γ ) mark
the path and parameter values linked to the vorticity snapshots in figure 3. The blue markers and labels (a)–( f )
mark the path and parameter values linked to the vorticity snapshots in figure 4 (adapted from figures 1, 6, 7
and 8 of Matharu et al. 2021).

via a bifurcation. These secondary vortices fade within a few wavelengths in the wake. It
is interesting that Williamson & Roshko (1988), who mainly characterised the near wake,
noted the 2P mode appeared for Re ∈ (300, 1000), but it was not detectable for Re =100.

Second, tracking along the ‘P+S path’ (figure 2, points (a)–( f )) reveals the evolution
of the wake between the 2S and the P+S modes – see figure 4 for the wake structures
corresponding to the points (a)–( f ). Of note is the gradual evolution along the unstable
branches of the wake transition between modes 2S and P+S, with the second vortex in
the pair fading away a short distance downstream. In experiments and time-dependent
simulations, the transition between the two modes will appear as jumps between different
stable branches.

As the Reynolds number is reduced from Re = 100, the 2S and P+S branches disconnect
to form isolated conjugate branches (isolas) of solutions at Re ≈ 82. As Re is further
reduced, these isolas shrink but a bistable region remains. The isolas and P+S solutions
finally disappear at Re ≈ 77.7, with only the 2S solution remaining at lower Re. This
process, evolution of the vorticity field around an isola, is discussed in detail in the article.

The animations available in the supplementary material for Matharu et al. (2021) at
https://doi.org/10.1017/jfm.2021.358 show the above transitions with great clarity.
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Figure 3. Contours of the vorticity field at the points (α)–(γ ) along the 2S path, as marked by red dots in
figure 2. Adapted from figure 7 of Matharu et al. (2021).

3. Future

The two-pronged approach of using complementary numerical schemes that elegantly
produce bifurcation diagrams and uncover the evolution of the wake structure as the flow
transitions between different modes provides a powerful tool for many other studies.

The effect of increasing Reynolds numbers would be of interest. The transition to
three-dimensionality of this flow has been studied by Leontini, Thompson & Hourigan
(2007), which provides a guide to the critical Reynolds numbers for two-dimensional
studies to remain valid. In any case, soap film experiments maintain approximately
two-dimensional flow fields in a physical setting (Yang, Masroor & Stremler 2021);
in addition, they produce two-dimensional base flows for the study of the genesis of
three-dimensional structures. Williamson & Roshko (1988), in their figure 3(a), show an
extended map of the synchronised regions to a limit of A = 5, with other modes, such
as 2P+2S, arising. This could provide fertile ground for new studies. The recent study
of Matharu et al. (2021) focused on forcing amplitudes to a limit of A = 1.5. At higher
amplitudes, they state that they occasionally observed time-periodic solutions with larger
periods. Extending their study to investigate the transition in such regimes would be most
interesting. In addition, forcing frequencies other than those corresponding to the natural
Strouhal number can produce different transitions, as may other body geometries, such as
ellipses and airfoils.
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Figure 4. Contours of the vorticity field at the points (a)–( f ) along the P+S− path, as marked by blue dots in
figure 2. Adapted from figure 8 of Matharu et al. (2021).
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