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Abstract. This article is a study of a family of nonlinear force-free magnetic fields (FFMFs), in
Cartesian geometry under assumption of translational symmetry, as simple models of the mag-
netic fields in the solar corona. For this configuration all the physical quantities are invariant
under translations in a fixed direction to be the direction Oz of a Cartesian coordinate system.
Two classes of exact analytic solutions for the steady state are obtained. These solutions may
be helpful in understanding the physics involved in the transition from the low-confinement to
the high-confinement mode in tokamaks. In particular, they can be employed for stability inves-
tigations, which would be of relevance to magnetic confinement systems. Further, the obtained
solutions may have several applications in the study of solar photosphere, the solar corona, as
well as astrophysical plasmas.
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1. Introduction
The magnetic fields in the solar corona above active regions of sunspots are sufficiently

strong that the magnetic field energy density greatly exceeds the plasma energy density
(the plasma beta is much less than unity). The magnetic field may then be modeled as
force-free. With the advent of projects aiming to the magnetic confinement of controlled
thermonuclear plasma to produce fusion energy, the FFMFs have been used extensively
in spheromaks and reversed field pinches. On the other hand, the magnetic clouds ejected
from the Sun, producing the major perturbations to the Earth’s radiation belts during
the satellite era seem to possess FFMFs which have budded from the solar magnetic field.
Much work has been done on magnetic field models that are translationally symmetric,
since many solar active regions are observed to have arcade-like geometries (see for ex-
ample Voslamber & Callebaut (1962); Zaghloul & Barajas (1990) ; Porter, Klimchuk &
Sturrock (1992); Low (1993); Macleod (1995); Bogoyavlenskij (2000); Gonzalez-Gascon &
Peralta-Salas (2001); Wiegelmann & Neukirch (2003); Khater & Moawad (2005); and ref-
erences there in).

In this article, we present a simple mathematical solution describing two-dimensional
FFMFs in Cartesian geometry. This solution has several interesting applications in the
study of solar magnetic fields, which will be consider in section 2. For an arcade-like
magnetic structure, overlying a long, relatively straight polarity-inversion line on the
photosphere, we may neglect variations in the direction of that line. We take this direction
to be the x-axis in standard Cartesian coordinate system with unit vectors ex, ey, and ez.
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2. Exact solutions
FFMFs are characterized by the equations

∇∧ B = λB, B · ∇λ = 0, (2.1)

where B is the magnetic field which satisfies the Maxwell’s equation ∇ ·B = 0, and λ is,
in general, a function of space.
From the symmetry assumption, the divergence-free field B can be expressed as B =
∇ψ ∧ ez + Bzez, where ψ is the poloidal magnetic flux. The second part of (2.1) then
requires λ to be a function of ψ and (2.1) implies

∇2ψ + BzB
′
z = 0, (2.2)

with λ = B′
z. The prime denotes differentiation with respect to ψ.

When the function λ [in (2.1)] is assumed to be constant, then (2.1), consequently, (2.2) is
linear equation. The assumption of λ being a constant is not well suited to fields produced
by a finite source, such as a pair of sunspots of opposite polarity. The problem involving
a variable λ is nonlinear, so in the following we obtain exact solutions to nonlinear form
of the partial differential equation (2.2) with the choice BzB

′
z = α(ψ2 − β), where α and

β are real constants. Then (2.2) takes the form

∂2ψ

∂x2
+

∂2ψ

∂y2
+ α(ψ2 − β) = 0, (2.3)

We look for solutions ψ(x, y) = ψ(ξ), ξ = x + ny (n is a real constant) of (2.3). Then
(2.3) reduces to the following nonlinear ordinary differential equation

ν2 d2ψ

dξ2
+ α(ψ2 − β) = 0, ν = n2 + 1. (2.4)

We use the tanh method which was constructed by Malfliet (1991, 1992, 1993, 1994),
Malfliet & Hereman (1996) and Fan & Zhang (1998) to obtain exact solutions for (2.4).
For this, we express the solution ψ(ξ) in the form ψ(ξ) =

∑m
i=1 aiΨi(ξ), where Ψ =

tanh (kξ). Thus, we may propose ψ = a0 + a1Ψ + a2Ψ2 and by substituting ψ into (2.4)
and equating the coefficients of like powers to zero, we get the following set of algebraic
equations:

2νk2a2 + αa2
0 − αβ = 0, −2νk2a1 + 2αa0a1 = 0, −8νk2a2 + α(a2

1 + 2a0a2) = 0,

2νk2a1 + 2αa1a2 = 0, 6νk2a2 + βa2
2 = 0.

The constant a1 must be zero in order that these equations have real solutions. Then
these equations are reduced to

2νk2a2 + αa2
0 − αβ = 0, 4νk2 − αa0 = 0, 6νk2 + αa2 = 0,

which have the following sets of solutions:

a0 = ±2
√

β, a2 = ∓3
√

β, ν = ±α
√

β

2k2
, β > 0, (2.5)

From (2.5), we obtain the following classes of exact solutions to (2.3):

ψ(x, y) =
√

β
[
2 − 3 tanh2 (kx ±√

µ1y)
]
, µ1 = α

√
β/2 − k2, α

√
β > 2k2, (2.6)

with the magnetic field

B = 6
√

βsech2 (kx ±√
µ1y) tanh (kx ±√

µ1y) (∓√
µ1ex + key) + Bzez, (2.7)
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Figure 1. Soliton-like and antisoliton-like configurations for solutions (2.6) and (2.8). The values
for parameters used are α = 4, β = 1 and k = 1 in figure 1(a); and α = −4, β = 1 and k = 1 in
figure 1(b).

and

ψ(x, y) = −
√

β
[
2 − 3 tanh2 (kx ±√

µ2y)
]
, µ2 = −

(
α
√

β/2 + k2
)

, α
√

β < −2k2,

(2.8)
with the magnetic field

B = −6
√

βsech2 (kx ±√
µ2y) tanh (kx ±√

µ2y) (∓√
µ2ex + key) + Bzez, (2.9)

The z-component of the magnetic field in (2.7) and (2.9) is determined as
Bz = ±

√
B0 + 2α (ψ3/3 − βψ), where ψ is given by (2.6) for Bz in (2.7) and it is given

by (2.8) for Bz in (2.9). The constant B0 is the value of B2
z at ψ = 0.

Figures 1(a) and 1(b) with values of parameters listed in their captions show soliton-like
and antisoliton-like configurations for the magnetic flux function described by solutions
(2.6) and (2.8), respectively, in which the solutions propagate oppositely to each other.

The behavior of solutions (2.6)-(2.9) can be investigated at infinity. For solution (2.6),
if ξ ≡ kx±√

µ1y −→ ±∞, then ψ −→ −
√

β and B −→ ±
√

B0 + 4αβ
√

β/3. For solution
(2.8), if ξ ≡ kx ± √

µ2y −→ ±∞, then ψ −→
√

β and B −→ ±
√

B0 − 4αβ
√

β/3.
Therefore all the solutions (2.6)-(2.9) are bounded at infinity, in which they are physically
acceptable and have applicability in astrophysics as well as solar magnetics fields.

3. Summary
We have obtained two classes of exact analytic solutions for nonlinear FFMFs. The

analytic solutions which we have constructed in the present work may be help in un-
derstanding the physics involved in the transition from the low-confinement to the high-
confinement mode in tokamaks. Further, the obtained solutions can have several applica-
tions in the study of solar magnetic fields. A variable λ FFMFs arises naturally in solar
magnetic fields. Exact solutions were obtained previously by Biskamp (1997), Browning
(1988) and Freidberg (1987) for FFMFs, that either have singularities or unboundedly
grow at infinity. Such solutions have a limited applicability in astrophysics. Our obtained
solutions are bounded at infinity, and haven’t any singularities.
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