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Abstract

We employ the Dyson's Lemma of Esnault and Viehweg to obtain a new and sharp formulation
of Roth's Theorem on the approximation of algebraic numbers by algebraic numbers and apply
our arguments to yield a refinement of the Davenport-Roth result on the number of exceptions
to Roth's inequality and a sharpening of the Cugiani-Mahler theorem. We improve on the
order of magnitude of the results rather than just on the constants involved.

1980 Mathematics subject classification (Amer. Math. Soc.): 11 J 68.

The new proof [5] by Esnault and Viehweg of Roth's Theorem relies on replacing
the celebrated Roth Lemma by a new result of a purely algebraic nature. This
result is called "Dyson's Lemma" because Dyson was the first to prove it in the
case of two variables, exactly for this kind of application. It is significant to note
that there are quantitative consequences of Dyson's Lemma which go beyond
those previously accessible and which show that the new lemma lies essentially
deeper than the original result.

We begin by once again proving Roth's Theorem. We use the invariant ap-
proach (see [1]) which with equal ease yields the result over general number fields
and for arbitrary valuations. Moreover our formulation is a statement that for
n approximations /3y to a satisfying given gap conditions we have

\a - ft\v > c(a,
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234 E. Bombieri and A. J. van Der Poorten [2]

for at least one j , 1 < j: < n; the constants c(a, n) and en are stated explicitly.
This appears to be new. In fact we prove a more general inequality for the
maximum of n expressions \aj — j3j\v with the numbers otj in a fixed number field
and not necessarily the same. We then obtain a refinement of the Davenport-
Roth result [4] on the number of exceptions to Roth's inequality and a sharpening
of the Cugiani-Mahler Theorem [3], [6]. We improve on the order of magnitude
of the results involved rather than just on the constants. We have been told
of unpublished work of J. Luckhardt in late 1984 which employed the Esnault-
Viehweg Lemma to yield a refinement of the Davenport-Roth result of similar
quality to the one given here.

Of course the present note does not exhaust the potential applications of
Dyson's inequality.

The height h{a) of an algebraic number a is its absoute height as defined and
discussed in, for example, [1], pages 259-261 and our absolute values are nor-
malised as in [1]. We use a compact notation appropriate to situations in which
one deals with functions of several variables. This should be self-explanatory
except perhaps for such constructs as

We wish to thank E. Calabi and J. Vaaler for providing the arguments in the
proof of Lemma 4.

1. Dyson's Lemma

Let e*i, a?,..., an be elements of a number field K of degree r over the field
k. Set

and write V{i) = Vol(T(t))-

LEMMA 1. Suppose t > 0 and rV(t) < 1. Then for sufficiently large positive
integers d\,d2,..., dn there is a polynomial P{X\,...,Xn) € k[Xi,...,Xn] of
multi-degree at most D = (di ,d2 , . . . ,dn) and not identically zero such that

-AIP(a1,a2,...,an) = 0

for alll= ( i i , i 2 , . . . , i n ) with I/D = (i\/dl,...,in/dn) € T(t), and

i ) K as di^ oo, i = 1,2,..., n.
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[3] Quantitative results related to Roth's Theorem 235

PROOF. Write a" = ( a f , . . . , a £ ) wi th a = <TI, ... ,ar running over a full

set of distinct embeddings of K over k into C ( that is, over all conjugates of

a = ( a j , . . . , an) over k). Set P(X) = ^2pjXJ and consider the set of equations

j j A ' P ( a » ) = 0 , I/D€T(t); a = a1,...,ar.

This is a linear system in the coefficients pj of P which we are to solve in k.
The number of unknown is (di +1) • • • (dn +1) ~ di • • • dn as D -* oo (meaning:
all of efi —• oo, . . . ,dn —• oo), while the number of equations is asymptotic to
rV(t)di---dn asZ)-KX>.

The matrix of coefficients A has entries

with rows indexed by {I, a) and columns by J .
The height H(A) of A may be estimated by Bombieri and Vaaler [2], Corollary

13, page 30 and we find
H{A)<\[H{AI>(T)

where Ai,a is the row vector with entries (J
I)(a'T)J~I. (Recall that the height

i/(f) of a row vector ( f i , . . . , f n ) does not exceed s/nh{q) where \ogh{(,) =
53vmax,-log Ifilt, is the usual height in projective space.) Hence with N =
(di + 1) • • • {dn + 1),

\og(H(Ai,a) < \

o 8 + l«il« + • • • + dnlog+ \a°\v)

< logN + di log 2 + • • • + dn log 2 + di log h(ai) + •• • + dn log h{an)

which yields

where M is the cardinality of the set {/: I/D e T(t)}. Recalling that M ~
V(t)d\ • • dn as D —> oo, Lemma 1 now follows from Siegel's Lemma. (For a
formulation consistent with our present approach see [2].)

LEMMA 2 (Esnault and Viehweg). Let a, t, P be as in Lemma 1 and assume
further that each a* in a has exact degree r over k and that di,d?,. • .,dn is
rapidly decreasing in the sense that, for some r\ < 1,
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236 E. Bombieri and A. J. van Der Poorten [4]

Let r be such that

(or, if there is no such r, set r = 1). Then for any point (3 = (fa,..., /?„) € ikn

we can find 7* = (tJ, . . . , i*) such that

7*!"
andI*/DeT(r).

The proof of the lemma is immediate from Theorem 0.4 of [5]. We apply that
result with M - M' = r + 1,

£„ = {a\",... X " ) . I* = 1. • • •»r

a = ( d 7 \ d j \ . . . , O and <! = ••• = *r = M r + i = r.

The admissibility condition ^ t i ̂  ^ /^ for fi ^ p' and t = 1, . . . , n is assured by
each aj having exact degree r over k and the /% belonging to k.

If Lemma 2 were false we would obtain

and noting that the product is majorised by

i

we would contradict the conditions of the lemma.
It is convenient to combine Lemmas 1 and 2 so that the polynomial con-

structed in Lemma 1 does not vanish at /?. The required polynomial is just an
appropriate derivative of P(X) and a simple estimate of the increase in height
occasioned by the differentiation yields

LEMMA 3. Let a, /?, D, t, T be as in the hypotheses of Lemmas 1 and 2. Then
there is a polynomial Q(X) € fc[X] of multi-degree < D, and not identically zero,
such that

iA'Q(a)=0 for l

and
Q(P) * o,

with

* = i
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[5] Quantitative results related to Roth's Theorem 237

NOTE. U T > t the condition of vanishing at a is vacuous and the lemma is
trivial.

The following comments may help the reader in comparing Lemma 2 (the main
result of Esnaul t and Viehweg) wi th t h e celebrated R o t h Lemma. In applying
Roth ' s Lemma one imposes a growth condition of the type

on the /?'s, and this ultimately yields a r of the size r = (CTJ)2 " with rj
comparable to that in Lemma 2 and some c > 0 [8]. We apply Lemma 3 with
a similar condition on the /?s and with rV(t) extremely close to 1; hence with
r determined by V(r) ~ r\. But, it turns out, V(r) = rn/n\ for r < 1 and this
gives T ~ (n/e)??1/". As r\ —* 0 the relative advantage of this estimate becomes
obvious.

2. Cube slices

To use the results of the previous section one needs accurate information
about the volume V(t) of the set T(t):

T(t) = {x: X! + --- + xn<t<xi<l}.

The following analytical treatment gives very precise results and is quite different
from the estimate from below occurring in Mignotte [7], Lemma 3. We have not
found an explicit account of the estimates given here in the literature.

Let Cn be the ^-dimensional unit cube {xi: 0 < Xi < 1, i = 1,. . . , n) and let
Hx be the hyperplane slice

LEMMA 4. Set U(x) - log((sinh x/2)/(x/2)) and let v{x) be the inverse
function ofU'(x). Then we have, uniformly in z: — \ < z <\, as n —>oo:

PROOF. Denote by <j>{x) the characteristic function of the interval -1/2 <
x < 1/2 and let 6(x) be Dirac's <5-function. Then it is clear that

/•OO TOO

A r e a ( ^ ) = - y / n / • • • / <A(xi) • • -<j>(xn)6(nz - xi xn)dxi • • -dxn.
J—oo J— oo

The right hand side is the convolution of <j> (n times) and 6.
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238 E. Bombieri and A. J. van Der Poorten [6]

To evaluate it we use Fourier transforms, recalling that the Fourier transform
of a convolution is the product of the Fourier transforms. We have

hence

J du-
Recall U'(v(z)) = z, and shift the line of integration u g R into the complex
plane so that it becomes the line u € iv(z) + R, noting that the choice of the
shift iv(z) is motivated by the fact that it is the stationary phase point of the
integrand.

With u = iv{z) + y, thus near the stationary phase point, we have

sin u/2 iz

u/2

Moreover

o — «

sin u/2
u/2

Azu
c

= exp (-zv(z) + U(zv(z)) - \u"{v{z))y>

V (V(2)/2)2 + (y/2)2

takes its maximum at y — 0.

The result of the lemma now follows from a standard asymptotic expansion.

LEMMA 5. We have

I\ \ 1 f°°
(0 V - - s-y/n I sin -7= / e~x dx, uniformly for s = o(n1^);

\ 2 / vWS x/6

(ii) V(T) = - if T < 1.

PROOF. By Lemma 4

Set VT(x) = a;t;(a;) — (7(t;(x)). Then W(z) is increasing with x and its Taylor
expansion at 0 is W{x) = 6x2 + O(x3); also f/"(w(x)) = ^ + O(a;2).

We break the integral into two parts, namely with e > 0

rl/2 f-en-1'3 /-1/2 r r

/ = / + / = / + / '
Jz Jz Jen-1/* J/i Jit
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[7] Quantitative results related to Roth's Theorem 239

The integral over h is majorised by e~be n (1+°(1)). Since ny3 — O(e3) and

U"(v(y)) ~ j ^ on /i we have

/ = (1 + O(e3)) / e-==dy = ((1 + O(e3)) J± /
Jh Jz V1/12 » n y,j

_ - 2

e c

provided, recalling s = z-Jn, that z = o(nx/3) and e - » 0 with e/zn1/3 —> oo,
which we suppose. Indeed the last condition ensures that we can neglect the
integral over 1% relative to the integral over 7i and completes the proof of part
(i) of the lemma.

Part (ii) is a standard elementary exercise easily done by induction on n. We
remark, omitting the proof, that

7"" CTl
V(T) r for T < with c < 1,

n! logn

as n —» oo.
For numerical calculations, the following bound is useful.

LEMMA 6. For 0 < A < 1 we have

V(n/2 - nz) < e-(*

Also U{\) < A2/6.

PROOF (Mignotte).

(xl+-+xn>n/2-nz)rtCnJ — )dxi ...dXn
(f

which is the first inequality. The second inequality is easy.

3. Roth's Theorem

The following result clearly includes Roth's Theorem for general number fields
and arbitrary absolute values.

https://doi.org/10.1017/S1446788700030159 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030159


240 E. Bombieri and A. J. van Der Poorten [8]

THEOREM 1. Let c*i,. . . , a n be elements of a number field K of degree r over
the field k with each a, of exact degree r over k. Suppose n > cologr {where
c0 is a sufficiently large constant) and set rj: 0 < r) < l/2n\. Let Pi G k be
approximations to oti,i = 1 , . . . , n, such that we have the gap condition

Then
. max Ja< -0i\v > ((4ft(an))1/"4ft(/?n))-2-3

v
/i5g7/v^.

PROOF. We first choose t = t(n,r]) so that rV(t) = 1 - r/ and r = r(n,n)
so that V(T) = 2r? and apply Lemma 3 to obtain a polynomial P G fc[X] of
multi-degree < D and not identically zero such that

and P(/3) ^ 0 with

log h{P) < Y] ( - log(2ft(a<)) + log 2 ) di as D -> oo.

The choice of the dj is at our disposal subject to di+i/di < r)/4rn as D —> oo.
For each absolute value t; of fc we estimate log|P(/3)|v as follows. If v ^ v0 we
use the trivial estimate (which is an exact inequality at all finite places):

n

log \P(0)\V < log \P\V +J2di l o S + IAI«-
t=12

If, instead, u = Do we expand P in a Taylor series about the point a to obtain

because the Taylor coefficients vanish for I/D € T(t — r). An easy calculation
yields

n n
+ log IPI^ + ^ di log+ |a<U

where
/r if wo|oo,

if UQ t oo-

_ f [/fuo:

1 0
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[9] Quantitative results related to Roth's Theorem 241

The first t e rm on the right of the asymptot ic inequality is a trivial es t imate of
the contribution of the derivatives. We have |/3j — a , | v o < 1, because this is wha t
is meant by saying tha t # is "an approximation to a j " , and this implies

log+ \on\vo < eVo log2 + log+ \/3i\V0.

Substituting this bound above, and summing the estimates for log\P(/3)\v over
all absolute values of k, the product formula yields

0 = £log|P(/?)|0 < 2evo f > g 2 K + £ log m, + £ X > g + \Pi\vdi
V 1=1 V V t = l

< 2evo

The estimate for log h(P) yields a fortiori

0 ~ E (7:) los(4/l(«i)) + log(4/i(A)R + ,/nmax f^;, log |#

Now choose

as we may since the gap condition implies an appropriate inequality for the
dt+\/di. After dividing the inequality by d we may let d —* oo to obtain

0 < n + m a x j ^ ii log |a» - /?»|vo -j-
t = i

with the max taken over real x\,...,xn with X)xi > t — T, 0 < Xi < 1. The
maximum can only increase if we replace the conditions 0 < z* < 1 by just 0 < X{.
Since log|aj — 0i\Vo < 0 for all i, it follows by linearity that the maximum is
attained at a point at which n — 1 of the co-ordinates equal 0 and the non-zero
co-ordinate equals t — r.

We have shown

0 < n + (t - T) max log \oti - pi\Vo - j .
t a

The theorem now follows from the bound

t — r
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which holds for n > CQ log r. To see this we use Lemma 5.
Set t — n/2 - sy/n. Then

V({) ~ / e~x2dx.
V* Jsy/6

Define sr to be the value of a making this integral equal to 1/r. But V(T) =
2r\ < 1/n! so that we are in the range in which V(T) = rn/n\ and r < 1. Thus

n n
t - r ~ n/2 - (1 + en)srs/n - 1

To estimate sr note that
/•OO

w i t h £n -> 0 as n -> oo.

—= I e x dx < —= • — / e x dx = •—= ,

V^F Jz ~ v^F 2z Jz ypH 2z
so sr < Zr/y/6 whenever z — zr satisfies e~z /y/ir2z < 1/r.

It is now clear that we can choose zr = \/\ogr. This makes it plain that

forn>c0logr,
t-r ~ ^ - {I + en)sry/n - 1 ~ y/n

completing the proof. A more refined calculation using Lemma 6, which we omit
here, shows that CQ = 28 is admissible.

4. The number of exceptions to Roth's inequality

We next prove a generalisation and sharpening of a result of Davenport and
Roth [4]:

THEOREM 2. Let a be an element of a number field K of degree r over the
field k. Let ft = min( 1,6/^00). / / 0 < f < fo> the number of solutions (3 € k of
the inequality

does not exceed

H loglog(4ft(a)) + 3 0 0 0 ^ log

PROOF. Since the bound increases with r there is no loss of generality in
supposing that k(a) = K. Choose r\ = l/2n!. Choose n minimal such that
?o > ? > 6v^logrI'y/n; hence n> CQ logr. Then if

4h(/3)
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[11] Quantitative results related to Roth's Theorem 243

we have

Therefore our set of solutions is contained in the union of the subset So of
solutions for which

VS
and the set of solutions to

We classify the solutions to this latter inequality into sets Si with

log(4/i(/?)) e [log(4/i(A)), ̂  Q log(4h(a)) + log(4/i(A

where the /% are chosen inductively by taking /?i a solution with smallest height
with log(4/i(/?i)) > 5/r?£ log(4/i(a)) and fc+i a solution with smallest height so
that

By Theorem 1 the sequence /?i,.. . , /?j,... is finite with at most n — 1 elements.
Let /?, f3' with h(0)<h(0') be distinct solutions in Ŝ  of the original inequality

\a - 0\v < l/64/i(^)-2-?. By the Liouville bound

so 4h(/3') > 4(4/i(/3))1+f. If follows that if there are mv solutions in Sv then

Hence (1 + f ) m - - x < 5rn/j? so

log(5rn/r?)
mv < 1 + log(l + f) '

By our remark on the number of sets Su we have proved that the number of
solutions to \a - 0\u < (l/64)/i(/?)-2-* with \og(4h(0)) > (5/»?f)log(4/i(a)) is
at most

Note that this bound is mdependent of a.
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244 E. Bombieri and A. J. van Der Poorten [12]

For the set So we use the same procedure. As before, the gap principle
4/i(/?') > 4(4/i(/9))1+? holds, and as before the number m'o of solutions

does not exceed
log(5/rftS)

1 + log(l + f ) '
here S satisfying 0 < 6 < 5/r?f is a parameter to be chosen below.

For solutions 0 so that log(4h(/?)) e \0,8\og(4h{a))} we use 4h((3) > 4 to
obtain the estimate

4"o-i < {4h{a))s

where m,Q is the number of solutions with log(4ft(/3)) in that interval. Hence

We collect all these estimates and obtain the bound

151 ^ n + ' + ( n "

for the totality of solutions. Choosing 6 = l/log(4/i(a)), which is optimal,
converts the bound to

\S\<n + l+ log{l+i) (loglog(4h(a)) + 1 + (n - l ) l o g ^ + l o g ^

whilst l/log(l + <r) < 2/<; and 1/rn < 1/f allows a simplification to

—
V\S\ <n + l + - floglog(4A(o)) + l + « log—V

Now
«, ^ a V^og^ . . . . . , 36 logr< f < 6 * implies n < H j —

and since n > 2(logr + 1) we get

log = logr + log(10n.n!) < logr + nlogn — -n < nlogn — 1.

Hence
2 2 2

\S\ < n + l + -loglog(4ft(a)) + - n 2 l o g n - - ( n - 1 )
2 2

< -loglog(4fc(a)) + -n2logn.
Finally we eliminate n by noting that (2/f)n2 < 3000f~5(logr)2 obtaining,

say,

as claimed.
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[13] Quantitative results related to Roth's Theorem 245

NOTE. A S in [4], Corollary 1, page 693 the bound of Theorem 2 can be used

to estimate the number of solutions of the more general problem

We remark tha t the term 3000c~ 5 ( logr ) 2 log(50f~ 2 logr ) in our result re-

places exp(70r 2 f~ 2 ) in [4]. It is also clear tha t the numerical constants can be

substantially reduced with a little extra work.

Note tha t (though we use f < 1 in the course of our argument) the example

of a zero of QQ{X — l ) (x — 2) • • • (a; — r) + 1 with CLQ sufficiently large and f3 an

integer 1 < /? < r shows tha t f <C log r is essential for the validity of our bound.

5. The Cugiani-Mahler Theorem

THEOREM 3 . Let a be an element of a number field K of degree r over the

field k. Set

and let {/?,} be a sequence of elements of k, arranged according to increasing

height and satisfying for i = 1 ,2,3, . . .

Then

hmsup

PROOF. We prove Theorem 3 by contradiction. As before we may suppose

that K = k(a). Accordingly, let {/3^} be an infinite sequence of elements of k

arranged according to increasing height so that

and

log4fc(/?(")

As before, let n be a sufficiently large natural number, and set r\ = l/2n!. Now

select indices v0 and v\ so that

and
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With n sufficiently large u0 and vx may be chosen so that i/0 < v\. But for
v > VQ

and for v <

Thus for v with i/0 < v < "1 we have

Our next step is to construct a subsequence {/%} satisfying the gap condition
of Theorem 1. We choose /?i = /?("°) and inductively set /3i+1 = ft") with v
defined by

-

> -

Now by definition

> — (-log(4h(a))

)) by the slow-growth assumption,
Cnr

V

< 49Uf. (i + X^L ) log(4/l(/3i)) since u > u0,

once n is sufficiently large, say n > ni.
Thus, subject to n > ni, say, there is a subsequence {/%} of {/?(")} which

satisfies both the gap condition of Theorem 1 and the growth condition

log(4/l(A)) < (Cr2n")i-1log(4/l(^1/0))).

Suppose î 2 is the index defined by /?„ = f3^U2\ Then we must have i>2 > v\,
otherwise the inequalities

|a - fc\v

for i = 1,2,..., n contradict Theorem 1. It follows that

(C7r2n")"-1log(4/i(/31))

where

https://doi.org/10.1017/S1446788700030159 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030159


[15] Quantitative results related to Roth's Theorem 247

Moreover

log(4fc(/?i)) = log(4ft(/3("o))) < Clog(4/i(/?( l / 0-1))), by the growth hypothesis,

< C „ - log(4h(a)), by definition of u0,
y/logrrj

< Cr2nn log(4/i(a)), as a crude estimate.

Thus we have shown that

(Cr2nn)n log(4/i(a))

where

and

Now choose

log log t

Then /(/i(/3("1+1))) ~ 6\flogr/y/n is equivalent to

where the left-hand side does not exceed

(Cr2nn)n l

This is absurd for n > ni and 5 = 6\/logr, as we wished to show.

REMARKS. Cugiani [3] obtains such a result but (in effect) with f(t) replaced

by
9r(logloglogt)-1/2.

Mahler [6], Appendix B, proves a <?-adic generalisation of similar quality and it
is this result that is sharpened by Mignotte [7] so that the conclusion

+ 2) log2\ 1 / 2
 /

with 0 < a < 6 a n d l < p < 2^~a^a is obtained.
If we attempt to obtain a gap condition on the logft(/?j) as in [7] we obtain a

result only of the quality of that note. However, by changing the constant factor
B in f(t) our gap condition may be refined to

Cv/loglo
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