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Abstract We describe a class of topological vector spaces admitting a mixing uniformly continuous
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1. Introduction

Unless stated otherwise, all vector spaces in this paper are over the field K, being either
the field C of complex numbers or the field R of real numbers, and all topological spaces
are assumed to be Hausdorff. As usual, Z is the set of integers, Z+ is the set of non-
negative integers, N is the set of positive integers and R+ is the set of non-negative real
numbers. L(X, Y ) stands for the space of continuous linear operators from a topological
vector space X to a topological vector space Y . We write L(X) instead of L(X, X) and
X ′ instead of L(X, K). X ′

σ is X ′ with the weak topology σ, being the weakest topology on
X ′ making the maps f �→ f(x) from X ′ to K continuous for all x ∈ X. For any T ∈ L(X),
the dual operator T ′ : X ′ → X ′ is defined as usual: (T ′f)(x) = f(Tx) for f ∈ X ′ and
x ∈ X. Clearly, T ′ ∈ L(X ′

σ). For a subset A of a vector space X, span(A) stands for the
linear span of A. For brevity, we say locally convex space for a locally convex topological
vector space. A subset B of a topological vector space X is called bounded if for any
neighbourhood U of zero in X, a scalar multiple of U contains B. The topology τ of a
topological vector space X is called weak if τ is exactly the weakest topology making
each f ∈ Y continuous for some linear space Y of linear functionals on X separating
points of X. An F-space is a complete metrizable topological vector space. A locally
convex F-space is called a Fréchet space. ω denotes the space of all sequences {xn}n∈Z+

in K with coordinate-wise convergence topology. We denote by ϕ the linear subspace of
ω consisting of sequences x with finite support {n ∈ Z+ : xn �= 0}. If X is a topological
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vector space, then A ⊂ X ′ is called equicontinuous if there is a neighbourhood U of zero
in X such that |f(x)| � 1 for any x ∈ U and f ∈ A.

Let X and Y be topological spaces and let {Ta : a ∈ A} be a family of continuous
maps from X to Y . An element x ∈ X is called universal for this family if {Tax : a ∈ A}
is dense in Y , and {Ta : a ∈ A} is said to be universal if it has a universal element. An
operator semigroup on a topological vector space X is a family {Tt}t∈A of operators from
L(X) labelled by elements of an abelian monoid A and satisfying T0 = I, Ts+t = TtTs

for any t, s ∈ A. A norm on A is a function | · | : A → [0,∞) satisfying |na| = n|a|
and |a + b| � |a| + |b| for any n ∈ Z+ and a, b ∈ A. An abelian monoid equipped with
a norm is a normed semigroup. We are mainly concerned with the case when A is a
closed additive subsemigroup of R

k containing 0 with the norm |a| being the Euclidean
distance from a to 0. In the latter case A carries the topology inherited from R

k, and
an operator semigroup {Tt}t∈A is called strongly continuous if the map t �→ Ttx from
A to X is continuous for any x ∈ X. We say that an operator semigroup {Tt}t∈A is
uniformly continuous if there is a neighbourhood U of zero in X such that for any
sequence {tn}n∈Z+ in A converging to t ∈ A, Ttnx converges to Ttx uniformly on U .
Clearly, uniform continuity is strictly stronger than strong continuity. If A is a normed
semigroup and {Tt}t∈A is an operator semigroup on a topological vector space X, then
we say that {Tt}t∈A is mixing if, for any non-empty open subsets U , V of X, there is
r > 0 such that Tt(U) ∩ V �= ∅ provided |t| > r. We say that {Tt}t∈A is hypercyclic
(respectively, supercyclic) if the family {Tt : t ∈ A} (respectively, {zTt : z ∈ K, t ∈ A})
is universal. {Tt}t∈A is said to be hereditarily hypercyclic if for any sequence {tn}n∈Z+

in A satisfying |tn| → ∞, {Ttn
: n ∈ Z+} is universal. T ∈ L(X) is called hypercyclic,

supercyclic, hereditarily hypercyclic or mixing if the semigroup {Tn}n∈Z+ has the same
property. Hypercyclic and supercyclic operators have been intensely studied over the last
few decades (see [2] and references cited therein). Recall that a topological space X is
called a Baire space if the intersection of countably many dense open subsets of X is
dense in X. By the classical Baire Theorem, complete metric spaces are Baire.

Proposition 1.1. Let X be a topological vector space and let A be a normed semi-
group. Then any hereditarily hypercyclic operator semigroup {Ta}a∈A on X is mixing.
If X is Baire separable and metrizable, then the converse implication holds: any mixing
operator semigroup {Ta}a∈A on X is hereditarily hypercyclic.

The above proposition is a combination of well-known facts, and it appears in the
literature in various modifications. We prove the proposition in the next section for the
sake of completeness. It is worth noting that for any subsemigroup A0 of A, not lying in
the kernel of the norm, {Tt}t∈A0 is mixing if {Tt}t∈A is mixing. In particular, if {Tt}t∈A

is mixing, then Tt is mixing whenever |t| > 0.
The question of existence of supercyclic or hypercyclic operators or semigroups on

various types of topological vector spaces has been intensely studied. The fact that there
are no hypercyclic operators on any finite-dimensional topological vector space goes back
to Rolewicz [22]. The last result in this direction is due to Wengenroth [26], who proved
that a hypercyclic operator on any topological vector space (locally convex or not) has no
closed invariant subspaces of positive finite codimension, while any supercyclic operator
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has no closed invariant subspaces of finite R-codimension greater than 2. In particu-
lar, his result implies the (already well known by then) fact that there are no super-
cyclic operators on a finite-dimensional topological vector space of R-dimension greater
than 2. Herzog [18] proved that there is a supercyclic operator on any separable infinite-
dimensional Banach space. Ansari [1] and Bernal-González [5], answering a question
raised by Herrero, showed independently that any separable infinite-dimensional Banach
space supports a hypercyclic operator. Using the same idea as in [1], Bonet and Peris [9]
proved that there is a hypercyclic operator on any separable infinite-dimensional Fréchet
space and demonstrated that there is a hypercyclic operator on the inductive limit X

of a sequence {Xn}n∈Z+ of separable Banach spaces provided X0 is dense in X. Gri-
vaux [16] observed that hypercyclic operators T in [1, 5, 9] are mixing and therefore
hereditarily hypercyclic. They actually come from the same source. Namely, according
to Salas [23], an operator of the shape I + T , where T is a backward-weighted shift
on �1, is hypercyclic. Virtually the same proof demonstrates that these operators are
mixing. Moreover, all operators constructed in the above-cited papers are hypercyclic
or mixing because of a quasisimilarity with an operator of the shape identity plus a
backward-weighted shift. A similar idea was used by Bermúdez et al . [4] and Bernal-
González and Grosse-Erdmann [6], who proved that any separable infinite-dimensional
Banach space supports a hypercyclic strongly continuous semigroup {Tt}t∈R+ . Bermúdez
et al . [3] proved that on any separable infinite-dimensional complex Banach space X,
there is a mixing strongly continuous semigroup {Tt}t∈C such that the map t �→ Tt is
holomorphic. Finally, Conejero [11] proved that any separable infinite-dimensional com-
plex Fréchet space X that is non-isomorphic to ω supports a mixing operator semigroup
{Tt}t∈R+ such that Ttnx uniformly converges to Ttx for x from any bounded subset of
X whenever tn → t.

Definition 1.2. We say that a topological vector space X belongs to the class M0 if
there is a dense subspace Y of X admitting a topology τ stronger than the one inherited
from X and such that (Y, τ) is a separable F-space. We say that X belongs to M1 if there
is a linearly independent equicontinuous sequence {fn}n∈Z+ in X ′. Finally, M = M0∩M1.

Remark 1.3. Obviously, X ∈ M1 if and only if there exists a continuous seminorm
p on X such that ker p = p−1(0) has infinite codimension in X. In particular, a locally
convex space X belongs to M1 if and only if its topology is not weak.

1.1. Results

The following theorem extracts the maximum from the method in terms of both the
class of spaces and the class of semigroups. Although the general idea remains the same,
the proof requires dealing with a number of technical details of various kinds.

Theorem 1.4. Let X ∈ M. Then for any k ∈ N, there exists a uniformly continuous
hereditarily hypercyclic (and therefore mixing) operator group {Tt}t∈Kk on X such that
the map z �→ f(Tzx) from K

k to K is analytic for each x ∈ X and f ∈ X ′.

Since for any hereditarily hypercyclic semigroup {Tt}t∈Kk and any non-zero t ∈ K
k,

Tt is hereditarily hypercyclic, Theorem 1.4 provides a hereditarily hypercyclic operator
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on each X ∈ M. Obviously, any separable F-space belongs to M0. It is well known
[24] that the topology on a Fréchet space X differs from the weak topology if and
only if X is infinite dimensional and it is non-isomorphic to ω. Thus any separable
infinite-dimensional Fréchet space non-isomorphic to ω belongs to M. The latter fact is
also implicitly contained in [9]. Similarly, an infinite-dimensional inductive limit X of a
sequence {Xn}n∈Z+ of separable Banach spaces belongs to M provided X0 is dense in X.
Thus all the above-mentioned existence theorems are particular cases of Theorem 1.4.
The following proposition characterizes F-spaces in the class M.

Proposition 1.5. Let X be an F-space. Then X belongs to M if and only if X is
separable and the algebraic dimension of X ′ is uncountable.

Proposition 1.5 ensures that Theorem 1.4 can be applied to a variety of F-spaces
(including �p with 0 < p < 1) that are not locally convex. We briefly outline the main idea
of the proof of Theorem 1.4 because it is barely recognizable in the main text, where the
intermediate results are presented in much greater generality than is strictly necessary.
Consider the completion of the kth projective tensor power of �1 : X = �1 ⊗̂ · · · ⊗̂ �1 and
T1, . . . , Tk ∈ L(X) of the shape Tj = I ⊗ · · · ⊗ I ⊗ Sj ⊗ I ⊗ · · · ⊗ I, where Sj ∈ L(�1)
is a backward-weighted shift sitting in jth place. Since Tj are pairwise commuting, we
have got a uniformly continuous operator group {e〈z,T 〉}z∈Kk on X, where 〈z, T 〉 =
z1T1 + · · · + zkTk. We show that {e〈z,T 〉}z∈Kk is hereditarily hypercyclic. The class M

turns out to be exactly the class of topological vector spaces to which such a group can
be transferred by means of quasisimilarity.

The following theorem is kind of an opposite of Theorem 1.4.

Theorem 1.6. There are no supercyclic strongly continuous operator semigroups
{Tt}t∈R+ on a topological vector space X if either 2 < dimR X < 2ℵ0 or 2 < dimR X ′ <

2ℵ0 .

Since dimω′ = ℵ0, Theorem 1.6 implies that there are no supercyclic strongly contin-
uous operator semigroups {Tt}t∈R+ on ω, which is a stronger version of a result in [11].
This observation along with Theorem 1.4 imply the following curious result.

Corollary 1.7. For a separable infinite-dimensional Fréchet space X, the following
are equivalent:

(1) for each k ∈ N, there is a mixing uniformly continuous operator group {Tt}t∈Rk

on X;

(2) there is a supercyclic strongly continuous operator semigroup {Tt}t∈R+ on X;

(3) X is non-isomorphic to ω.

2. Extended backward shifts

Godefroy and Shapiro [15] introduced the notion of a generalized backward shift. Namely,
a continuous linear operator T on a topological vector space X is called a generalized
backward shift if the union of kerTn for n ∈ N is dense in X and kerT is one dimensional.
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We say that T is an extended backward shift if the linear span of the union of Tn(ker T 2n)
is dense in X. Using an easy dimension argument [15] one can show that any generalized
backward shift is an extended backward shift. It is worth noting [2, Theorem 2.2] that
for any extended backward shift T , I + T is mixing. We need a multi-operator analogue
of this concept.

Let X be a topological vector space. We say that T = (T1, . . . , Tk) ∈ L(X)k is an
extended backward shift k-tuple (EBSk-tuple) if TmTj = TjTm for 1 � j, m � k and
ker†(T ) is dense in X, where

ker†(T ) = span
⋃

n∈Nk

κ(n, T ) and κ(n, T ) = Tn1
1 · · ·Tnk

k

( k⋂
j=1

ker T
2nj

j

)
. (2.1)

2.1. Shifts on finite-dimensional spaces

The following two lemmas are implicitly contained in the proof of Theorem 5.2 in [13].
For the sake of convenience, we provide their proofs.

Lemma 2.1. For each n ∈ N and z ∈ C \ {0}, the matrix

An,z =
{

zj+k−1

(j + k − 1)!

}n

j,k=1

is invertible.

Proof. Invertibility of An,1 is proved in [2, Lemma 2.7]. For z ∈ C, consider the
diagonal n × n matrix Dn,z with the entries (1, z, . . . , zn−1) on the main diagonal. Clearly,

An,z = zDn,zAn,1Dn,z for any z ∈ C. (2.2)

Since An,1 and Dn,z for z �= 0 are invertible, An,z is invertible for any n ∈ N and
z ∈ C \ {0}. �

Lemma 2.2. Let n ∈ N, e1, . . . , e2n be the canonical basis of K
2n, let S ∈ L(K2n) be

defined by Se1 = 0 and Sek = ek−1 for 2 � k � 2n and let P be the linear projection of
K

2n onto E = span{e1, . . . , en} along F = span{en+1, . . . , e2n}. Then, for any z ∈ K\{0}
and u, v ∈ E, there exists a unique xz = xz(u, v) ∈ K

2n such that

Pxz = u and PezSxz = v. (2.3)

Moreover, for any bounded subset B of E and any ε > 0, there is c = c(ε, B) > 0 such
that

sup
u,v∈B

|(xz(u, v))n+j | � c|z|−j for 1 � j � n and |z| � ε, (2.4)

sup
u,v∈B

|(ezSxz(u, v))n+j | � c|z|−j for 1 � j � n and |z| � ε. (2.5)

In particular, xz(u, v) → u and ezSxz(u, v) → v as |z| → ∞ uniformly for u and v from
any bounded subset of E.
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Proof. Let u, v ∈ E and z ∈ K \ {0}. For y ∈ K
2n we set ȳ = (yn+1, . . . , y2n) ∈ K

n.
One easily sees that (2.3) is equivalent to the vector equation

An,zx̄
z = wz, (2.6)

where An,z is the matrix from Lemma 2.1 and wz = wz(u, v) ∈ K
n is defined as

wz
j = vn−j+1 −

n∑
k=n−j+1

zk+j−n−1uk

(k + j − n − 1)!
for 1 � j � n, (2.7)

provided we set xj = uj for 1 � j � n. By Lemma 2.1, An,z is invertible for any z �= 0
and therefore (2.6) is uniquely solvable. Thus there exists a unique xz = xz(u, v) ∈ K

2n

satisfying (2.3). It remains to verify (2.4) and (2.5). By (2.7), for any bounded subset B

of E and any ε > 0, there is a = a(ε, B) > 0 such that

|(wz(u, v))j | � a|z|j−1 if u, v ∈ B, |z| � ε and 1 � j � n. (2.8)

By (2.8), {D−1
n,zw

z(u, v) : |z| � ε, u, v ∈ B} and therefore

Q = {A−1
n,1D

−1
n,zw

z(u, v) : |z| � ε, u, v ∈ B}

are bounded in K
n. Since, by (2.6) and (2.2), x̄z = A−1

n,zw
z = z−1D−1

n,zA
−1
n,1D

−1
n,zw

z, we
have

(xz(u, v))n+j = x̄z
j ⊆ {z−1(D−1

n,zy)j : y ∈ Q} if |z| � ε and u, v ∈ B.

Boundedness of Q implies that (2.4) is satisfied with some c = c1(ε, B). Finally, since,
for 1 � j � n, we have

(ezSxz)n+j =
2n∑

l=n+j

zl−n−jxz
l

(l − n − j)!
,

there exists c = c2(ε, B) for which (2.5) is satisfied. Hence (2.5) and (2.4) hold with
c = max{c1, c2}. �

Corollary 2.3. Let n ∈ N, E ⊆ K
2n and S ∈ L(K2n) be as in Lemma 2.2. Then,

for any u, v ∈ E and any sequence {zj}j∈Z+ in K satisfying |zj | → ∞, there exists a
sequence {xj}j∈Z+ in K

2n such that xj → u and ezjSxj → v.

We need the following multi-operator version of Corollary 2.3.

Lemma 2.4. Let k ∈ N, n1, . . . , nk ∈ N; for each j ∈ {1, . . . , k} let ej
1, . . . , e

j
2nj

be the canonical basis in K
2nj , let Ej = span{ej

1, . . . , e
j
nj

} and let Sj ∈ L(K2nj ) be the
backward shift: Sje

j
1 = 0 and Sje

j
l = ej

l−1 for 2 � l � 2nj . Also, let X = K
2n1⊗· · ·⊗K

2nk ,
E = E1 ⊗ · · · ⊗ Ek and

Tj ∈ L(X), Tj = I ⊗ · · · ⊗ I ⊗ Sj ⊗ I ⊗ · · · ⊗ I for 1 � j � k,

where Sj sits in the jth place. Finally, let {zm}m∈Z+ be a sequence in K
k satisfying

|zm| → ∞. Then, for any u, v ∈ E, there exists a sequence {xm}m∈Z+ in X such that
xm → u and e〈zm,T 〉xm → v, where 〈s, T 〉 = s1T1 + · · · + skTk.
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Proof. Let K̄ = K∪{∞} be the one-point compactification of K. Clearly, it is enough
to show that any sequence {wm} in K

k satisfying |wm| → ∞ has a subsequence {zm} for
which the statement of the lemma is true. Since K̄

k is compact and metrizable, we can,
without loss of generality, assume that {zm} converges to w ∈ K̄

k. Since |zm| → ∞, the
set C = {j : wj = ∞} is non-empty. Without loss of generality, we may also assume that
C = {1, . . . , r} with 1 � r � k.

Denote by Σ the set of (u, v) ∈ X2 for which there is a sequence {xm}m∈Z+ in X

such that xm → u and e〈zm,T 〉xm → v. In this notation, the statement of the lemma is
equivalent to the inclusion E × E ⊆ Σ. Let uj ∈ Ej for 1 � j � k and u = u1 ⊗ · · · ⊗ uk.
By Corollary 2.3, there exist sequences {xj,m}m∈Z+ and {yj,m}m∈Z+ in K

2nj such that,
for 1 � j � r,

xj,m → 0, e(zm)jSj xj,m → uj , yj,m → uj and e(zm)jSj yj,m → 0.

We put xj,m = e−wjSj uj and yj,m = uj for r < j � k and m ∈ Z+. Consider the
sequences {xm}m∈Z+ and {ym}m∈Z+ in X defined by xm = x1,m ⊗ · · · ⊗ xk,m and ym =
y1,m ⊗ · · · ⊗ yk,m. By definition of xm and ym and the above display, xm → 0 and
ym → u. For instance, xm → 0 because the sequences {xj,m} are bounded and x1,m → 0.
Similarly, taking into account that (zm)j → wj for j > r, we see that e〈zm,T 〉xm → u and
e〈zm,T 〉ym → 0. Hence (u, 0) ∈ Σ and (0, u) ∈ Σ. Thus ({0}×E0)∪(E0×{0}) ⊆ Σ, where
E0 = {u1⊗· · ·⊗uk : uj ∈ Ej , 1 � j � k}. On the other hand, span({0}×E0)∪(E0×{0}) =
E × E. Since Σ is a linear space, E × E ⊆ Σ. �

For applications it is more convenient to reformulate the above lemma in the coordinate
form.

Corollary 2.5. Let k ∈ N, n1, . . . , nk ∈ N, Nj = {1, . . . , 2nj} and Qj = {1, . . . , nj}
for 1 � j � k. Consider M = N1 × · · · × Nk and M0 = Q1 × · · · × Qk, let {em : m ∈ M}
be the canonical basis of X = K

M and let E = span{em : m ∈ M0}. For 1 � j � k, let
Tj ∈ L(X) be defined by Tjem = 0 if mj = 1 and Tjem = em′ if mj > 1, where m′

l = ml

if l �= j, m′
j = mj − 1. Then, for any sequence {zm}m∈Z+ in K

k satisfying |zm| → ∞ and
any u, v ∈ E, there is a sequence {xm}m∈Z+ in X such that xm → u and e〈zm,T 〉xm → v,
where 〈s, T 〉 = s1T1 + · · · + skTk.

2.2. The key lemma

Lemma 2.6. Let X be a topological vector space and let k ∈ N, n ∈ N
k and A ∈

L(X)k be such that AjAl = AlAj for 1 � l, j � k. Then, for each x from κ(n, A)
defined in (2.1), there is a common finite-dimensional invariant subspace Y for A1, . . . , Ak

such that for any sequence {zm}m∈Z+ in K
k satisfying |zm| → ∞, there exist sequences

{xm}m∈Z+ and {ym}m∈Z+ in Y for which

xm → 0, eAzm xm → x, ym → x and eAzm ym → 0,

where As = (s1A1 + · · · + skAk)|Y . (2.9)
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Proof. Since x ∈ κ(n, T ), there is y ∈ X such that x = An1
1 · · ·Ank

k y and A
2nj

j y = 0
for 1 � j � k. Let Nj = {1, . . . , 2nj} and Qj = {1, . . . , nj} for 1 � j � k. Define
M = N1×· · ·×Nk and M0 = Q1×· · ·×Qk. Let hl = A2n1−l1

1 · · ·A2nk−lk
k y for l ∈ M and let

Y = span{hl : l ∈ M}. Clearly, Y is finite dimensional and Ajhl = 0 if lj = 1, Ajhl = hl′

if lj > 1, where l′r = lr for r �= j and l′j = lj − 1. Hence Y is invariant for each Aj .
Consider J ∈ L(KM , Y ) defined by Jel = hl for l ∈ M . Also, let E = span{el : l ∈ M0}
and Tj ∈ L(KM ) be as in Corollary 2.5. Taking into account the definition of Tj and
the action of Aj on hl, we see that AjJ = JTj for 1 � j � k. Clearly, n ∈ M0 and
therefore en ∈ E. Since x = An1

1 · · ·Ank

k y, we have x = hn. By Corollary 2.5, there exist
sequences {um}m∈Z+ and {vm}m∈Z+ in K

M such that um → en, e〈zm,T 〉um → 0, vm → 0
and e〈zm,T 〉um → en. Now let ym = Jum and xm = Jvm for m ∈ Z+. Then {xm} and
{ym} are sequences in Y . From the relations AjJ = JTj and the fact that K

M and Y

are finite dimensional, it follows that xm → 0, ym → Jen = x, eAzm xm → Jen = x and
eAzm ym → 0. Thus (2.9) is satisfied. �

From now on, if A = (A1, . . . , Ak) is a k-tuple of continuous linear operators on a
topological vector space X and z ∈ K

k, we write

〈z, A〉 = z1A1 + · · · + zkAk.

We also use the following convention. Let X be a topological vector space and let S ∈
L(X). By saying that eS is well defined, we mean that for each x ∈ X, the series

∞∑
n=0

1
n!

Snx

converges in X and defines a continuous linear operator denoted eS .

Corollary 2.7. Let X be a topological vector space, let k ∈ N and let A ∈ L(X)k

be a k-tuple of pairwise commuting operators such that, for any z ∈ K
k, e〈z,A〉 is well

defined. Then, for each x and y from the space ker†(A) defined in (2.1) and any sequence
{zm}m∈Z+ in K

k satisfying |zm| → ∞, there is a sequence {um}m∈Z+ in X such that
um → x and e〈zm,A〉um → y.

Proof. Fix a sequence {zm}m∈Z+ in K
k satisfying |zm| → ∞. Let Σ be the set of

(x, y) ∈ X2 for which there exists a sequence {um}n∈Z+ in X such that um → x and
e〈zm,A〉um → y. By Lemma 2.6, κ(n, A) × {0} ⊆ Σ and {0} × κ(n, A) ⊆ Σ for any
n ∈ N

k, where κ(n, A) is defined in (2.1). On the other hand, Σ is a linear subspace of
X × X. Thus

ker†(A) × ker†(A) = span
⋃

n∈Nk

((κ(n, A) × {0}) ∪ ({0} × κ(n, A))) ⊆ Σ.

�
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2.3. Mixing semigroups and extended backward shifts

We start by proving Proposition 1.1. Proposition G below is Proposition 1 in [17],
while Theorem U below can be found in [17, pp. 348–349].

Proposition G. Let X be a topological space and let F = {Tα : α ∈ A} be a family
of continuous maps from X to X such that TαTβ = TβTα and Tα(X) is dense in X for
any α, β ∈ A. The set of universal elements for F is then either empty or dense in X.

Theorem U. Let X be a Baire topological space, let Y be a second countable
topological space and let {Ta : a ∈ A} be a family of continuous maps from X into
Y . The set of universal elements for {Ta : a ∈ A} is then dense in X if and only if
{(x, Tax) : x ∈ X, a ∈ A} is dense in X × Y .

Proof of Proposition 1.1. Assume that {Tt}t∈A is hereditarily hypercyclic. That is,
{Ttn

: n ∈ Z+} is universal for any sequence {tn}n∈Z+ in A satisfying |tn| → ∞. Applying
this to tn = nt with t ∈ A, |t| > 0, we see that Tt is hypercyclic. Since any hypercyclic
operator has dense range [17], Tt(X) is dense in X if |t| > 0. Assume that {Tt}t∈A is non-
mixing. Then there are non-empty open subsets U and V of X and a sequence {tn}n∈Z+

in A such that |tn| → ∞ and |tn| > 0, Ttn(U) ∩ V = ∅ for each n ∈ Z+. Since Ttn have
dense ranges and commute, Proposition G implies that the set W of universal elements
for {Ttn

: n ∈ Z+} is dense in X. Hence we can pick x ∈ W ∩ U . Since x is universal for
{Ttn : n ∈ Z+}, there is an n ∈ Z+ for which Ttn

x ∈ V . Hence Ttn
x ∈ Ttn

(U) ∩ V = ∅.
This contradiction completes the proof of the first part of Proposition 1.1.

Next, assume that X is Baire separable and metrizable, {Tt}t∈A is mixing and {tn}n∈Z+

is a sequence in A such that |tn| → ∞. By the definition of mixing, for any non-empty
open subsets U and V of X, Ttn

(U) ∩ V �= ∅ for all sufficiently large n ∈ Z+. Hence
{(x, Ttnx) : x ∈ X, n ∈ Z+} is dense in X × X. By Theorem U, {Ttn : n ∈ Z+} is
universal. �

Proposition 2.8. Let X be a topological vector space and let A = (A1, . . . , Ak) ∈
L(X)k be an EBSk-tuple such that e〈z,A〉 is well defined for z ∈ K

k and {e〈z,A〉}z∈Kk is
an operator group. Then {e〈z,A〉}z∈Kk is mixing.

Proof. Assume the contrary. We can then find non-empty open subsets U and V of
X and a sequence {zm}m∈Z+ in K

k such that |zm| → ∞ and e〈zm,A〉(U) ∩ V = ∅ for
each m ∈ Z+. Let Σ be the set of (x, y) ∈ X2 for which there is a sequence {xm}m∈Z+

in X such that xm → x and e〈zm,A〉xm → y. By Corollary 2.7, ker†(A) × ker†(A) ⊆ Σ.
Since A is an EBSk-tuple, ker†(A) is dense in X and therefore Σ is dense in X × X.
In particular, Σ meets U × V , which is not possible since e〈zm,A〉(U) ∩ V = ∅ for any
m ∈ Z+. This contradiction shows that {e〈z,A〉}z∈Kk is mixing. �

Theorem 2.9. Let X be a separable Banach space and let (A1, . . . , Ak) ∈ L(X)k

be an EBSk-tuple. Then {e〈z,A〉}z∈Kk is a hereditarily hypercyclic uniformly continuous
operator group on X.
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Proof. Since the Aj are pairwise commuting and X is a Banach space, {e〈z,A〉}z∈Kk

is a uniformly continuous operator group. By Proposition 1.1, it suffices to verify that
{e〈z,A〉}z∈Kk is mixing. It remains to apply Proposition 2.8. �

We will extend the above theorem to more general topological vector spaces. Recall
that a subset A of a vector space is called balanced if zx ∈ A whenever x ∈ A, z ∈ K and
|z| � 1. A subset D of a topological vector space X is called a disc if D is convex, balanced
and bounded. For a disc D, the space XD = span(D) is endowed with the norm, being
the Minkowskii functional [24] of D. Boundedness of D implies that the norm topology
of XD is stronger than the topology inherited from X. D is called a Banach disc if the
normed space XD is complete. It is well known [8] that a compact disc is a Banach disc.

Lemma 2.10. Let X be a topological vector space, let p be a continuous seminorm on
X, let D ⊂ X be a Banach disc, let q be the norm of XD, let k ∈ N and let A ∈ L(X)k be
a k-tuple of pairwise commuting operators. Assume also that Aj(X) ⊆ XD for 1 � j � k

and that there is a > 0 such that q(Ajx) � ap(x) for any x ∈ X and 1 � j � k. Then,
for each z ∈ K

k, e〈z,A〉 is well defined. Moreover, {e〈z,A〉}z∈Kk is a uniformly continuous
operator group and the map z �→ f(e〈z,A〉x) from K

k to K is analytic for any x ∈ X and
f ∈ X ′. Furthermore, if XD is separable and dense in X and B is an EBSk-tuple, then
{e〈z,A〉}z∈Kk is hereditarily hypercyclic, where Bj ∈ L(XD) are restrictions of Aj to XD.

Proof. Since D is bounded, there is a c > 0 such that p(x) � cq(x) for each x ∈ XD.
Since q(Ajx) � ap(x) for each x ∈ X, we have q(AjAlx) � ap(Alx) � caq(Alx) �
ca2p(x). Iterating this argument, we see that

q(An1
1 · · ·Ank

k x) � c|n|−1a|n|p(x) for any x ∈ X and n ∈ Z
k
+, |n| > 0, (2.10)

where |n| = n1 + · · · + nk. By (2.10), for each x ∈ X and z ∈ K
k, the series

∑
n∈Zk

+, |n|>0

zn1
1 · · · znk

k

n1! · · ·nk!
An1

1 · · ·Ank

k x (2.11)

converges absolutely in the Banach space XD. Since the series
∞∑

m=1

1
m!

〈z, A〉mx

can be obtained from (2.11) by an appropriate ‘bracketing’, it is also absolutely conver-
gent in XD. Hence the last series converges in X and therefore the formula

e〈z,A〉x =
∞∑

m=0

1
n!

〈z, A〉mx

defines a linear operator on X. Next, representing e〈z,A〉x − x by the series (2.11) and
using (2.10), we obtain

q(e〈z,A〉x − x) � p(x)
c

∑
n∈Zk

+, |n|>0

|z1|n1 · · · |zk|nk

n1! · · ·nk!
(ac)|n| =

p(x)
c

(eac‖z‖ − 1),
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where ‖z‖ = |z1| + · · · + |zk|. By the above inequality, each e〈z,A〉 is continuous and
{e〈z,A〉}z∈Kk is uniformly continuous. The semigroup property follows in a standard
way from the fact that Aj are pairwise commuting. Applying f ∈ X ′ to the series
(2.11) and, using (2.10), one immediately obtains the power series expansion of the map
z �→ f(e〈z,A〉x). Hence each z �→ f(e〈z,A〉x) is analytic.

Assume now that XD is separable and dense in X, that Bj ∈ L(XD) are restrictions
of Aj to XD and that B = (B1, . . . , Bk) is an EBSk-tuple. By Theorem 2.9, {e〈z,B〉}z∈Kk

is hereditarily hypercyclic. Since each e〈z,B〉 is the restriction of e〈z,A〉 to XD and XD is
dense in X and carries a topology stronger than the one inherited from X, {e〈z,A〉}z∈Kk

is also hereditarily hypercyclic. �

3. �1-sequences, equicontinuous sets and the class M

Definition 3.1. We say that a sequence {xn}n∈Z+ in a topological vector space X

is an �1-sequence if the series
∑∞

n=0 anxn converges in X for each a ∈ �1 and, for any
neighbourhood U of 0 in X, there is n ∈ Z+ such that Dn ⊆ U , where

Dn =
{ ∞∑

k=0

akxn+k : a ∈ �1, ‖a‖ � 1
}

.

If X is a locally convex space, the latter condition is satisfied if and only if xn → 0.

Lemma 3.2. Let {xn}n∈Z+ be an �1-sequence in a topological vector space X. Then
the closed balanced convex hull D of {xn : n ∈ Z+} is compact and metrizable. Moreover,
D = D′, where

D′ =
{ ∞∑

n=0

anxn : a ∈ �1, ‖a‖1 � 1
}

,

XD is separable and E = span{xn : n ∈ Z+} is dense in the Banach space XD.

Proof. Let Q = {a ∈ �1 : ‖a‖1 � 1} be endowed with the coordinate-wise convergence
topology. Then Q is metrizable and compact as a closed subspace of D

Z+ , where D =
{z ∈ K : |z| � 1}. Obviously, the map Φ : Q → D′, Φ(a) =

∑∞
n=0 anxn is onto. Using the

definition of an �1-sequence, one can in a routine way verify that Φ is continuous. Hence
D′ is compact and metrizable as a continuous image of a compact metrizable space.
Thus D′, being also balanced and convex, is a Banach disc. Let u ∈ XD′ and a ∈ �1 be
such that u = Φ(a). One can easily see that pD′(un − u) → 0, where un =

∑n
k=0 akxk.

Hence un → u in X. Moreover, if u ∈ D′, then the un are in the balanced convex hull of
{xn}n∈Z+ . Thus D is dense and closed in D′ and therefore D = D′. Hence pD(un−u) → 0
for each u ∈ XD. Since un ∈ E, E is dense in XD and XD is separable. �

Lemma 3.3. Let X be a topological vector space. Then the following are equivalent:

(1) X ∈ M0;

(2) there exists a Banach disc D in X with dense linear span such that XD is separable;

(3) there exists an �1-sequence in X with dense linear span.

https://doi.org/10.1017/S0013091509001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001515


772 S. Shkarin

Proof. Obviously, Lemma 3.3 (2) implies Lemma 3.3 (1). Lemma 3.2 ensures that
Lemma 3.3 (3) implies Lemma 3.3 (2). It remains to verify that Lemma 3.3 (1) implies
Lemma 3.3 (3). Assume that X ∈ M0. Then there is a dense linear subspace Y of X

carrying its own topology τ stronger than the topology inherited from X such that
Y = (Y τ) is a separable F-space. Clearly, any �1-sequence in Y with dense linear span is
also an �1 sequence in X with dense linear span. Thus it suffices to find an �1-sequence
with dense linear span in Y . To this end, we pick a dense subset A = {yn : n ∈ Z+} of
Y and a base {Un}n∈Z+ of neighbourhoods of 0 in Y such that each Un is balanced and
Un+1 + Un+1 ⊆ Un for n ∈ Z+. Pick a sequence {cn}n∈Z+ of positive numbers such that
xn = cnyn ∈ Un for each n ∈ Z+. It is now easy to demonstrate that {xn}n∈Z+ is an
�1-sequence in Y with dense span. �

Lemma 3.4. Let X be a separable metrizable topological vector space and let
{fn}n∈Z+ be a linearly independent sequence in X ′. There then exist sequences {xn}n∈Z+

in X and {αk,j}k,j∈Z+, j<k in K such that span{xk : k ∈ Z+} is dense in X, gn(xk) = 0
for n �= k and gn(xn) �= 0 for n ∈ Z+, where gn = fn +

∑
j<n αn,jfj .

Proof. Let {Un}n∈Z+ be a base of topology of X. We inductively construct sequences
{αk,j}k,j∈Z+, j<k in K and {yn}n∈Z+ in X such that, for any k ∈ Z+,

yk ∈ Uk, gk(yk) �= 0 and gk(ym) = 0 if m < k, where gk = fk +
∑
j<k

αk,jfj . (3.1)

Let g0 = f0. Since f0 �= 0, there is y0 ∈ U0 such that f0(y0) = g0(y0) �= 0. This
provides us with the base of induction. Assume now that n ∈ N and that yk and αk,j

with j < k < n satisfying (3.1) are already constructed. According to (3.1), we can find
αn,0, . . . , αn,n−1 ∈ K such that gn(ym) = 0 for m < n, where gn = fn +

∑
j<n αn,jfj .

Since the fj are linearly independent, gn �= 0 and therefore there is yn ∈ Un such that
gn(yn) �= 0. This concludes the inductive procedure.

Using (3.1), one can choose a sequence {βk,j}k,j∈Z+,j<k in K such that gn(xn) �= 0
for n ∈ Z+ and gn(xk) = 0 for k �= m, where xk = yk +

∑
j<k βk,jyj . Since yn ∈ Un,

{yn : n ∈ Z+} is dense in X. Hence span{xn : n ∈ Z+} = span{yn : n ∈ Z+} is dense
in X. �

Lemma 3.5. Let X ∈ M1. There then exists a linearly independent equicontinuous
sequence {fn : n ∈ Z+} in X ′ such that ϕ ⊆ {{fn(x)}n∈Z+ : x ∈ X}.

Proof. Since X ∈ M1, there is a continuous seminorm p on X for which the normed
space Xp = X/ ker p with the norm ‖x + ker p‖ = p(x) is infinite dimensional. Since
every infinite-dimensional normed space admits a biorthogonal sequence, we can choose
sequences {xn}n∈Z+ in X and {gn}n∈Z+ in X ′

p such that ‖gn‖ � 1 for each n ∈ Z+

and gn(xk + ker p) = δn,k for n, k ∈ Z+, where δn,k is the Kronecker delta. Now let
fn : X → K, fn(x) = gn(x + ker p). The above properties of gn can be rewritten in terms
of fn in the following way: |fn(x)| � p(x) and fn(xk) = δn,k for any n, k ∈ Z+ and
x ∈ Y . Since fn(xk) = δn,k, we have ϕ ⊆ {{fn(x)}n∈Z+ : x ∈ X}. By the inequality
|fn(x)| � p(x), {fn : n ∈ Z+} is equicontinuous. �
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Lemma 3.6. Let X ∈ M. Then there exist an �1-sequence {xn}n∈Z+ in X with dense
linear span and an equicontinuous sequence {fk}k∈Z+ in X ′ such that fk(xn) = 0 if k �= n

and fk(xk) �= 0 for each k ∈ Z+.

Proof. According to Lemma 3.3, there is a Banach disc D in X such that XD is
separable and dense in X. By Lemma 3.5, there is a linearly independent equicontinuous
sequence {gn}n∈N in X ′. Since XD is dense in X, the functionals gn|XD

on XD are linearly
independent. Applying Lemma 3.4 to the sequence {gn|XD

}, we find sequences {yn}n∈Z+

in XD and {αk,j}k,j∈Z+, j<k in K such that E = span{yk : k ∈ Z+} is dense in XD,
hn(yk) = 0 for n �= k and hn(yn) �= 0 for n ∈ Z+, where hn = gn +

∑
j<n αn,jgj . Consider

fn = cnhn, where cn = (1 +
∑

j<n |αn,j |)−1. Since {gn : n ∈ N} is equicontinuous, {fn :
n ∈ N} is also equicontinuous. Next, let xn = bnyn, where bn = 2−nq(xn)−1 and q is the
norm of the Banach space XD. Since xn converges to 0 in XD, {xn}n∈N is an �1-sequence
in XD. Since XD is dense in X, span{xn : n ∈ Z+} = E is dense in XD, and the topology
of XD is stronger than the one inherited from X, {xn}n∈N is an �1-sequence in X with
dense linear span. Finally, since fn(xk) = cnbkhn(yk), we see that fn(xk) = 0 if n �= k

and fn(xn) �= 0 for any n ∈ Z+. Thus all required conditions are satisfied. �

3.1. Proof of Proposition 1.5

Let X be a separable F-space. We have to show that X belongs to M if and only if
dim X ′ > ℵ0.

First, assume that X ∈ M. Then there is a continuous seminorm p on X such that
Xp = X/ ker p is infinite dimensional. We endow Xp with the norm ‖x + ker p‖ = p(x).
The dual X ′

p of the normed space Xp is naturally contained in X ′. Since the algebraic
dimension of the dual of any infinite-dimensional normed space is at least 2ℵ0 [8], we
have dimX ′ � dim X ′

p � 2ℵ0 > ℵ0.
Assume now that dim X ′ > ℵ0 and let {Un}n∈Z+ be a base of neighbourhoods of

0 in X. Then X ′ is the union of subspaces Yn = {f ∈ X ′ : |f | is bounded on Un} for
n ∈ Z+. Since dimX ′ > ℵ0, we can pick n ∈ Z+ such that Yn is infinite dimensional.
Now let p be the Minkowskii functional of Un. Then the open unit ball of p is exactly the
balanced convex hull W of Un. Since Un ⊆ W , p is a continuous seminorm on X. Since
each f ∈ Yn is bounded on W and Yn is infinite dimensional, X/ ker p is also infinite
dimensional. Hence X ∈ M1. Since X, as a separable F-space, belongs to M0, we see
that X ∈ M. The proof is complete.

4. Proof of Theorem 1.4

Let X ∈ M. By Lemma 3.6, there exist an �1-sequence {xn}n∈Z+ in X and an equicon-
tinuous sequence {fk}k∈Z+ in X ′ such that E = span{xn : n ∈ Z+} is dense in X,
fk(xn) = 0 if k �= n and fk(xk) �= 0 for each k ∈ Z+. Since {fk} is equicontinuous, there
is a continuous seminorm p on X such that each |fk| is bounded by 1 on the unit ball
of p. Since {xn} is an �1-sequence in X, Lemma 3.2 implies that the balanced convex
closed hull D of {xn : n ∈ Z+} is a Banach disc in X. Let q be the norm of the Banach
space XD. Then q(xn) � 1 for each n ∈ Z+.
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Lemma 4.1. Let α, β : Z+ → Z+ be any maps and let a = {an}n∈Z+ ∈ �1. The formula

Tx =
∑

n∈Z+

anfα(n)(x)xβ(n) (4.1)

then defines a continuous linear operator on X. Moreover, T (X) ⊆ XD and q(Tx) �
‖a‖p(x) for each x ∈ X, where ‖a‖ is the �1-norm of a.

Proof. Since {fk} is equicontinuous, {fα(n)(x)}n∈Z+ is bounded for any x ∈ X. Since
{xn} is an �1-sequence and a ∈ �1, the series in (4.1) converges for any x ∈ X and
therefore defines a linear operator on X. Moreover, if p(x) � 1, then |fk(x)| � 1 for
each k ∈ Z+. Since q(xm) � 1 for m ∈ Z+, (4.1) implies that q(Tx) � ‖a‖ if p(x) � 1.
Hence q(Tx) � ‖a‖p(x) for each x ∈ X. It follows that T is continuous and takes values
in XD. �

Fix a bijection γ : Z
k
+ → Z+. By ej we denote the element of Z

k
+ defined by (ej)l = δj,l.

For n ∈ Z
k
+, we write |n| = n1 + · · · + nk. Let

εm = min{|fγ(n)(xγ(n))| : n ∈ Z
k
+, |n| = m + 1} for m ∈ Z+.

Since fj(xj) �= 0, εm > 0 for m ∈ Z+. Pick any sequence {αm}m∈Z+ of positive numbers
satisfying

αm+1 � 2mαmε−1
m for any m ∈ Z+ (4.2)

and consider the operators Aj : X → X defined by the formula

Ajx =
∑

n∈Zk
+

α|n|fγ(n+ej)(x)
α|n|+1fγ(n+ej)(xγ(n+ej))

xγ(n) for 1 � j � k.

By (4.2), the series defining Aj can be written as

Ajx =
∑

n∈Zk
+

cj,nfγ(n+ej)(x)xγ(n) with 0 < |cj,n| < 2−|n|

and therefore ∑
n∈Zk

+

|cj,n| � C =
∑

n∈Zk
+

2−|n|.

Then each Aj has shape (4.1) with ‖a‖ � C. By Lemma 4.1, Aj ∈ L(X), Aj(X) ⊆
XD and q(Tx) � Cp(x) for any x ∈ X. Using the definition of Aj and the equalities
fm(xj) = 0 for m �= j, it is easy to verify that AjAlxn = AlAjxn for any 1 � j < l � k

and n ∈ Z+. Indeed, for any n ∈ Z+, there is a unique m ∈ Z
k
+ such that n = γ(m). If

either mj = 0 or ml = 0, we have AjAlxn = AlAjxn = 0. If mj � 1 and ml � 1, then

AjAlxn = AlAjxn =
α|m|−2

α|m|
xγ(m−ej−el).
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Since E is dense in X, A1, . . . , An are pairwise commuting. By Lemma 2.10, e〈z,A〉 are well
defined for z ∈ K

k, {e〈z,A〉}z∈Kk is a uniformly continuous operator group and the map
z �→ f(e〈z,A〉x) from K

k to K is analytic for any x ∈ X and f ∈ X ′. It remains to show
that {e〈z,A〉}z∈Kk is hereditarily hypercyclic. By Lemma 3.2, XD is separable. According
to Lemma 2.10, it suffices to prove that B ∈ L(XD)k is an EBSk-tuple, where Bj are
restrictions of Aj to XD. Clearly, the Bj commute as restrictions of commuting operators.
Using the relations fm(xj) = 0 for m �= j and fj(xj) �= 0, it is easy to see that the set
κ(m, B), defined in (2.1), contains Em = span{xγ(n) : n ∈ Z

k
+, nj � mj − 1, 1 � j � k}

for each m ∈ N
k. Hence ker† B, defined in (2.1), contains E, which is dense in XD by

Lemma 3.2. Thus B is an EBSk-tuple. The proof of Theorem 1.4 is complete.

5. Spaces without supercyclic semigroups {Tt}t∈R+

Lemma 5.1. Let X be a finite-dimensional topological vector space of R-dimension
greater than 2. There is then no supercyclic strongly continuous operator semigroup
{Tt}t∈R+ on X.

Proof. As is well known, any strongly continuous operator semigroup {Tt}t∈R+ on
K

n has shape {etA}t∈R+ , where A ∈ L(Kn). Assume the contrary. There then exist
n ∈ N and A ∈ L(Kn) such that {etA}t∈R+ is supercyclic and dimR K

n > 2. Since the
etA are invertible and commute with each other, Proposition G implies that the set W

of universal elements for {zetA : z ∈ K, t ∈ R+} is dense in K
n. On the other hand,

for each c > 0 and any x ∈ K
n, from the restriction on n it follows that the closed

set {zetAx : z ∈ K, 0 � t � c} is nowhere dense in K
n (the smoothness of the map

(z, t) �→ zetAx implies that the topological dimension of {zetAx : z ∈ K, 0 � t � c} is
less than that of K

n). Hence each x ∈ W is universal for {zetA : z ∈ K, t > c} for any
c > 0. Now, if (a, b) is a subinterval of (0,∞), it is easy to see that the family {zetkA : z ∈
K, a < t < b, k ∈ Z+} contains {zetA : z ∈ K, t > c} for a sufficiently large c > 0.
Hence for each x ∈ W , the set {zetkAx : z ∈ K, a < t < b, k ∈ Z+} is dense in K

n. Since
(a, b) is arbitrary and W is dense in K

n, {t, x, zetkAx : t ∈ R+, z ∈ K, x ∈ K
n, k ∈ Z+}

is dense in R+ × K
n × K

n. By Theorem U, the family {Fz,k : z ∈ K, k ∈ Z+} of maps
Fz,k : R+ × K

n → K
n, Fz,k(t, x) = zetkAx has a dense set U0 ⊂ R+ × K

n of universal
elements. Hence the projection U of U0 onto K

n is dense in K
n. On the other hand, U is

exactly the set of x ∈ K
n that are supercyclic for etA for some t ∈ R+. In particular, there

is t ∈ R+ such that etA is supercyclic. This contradicts the fact [26] that there are no
supercyclic operators on finite-dimensional spaces of real dimension greater than 2. �

Remark 5.2. In the proof of Lemma 5.1 we have shown that a strongly continuous
supercyclic operator semigroup on a finite-dimensional space must contain supercyclic
operators. It is worth mentioning that Conejero et al . [12] proved that every Tt with t > 0
is hypercyclic for any hypercyclic strongly continuous operator semigroup {Tt}t∈R+ on
an F-space. Bernal-González and Grosse-Erdmann [6] gave an example of a supercyclic
strongly continuous operator semigroup {Tt}t∈R+ on a real Hilbert space such that Tt is
not supercyclic for t from a dense subset of R+. It seems to remain unknown whether
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Tt with t > 0 must all be supercyclic for every supercyclic strongly continuous operator
semigroup {Tt}t∈R+ on a complex F-space.

The following (trivial under the Continuum Hypothesis) result is Lemma 2 in [25].

Lemma 5.3. Let (M, d) be a separable complete metric space, let X be a topological
vector space, let f : M → X be a continuous map and let τ = dim span f(M). Then
either τ � ℵ0 or τ = 2ℵ0 .

Lemma 5.4. Let {Tt}t∈R+ be a strongly continuous operator semigroup on a topo-
logical vector space X, let x ∈ X and let C(x) = span{Ttx : t ∈ R+}. Then either
dim C(x) < ℵ0 or dim C(x) = 2ℵ0 .

Proof. By Lemma 5.3, either dim C(x) � ℵ0 or dimC(x) = 2ℵ0 . It remains to rule
out the case dim C(x) = ℵ0. Assume that dim C(x) = ℵ0. Restricting the Tt to the
invariant subspace C(x), we can without loss of generality assume that C(x) = X.
Thus dimX = ℵ0 and therefore X is the union of an increasing sequence {Xn}n∈Z+

of finite-dimensional subspaces. First, we shall show that for each ε > 0, the space
Xε = span{Ttx : t � ε} is finite dimensional.

Let ε > 0 and 0 < α < ε. Then [α, ε] is the union of closed sets An = {t ∈ [α, ε] : Ttx ∈
Xn} for n ∈ Z+. By the Baire Category Theorem, there is n ∈ Z+ such that An has
non-empty interior in [α, ε]. Hence we can pick a, b ∈ R such that α � a < b � ε

and Ttx ∈ Xn for any t ∈ [a, b]. We shall show that Ttx ∈ Xn for t � a. Assume it
is not the case. Then the number c = inf{t ∈ [a,∞) : Ttx /∈ Xn} belongs to [b, ∞).
Since {t ∈ R+ : Tt ∈ Xn} is closed, Tcx ∈ Xn. Since [a, b] is uncountable and the span
of {Tt : t ∈ [a, b]} is finite dimensional, we can pick a � t0 < t1 < · · · < tn � b and
c1, . . . , cn−1 ∈ K such that Ttn

x = c1Tt1x + · · · + cn−1Ttn−1x. Since Tcx ∈ Xn, by
definition of c, there is t ∈ (c, c + tn − tn−1) such that Ttx /∈ Xn. Since t > c � tn, the
equality Ttnx = c1Tt1x + · · · + cn−1Ttn−1x implies that

Ttx = Tt−tn
Ttn

x = Tt−tn

n−1∑
j=1

cjTtj
x =

n−1∑
j=1

cjTt−tn+tj
x ∈ Xn

because a � t − tn + tj � c for 1 � j � n − 1. This contradiction proves that Ttx ∈ Xn

for each t � a. Hence Xε ⊆ Xn and therefore Xε is finite dimensional for each ε > 0.
Since Tt(X) = Tt(C(x)) ⊆ Xt, Tt has finite rank for any t > 0. Let t > 0. Since Tt

has finite rank, Ft = ker Tt is a closed subspace of X of finite codimension. Clearly, Ft is
Ts-invariant for each s ∈ R+. Passing to quotient operators, Ss ∈ L(X/Ft), Ss(u+Ft) =
Tsu + Ft, we get a strongly continuous semigroup {Ss}s∈R+ on the finite-dimensional
space X/Ft. Hence there is A ∈ L(X/Ft) such that Ss = esA for s ∈ R+. Thus each Ss

is invertible and is a quotient of Ts, we obtain rkTs � rkSs = dimX/Ft = rkTt for any
t > 0 and s � 0. Thus all Tt for t > 0 have the same rank k ∈ N. Passing to the limit
as t → 0, we see that the identity operator I = T0 is the strong operator topology limit
of a sequence of rank k operators. Hence rk I � k. That is, X is finite dimensional. This
contradiction completes the proof. �
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Lemma 5.5. Let X be a topological vector space in which the linear span of each
metrizable compact subset has dimension less than 2ℵ0 . Then, for any strongly continuous
operator semigroup {Tt}t∈R+ on X and any x ∈ X, the space C(x) = span{Ttx : t ∈ R+}
is finite dimensional.

Proof. Let {Tt}t∈R+ be a strongly continuous operator semigroup on X and let x ∈ X.
By strong continuity, Kn = {Ttx : 0 � t � n} is compact and metrizable for any n ∈ N.
Hence dim En < 2ℵ0 for any n ∈ N, where En = span(Kn). Since the sum of countably
many cardinals strictly less than 2ℵ0 is strictly less than 2ℵ0 , dimC(x) �

∑∞
n=1 dim En <

2ℵ0 . By Lemma 5.4, C(x) is finite dimensional. �

Applying Lemma 5.1 if X is finite dimensional and Lemma 5.5 otherwise, we get the
following result.

Corollary 5.6. Let X be a topological vector space such that dimR X > 2 and the
linear span of each metrizable compact subset of X has dimension less than 2ℵ0 . Then
there is no strongly continuous supercyclic operator semigroup {Tt}t∈R+ on X.

Corollary 5.7. Let X be an infinite-dimensional topological vector space such that
dimR X ′ > 2 and in X ′

σ the span of any compact metrizable subset has dimension less
than 2ℵ0 . Then there is no strongly continuous supercyclic operator semigroup {Tt}t∈R+

on X.

Proof. Assume that there exists a supercyclic strongly continuous operator semigroup
{Tt}t∈R+ on X. It is straightforward to verify that {T ′

t}t∈R+ is a strongly continuous
semigroup on X ′

σ. Pick any finite-dimensional subspace L of X ′ such that dimR L > 2.
By Lemma 5.5, E = span{T ′

tf : t ∈ R+, f ∈ L} is finite dimensional. Since L ⊆ E,
dimR E > 2. Since E is T ′

t -invariant for any t ∈ R+, its annihilator F = {x ∈ X : f(x) =
0 for any f ∈ E} is Tt-invariant for each t ∈ R+. Thus we can consider the quotient
operators St ∈ L(X/F ), St(x + F ) = Ttx + F . Then {St}t∈R+ is a strongly continuous
operator semigroup on X/F . Moreover, {St}t∈R+ is supercyclic since {Tt}t∈R+ is. Now
since dim E = dimX/F , 2 < dimR X/F < ℵ0. By Lemma 5.1, there are no strongly
continuous supercyclic operator semigroups on X/F . This contradiction completes the
proof. �

Proof of Theorem 1.6. Theorem 1.6 follows immediately from Corollaries 5.6
and 5.7. �

6. Examples, remarks and questions

Note that if (X, τ) ∈ M is locally convex, then (X, θ) ∈ M for any locally convex topology
θ on X such that θ �= σ(X, X ′) and (X, θ) has the same dual X ′ as (X, τ). This is an
easy application of the Mackey–Arens Theorem [24]. Moreover, if (X, τ) ∈ M is locally
convex, the hereditarily hypercyclic uniformly continuous group from Theorem 1.4 is
strongly continuous and hereditarily hypercyclic on X equipped with the weak topology.
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Unfortunately, the nature of the weak topology does not allow such a semigroup to be
made uniformly continuous.

Assume now that X is an infinite-dimensional separable F-space. If dim X ′ > ℵ0,
Proposition 1.5 and Theorem 1.4 provide uniformly continuous hereditarily hypercyclic
operator groups {Tt}t∈Kk on X. If 2 < dimR X ′ � ℵ0, Theorem 1.6 does not allow a
supercyclic strongly continuous operator semigroup {Tt}t∈R+ on X. Similarly, if 1 �
dim X ′ � ℵ0, there are no hypercyclic strongly continuous operator semigroups {Tt}t∈R+

on X. It leaves unexplored the case X ′ = {0}.

Question 6.1. Characterize infinite-dimensional separable F-spaces X such that X ′ =
{0} and X admits a hypercyclic strongly continuous operator semigroup {Tt}t∈R+ . In
particular, is it true that an F-space X with X ′ = {0} supporting a hypercyclic operator
also supports a hypercyclic strongly continuous operator semigroup {Tt}t∈R+?

Recall that an infinite-dimensional topological vector space X is called rigid if L(X)
consists only of the operators of the form λI for λ ∈ K. Since there exist rigid separable
F-spaces [19], there are separable infinite-dimensional F-spaces which support no cyclic
operators or cyclic strongly continuous operator semigroups {Tt}t∈R+ . Of course, X ′ =
{0} if X is rigid. We show that the equality X ′ = {0} for an F-space is not an obstacle
for having uniformly continuous hereditarily hypercyclic operator groups. The spaces we
consider are Lp[0, 1] for 0 � p < 1.

Let (Ω, A, µ) be a measure space with µ being σ-finite. Recall that if 0 < p < 1, then
Lp(Ω, µ) consists of (classes of equivalence up to being equal almost everywhere with
respect to µ of) measurable functions f : Ω → K satisfying qp(f) =

∫
Ω

|f(x)|pλ(dx) < ∞
with the topology defined by the metric dp(f, g) = qp(f −g). The space L0(Ω, µ) consists
of (equivalence classes of) all measurable functions f : Ω → K with the topology defined
by the metric d0(f, g) = q0(f − g), where

q0(h) =
∞∑

n=0

2−n

µ(Ωn)

∫
Ωn

|f(x)|
1 + |f(x)|µ(dx)

and {Ωn}n∈Z+ is a sequence of measurable subsets of Ω such that µ(Ωn) < ∞ for each
n ∈ Z+ and Ω is the union of Ωn. Although d0 depends on the choice of {Ωn}, the
topology defined by this metric does not depend on this choice. If Ω = [0, 1]k or Ω = R

k

and µ is the Lebesgue measure, we omit the notation for the underlying measure and
σ-algebra and simply write Lp([0, 1]k) or Lp(Rk). We also replace Lp([0, 1]) by Lp[0, 1].
Note [19] that X = Lp[0, 1] for 0 � p < 1 is a separable infinite-dimensional F-space
satisfying X ′ = {0}. Moreover, for any p ∈ [0, 1) and k ∈ N, Lp([0, 1]k) is isomorphic to
Lp[0, 1] and Lp(Rk) is isomorphic to Lp[0, 1].

Example 6.2. Let 0 < p < 1, let X = Lp([0, 1]k) and let Tj ∈ L(X) be defined by
the formula

Tjf(x1, . . . xj−1, xj , xj+1 . . . , xn) = f(x1, . . . xj−1,
1
2xj , xj+1 . . . , xn), 1 � j � k.

Then {e〈t,T 〉}t∈Kk is a uniformly continuous and hereditarily hypercyclic operator group.
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Proof. That the Tj are pairwise commuting, that e〈t,T 〉 is well defined for each t ∈
K

k and that {e〈t,T 〉}t∈Kk is a uniformly continuous operator group are easily verified.
Moreover, T is an EBSk-tuple. Namely, ker† T consists of all f ∈ X that vanish in a
neighbourhood of (0, . . . , 0), and therefore it is dense. By Corollary 2.8, {e〈t,T 〉}t∈Kk is
mixing. By Proposition 1.1, {e〈t,T 〉}t∈Kk is hereditarily hypercyclic. �

It is worth noting that the above example does not work for X = L0([0, 1]k): e〈t,T 〉

is not well defined for each non-zero t ∈ K
k. Nevertheless, we can produce a strongly

continuous hereditarily hypercyclic operator group {Tt}t∈Rk on L0(Rk).

Example 6.3. Let k ∈ N, let X = L0(Rk) and, for each t ∈ R
k, let Tt ∈ L(X)

be defined by the formula Ttf(x) = f(x − t). Then {Tt}t∈Rk is a strongly continuous
hereditarily hypercyclic operator group.

Proof. The fact that {Tt}t∈Rk is a strongly continuous operator group is obvious. Pick
a sequence {tn}n∈Z+ of vectors in R

k such that |tn| → ∞ as n → ∞. Clearly, the space E

of functions from X with bounded support is dense in X. It is easy to see that Ttn
f → 0

and T−1
tn

f = T−tnf → 0 for each f ∈ E. Hence {Ttn : n ∈ Z+} satisfies the universality
criterion from [7]. Thus {Ttn : n ∈ Z+} is universal and therefore {Tt}t∈Rk is hereditarily
hypercyclic. �

Since Lp([0, 1]k) and Lp(Rk) are isomorphic to Lp[0, 1], we obtain the following corol-
lary.

Corollary 6.4. Let k ∈ N and 0 � p < 1. Then there exists a hereditarily hypercyclic
strongly continuous operator group {Tt}t∈Rk on Lp[0, 1].

Ansari [1] asked whether the Lp[0, 1] for 0 � p < 1 support hypercyclic operators. This
question was answered affirmatively by Grosse-Erdmann [17, Remark 4b]. Corollary 6.4
provides a ‘very strong’ affirmative answer to the same question. Finally, we would like to
mention a class of topological vector spaces very different from the spaces in M in terms
of operator semigroups. Recall that operator semigroups from Theorem 1.4 on spaces
X ∈ M depend analytically on the parameter: the map t �→ f(Ttx) from K

k to K is
analytic for any x ∈ X and f ∈ X ′.

Proposition 6.5. Let a locally convex space X be the union of a sequence of its
closed linear subspaces {Xn}n∈Z+ such that Xn �= X for each n ∈ Z+. Assume also that
{Tt}t∈R+ is a strongly continuous operator semigroup such that the function t �→ f(Ttx)
from R+ to K is real-analytic for any x ∈ X and f ∈ X ′. Then {Tt}t∈R+ is non-cyclic.

Proof. Let x ∈ X. Clearly, R+ is the union of closed sets An = {t ∈ R+ : Ttx ∈ Xn}
for n ∈ Z+. By the Baire Theorem, there is n ∈ Z+ such that An contains an interval
(a, b). Now let f ∈ X ′ be such that Xn ⊆ ker f . The function t �→ f(Ttx) then vanishes
on (a, b). Since this function is analytic, it is identically 0. That is, f(Ttx) = 0 for any
t ∈ R+ and any f ∈ X ′ vanishing on Xn. By the Hahn–Banach Theorem, Ttx ∈ Xn

for each t ∈ R+. Hence x is not cyclic for {Tt}t∈R+ . Since x is arbitrary, {Tt}t∈R+ is
non-cyclic. �

https://doi.org/10.1017/S0013091509001515 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001515


780 S. Shkarin

Note that a countable locally convex direct sum of infinite-dimensional Banach spaces
may admit a hypercyclic operator [10]. This observation together with the above propo-
sition make the following question more intriguing.

Question 6.6. Let X be the locally convex direct sum of a sequence of separable
infinite-dimensional Banach spaces. Does X admit a hypercyclic strongly continuous
semigroup {Tt}t∈R+?

6.1. A question by Bermúdez et al .

Using [2, Theorem 2.2] and Theorem 2.9, one can easily see that if T is an extended
backward shift on a separable infinite-dimensional Banach space X, then both I +T and
eT are hereditarily hypercyclic. Clearly, an extended backward shift T has dense range
and dense generalized kernel ker� T =

⋃∞
n=1 ker Tn. The converse is not true in general.

This leads to the following question.

Question 6.7. Let T be a continuous linear operator (having dense range and dense
generalized kernel) on a separable Banach space. Is it true that I + T and/or eT are
mixing or at least hypercyclic?

This reminds us of the following question [3] posed by Bermúdez et al .

Question B2CP. Let X be a complex Banach space and let T ∈ L(X) be such
that its spectrum σ(T ) is connected and contains 0. Does hypercyclicity of I + T imply
hypercyclicity of eT ? Does hypercyclicity of eT imply hypercyclicity of I + T?

We shall show that the answer to both parts of the above question is negative. Before
doing this, we would like to raise a similar question, which remains open.

Question 6.8. Let X be a Banach space and let T ∈ L(X) be quasinilpotent. Is
hypercyclicity of I + T equivalent to hypercyclicity of eT ?

If the answer is affirmative, then the following interesting question naturally arises.

Question 6.9. Let T be a quasinilpotent bounded linear operator on a complex
Banach space X and let f be an entire function of one variable such that f(0) = f ′(0) = 1.
Is it true that hypercyclicity of f(T ) is equivalent to hypercyclicity of I + T?

We introduce some notation. Let T = {z ∈ C : |z| = 1}, let D = {z ∈ C : |z| < 1},
let H2(D) be the Hardy–Hilbert space on the unit disc and let H∞(D) be the space of
bounded holomorphic functions f : D → C. It is well known that, for α ∈ H∞(D), the
multiplication operator Mαf(z) = α(z)f(z) is a bounded linear operator on H2(D). It is
also clear that σ(Mα) = α(D).

Godefroy and Shapiro [15, Theorem 4.9] proved that if α ∈ H∞(D) is not a constant
function, then the Hilbert space adjoint M�

α is hypercyclic if and only if α(D) ∩ T �= ∅.
Moreover, they proved hypercyclicity by means of applying the Kitai Criterion [14,20],
which automatically [16] provides hereditary hypercyclicity. Thus their result can be
stated in the following form.
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Proposition 6.10. Let α ∈ H∞(D) be non-constant. Then M�
α is hereditarily hyper-

cyclic if α(D) ∩ T �= ∅, and M�
α is non-hypercyclic if α(D) ∩ T = ∅.

We show that the answer to both parts of Question B2CP is negative. Consider U ⊂ C,
being the interior of the triangle with vertices −1, i and −i. That is, U = {a + bi : a, b ∈
R, a < 0, b − a < 1, b + a > −1}. Next, let V = {a + bi : a, b ∈ R, 0 < b < 1, |a| <

1 −
√

1 − b2}. The boundary of V consists of the interval [−1 + i, 1 + i] and two circle
arcs. Clearly, U and V are bounded, open, connected and simply connected. Moreover,
(1 + U) ∩ T �= ∅, where 1 + U = {1 + z : z ∈ U}, and eU ⊆ D, where eU = {ez : z ∈ U}.
Similarly, (1 + V ) ∩ D = ∅ and eV ∩ T �= ∅. By the Riemann Theorem [21], there exist
holomorphic homeomorphisms α : D → U and β : D → V . Obviously, α, β ∈ H∞(D) and
are non-constant. Since I + M�

α = M�
1+α, eM�

β = M�
eβ and both (1 + α)(D) = 1 + U and

eβ(D) = eV intersect T, Proposition 6.10 implies that I + M�
α and eM�

β are hereditarily
hypercyclic. Since I + M�

β = M�
1+β , eM�

α = M�
eα , eα(D) = eU is contained in D and

(1 + β)(D) = 1 + V does not meet D̄, Proposition 6.10 implies that eM�
α and I + M�

β

are non-hypercyclic. Finally, σ(M�
α) = Ū and σ(M�

β) = −V̄ . Hence the spectra of M�
α

and M�
β are connected and contain 0. Thus we have arrived at the following result, which

answers Question B2CP in the negative.

Proposition 6.11. There exist bounded linear operators A and B on a separable
infinite-dimensional complex Hilbert space such that σ(A) and σ(B) are connected and
contain 0, I + A and eB are hereditarily hypercyclic, while eA and I + B are non-
hypercyclic.
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