A THEOREM ON STEINER SYSTEMS

N. S. MENDELSOHN

1. Definitions and notation. A generalized Steiner system (t-design, tactical configuration) with parameters t, λ_{t}, k, v is a system (T, B), where T is a set of v elements, B is a set of blocks each of which is a k-subset of T (but note that blocks b_{i} and b_{j} may be the same k-subset of T) and such that every set of t elements of T belongs to exactly λ_{t} of the blocks. If we put $\lambda_{t}=u$ we denote by $S_{u}(t, k, v)$ the collection of all systems with these parameters. Thus $Q \in S_{u}(t, k, v)$ means $Q=(T, B)$ is a system with the given parameters. If $\lambda_{t}=u=1$, we write $S(t, k, v)$ instead of $S_{1}(t, k, v)$ and refer to the system as a Steiner system. If $t=2$, the system is called a balanced incomplete block design. If the number of elements equals the number of blocks, we call the system symmetric. Except in the trivial cases, $k=v$ and $k=v-1$, there are no symmetric systems with $t>2$ (see [1]).
2. Some elementary properties of generalized Steiner systems. We state here without proof some properties of generalized Steiner systems.
(i) If $Q \in S_{u}(t, k, v)$, where $u=\lambda_{t}$, then $Q \in S_{w}(s, k, v)$ where $w=\lambda_{s}$, $s \leqq t$, and

$$
\lambda_{s}=\lambda_{t} \frac{\binom{v-s}{t-s}}{\binom{k-s}{t-s}}
$$

(ii) The number λ_{1} is the number of times any element appears in a block and is often called the replication number. The notation $\lambda_{1}=r$ is usually used.
(iii) If $s=0$, the number λ_{0} turns out to be the number of blocks and the notation $\lambda_{0}=b$ is usually used.
(iv) From (i), (ii), (iii), the system $S_{u}(t, k, v)$ has parameters v, k, λ_{0}, $\lambda_{1}, \ldots, \lambda_{t}$. For a symmetric design $v=\lambda_{0}$ and $k=\lambda_{1}$.

If $R=(T, B) \in S(t, k, v)$, then

$$
Q=\left(T-\{x\}, B^{*}\right) \in S(t-1, k-1, v-1)
$$

where x is a fixed element of T and B^{*} is obtained from B by taking the collection of all blocks of B which contain x and then deleting x from these blocks. In this case we say Q is embedded in R.

Received November 19, 1969.
3. The intersection numbers. Let $Q \in S_{u}(t, k, v)$. Let b be a fixed block of Q. With respect to the fixed block b we define numbers $x_{0}, x_{1}, x_{2}, \ldots, x_{k}$ as follows: x_{i} is the number of blocks distinct from b, each of which has exactly i elements in common with b. In general, the numbers x_{i} will depend on the block b but as will be seen shortly this will not be so for ordinary Steiner systems $S(t, k, v)$.

In [1], the following equations which must be satisfied by a set of intersection numbers were given:

$$
\left.\begin{array}{cccc}
x_{0}+x_{1}+ & \cdot & \cdot & \tag{2}\\
x_{1}+2 x_{2}+ & \cdot & \cdot & \\
& \cdot & & \\
& \cdot & & \\
& & & \\
x_{k}= & \left(\lambda_{0}-1\right)
\end{array}\right)\binom{k}{0}
$$

In the particular case of an ordinary Steiner system, $\lambda_{t}=1$, and since the x_{i} are non-negative integers, $x_{t}=x_{t+1}=\ldots=x_{k}=0$. The system of equations (2) read, in this case, as follows:

$$
\begin{align*}
x_{0}+x_{1}+\cdot \cdot \cdot+x_{t} & =\left(\lambda_{0}-1\right)\binom{k}{0} \tag{3}\\
x_{1}+2 x_{2}+\cdot \cdot \cdot+t x_{t} & =\left(\lambda_{1}-1\right)\binom{k}{1} \\
x_{t-1}+\binom{t}{t-1} x_{t} & =\left(\lambda_{t-1}-1\right)\binom{k}{t-1} \\
x_{t} & =0
\end{align*}
$$

The equations (3) are t linear equations in t variables and obviously are uniquely solvable for $x_{0}, x_{1}, \ldots, x_{t}$.

In particular, we can solve for x_{0} in (3) by multiplying the equations alternately by 1 and -1 and adding.

Substituting for the values of λ_{i}, and manipulating the binomial coefficients yields

$$
\begin{equation*}
x_{0}=\frac{1}{\binom{v-t}{v-k}}\left\{\sum_{i=0}^{t}(-1)^{i}\binom{k}{i}\binom{v-i}{k-i}\right\}-\sum_{i=0}^{t}(-1)^{i}\binom{k}{i} . \tag{4}
\end{equation*}
$$

Equation (4), of course, is only valid for $\lambda_{t}=1$, the ordinary Steiner system $S(t, k, v)$.
4. The systems $S(t-1, t, 2 t+1)$ and $S(t, t+1,2 t+2)$.

Lemma 1. If $S(t-1, t, 2 t+1)$ exists, then t is odd.
Proof. Computing λ_{t-2} we obtain

$$
\lambda_{t-2}=\binom{t+3}{1} /\binom{2}{1}=\frac{t+3}{2}
$$

and since λ_{t-2} is an integer, t is odd.
Lemma 2. If $S(t-1, t, 2 t+1)$ exists, then for any $Q \in S(t-1, t, 2 t+1)$ every pair of blocks in Q has a non-null intersection.

Proof. In equation (4) for x_{0}, replacing t by $t-1$, and putting $k=t$, $v=2 t+1$, we obtain

$$
x_{0}=\frac{1}{t+2}\left\{\sum_{i=0}^{t-1}(-1)^{i}\binom{t}{i}\binom{2 t+1-i}{t-i}\right\}-\sum_{i=0}^{t-1}(-1)^{i}\binom{t}{i} .
$$

Replacing i by $t-j$ and using the facts that t is odd and

$$
\binom{t}{j}=\binom{t}{t-j}
$$

we have

$$
x_{0}=\frac{1}{t+2}\left\{\sum_{j=1}^{t}(-1)^{j+\imath}\binom{t}{j}\binom{t+1+j}{j}\right\}+\sum_{j=1}^{t}(-1)^{j}\binom{t}{j} .
$$

Now, using [2, p. 9, formula (6)] to reduce the first member of the right side and noting that the second member has the value -1 , we obtain

$$
x_{0}=\frac{1}{t+2}\binom{t+1}{t}+\frac{1}{t+2}-1=0
$$

This implies that every two blocks have a non-null intersection.
Lemma 3. Suppose that $S(t, t+1,2 t+2)$ is non-null and that

$$
Q \in S(t, t+1,2 t+2)
$$

Then if b is a block of Q, the set \bar{b} which is complementary to b is also a block of Q.

Proof. Since the system Q is based on $2 t+2$ elements and its blocks are $(t+1)$-subsets, the sets complementary to blocks are also $(t+1)$-subsets.

If we now apply the same computation as was done in Lemma 2 for this case, we obtain $x_{0}=1$. Hence for every block $b \in Q$ there is exactly one block $\bar{b} \in Q$ which does not intersect it. But the only $(t+1)$-subset which does not intersect b is the complementary set.

Theorem 1. The system $S(t-1, t, 2 t+1)$ is non-null if and only if the system $S(t, t+1,2 t+2)$ is non-null. If $Q \in S(t-1, t, 2 t+1)$, there exists exactly one system $R \in S(t, t+1,2 t+2)$ in which Q is embedded.

Proof. Suppose that $S(t, t+1,2 t+2)$ is non-null. Then if

$$
R \in S(t, t+1,2 t+2)
$$

the blocks of R which contain a fixed element x determine a

$$
Q \in S(t-1, t, 2 t+1)
$$

where the blocks of Q are obtained by deleting x from the above set of blocks.
Now suppose that $S(t-1, t, 2 t+1)$ is non-null and let

$$
Q=(T, B) \in S(t-1, t, 2 t+1)
$$

Let $T=\{1,2, \ldots, 2 t+1\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{\lambda_{0}}\right\}$. A direct calculation of λ_{0} in each case shows that if

$$
Q \in S(t-1, t, 2 t+1) \quad \text { and } \quad R \in S(t, t+1,2 t+2)
$$

then R must have exactly twice as many blocks as Q. Define $R=\left(T^{*}, B^{*}\right)$, where

$$
T^{*}=\{1,2,3, \ldots, 2 t+1,2 t+2\}
$$

and

$$
B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{\lambda_{0}}^{*}, \bar{b}_{1}^{*}, \bar{b}_{2}^{*}, \ldots, \bar{b}_{\lambda_{0}}^{*}\right\}
$$

where $b_{i}{ }^{*}=b_{i} \cup\{2 t+2\}$ and $\bar{b}_{i}{ }^{*}=T^{*}-b_{i}^{*}$ for $i=1,2, \ldots, \lambda_{0}$. We show that $R \in S(t, t+1,2 t+2)$. First note that the number of t-tuples which can be obtained from the blocks of B^{*} is exactly the number of t-tuples which can be formed from the elements of T^{*}. Hence it is sufficient to show that no t-tuple appears in two different blocks of B^{*}. We distinguish three cases.

Case 1. $b_{i}{ }^{*}$ and $b_{j}{ }^{*}$ have a common t-tuple. In this case when the element $2 t+2$ is deleted from $b_{i}{ }^{*}$ and $b_{j}{ }^{*}$ the elements b_{i} and b_{j} would have a common $(t-1)$-tuple which contradicts the fact that $Q \in S(t-1, t, 2 t+1)$.

Case 2. $\bar{b}_{i}{ }^{*}$ and $\bar{b}_{j}{ }^{*}$ have a common t-tuple, say $\{1,2,3, \ldots, t\}$. Then $\bar{b}_{i}^{*}=\{1,2,3, \ldots, t, v\}$ and $\bar{b}_{j}^{*}=\{1,2,3, \ldots, t, w\}$. Then

$$
b_{i}=\{t+1, t+2, \ldots, 2 t+2\}-\{v\}
$$

and $b_{j}=\{t+1, t+2, \ldots, 2 t+2\}-\{w\}$ have a common t-tuple which reduces to Case 1 .

Case $3 . b_{i}{ }^{*}$ and $\bar{b}_{j}{ }^{*}$ have a common t-tuple. In this case we may take $b_{i}{ }^{*}$ to be $\{1,2, \ldots, t, 2 t+2\}$ and $\bar{b}_{j}^{*}=\{1,2,3, \ldots, t, v\}$, where $t+1 \leqq v \leqq 2 t+1$; then $b_{j}{ }^{*}=\{t+1, t+2, \ldots, v-1, v+1, \ldots, 2 t+1\}$. Hence $b_{i}=\{1,2, \ldots, t\}$ and $b_{j}=\{t+1, t+2, \ldots, v-1, v+1, \ldots, 2 t+1\}$. Hence b_{i} and b_{j} are two non-intersecting blocks of Q. By Lemma 2, this yields a contradiction. The fact that the embedding of Q in R is unique follows from Lemma 3 and from the fact that R has exactly twice as many blocks as Q.
5. Examples and extension. Actual examples of Theorem 1 are the embedding of $S(2,3,7)$ in $S(3,4,8)$ and of $S(4,5,11)$ in $S(5,6,12)$, the latter systems being associated with the Mathieu groups M_{11} and M_{12}. The next possible case would be an embedding of $S(8,9,19)$ in $S(9,10,20)$ if either of these designs exist.

Suppose now we consider the generalized Steiner system $S_{u}(t, k, v)$ with $u=\lambda_{t}$. Equations (2) no longer need have a unique solution. However, if we restrict ourselves to generalized Steiner systems in which no two blocks intersect in more than t points it is true that equations (2) have a unique solution and we can proceed as before.

Lemma 4. Suppose that $Q \in S_{u}(t, k, v)$ and that no two blocks of Q intersect in more than t points. Then

$$
\begin{equation*}
x_{0}=\frac{u}{\binom{v-t}{v-k}}\left\{\sum_{i=0}^{t}(-1)^{i}\binom{k}{i}\binom{v-i}{k-i}\right\}-\sum_{i=0}^{t}(-1)^{i}\binom{k}{i} \tag{5}
\end{equation*}
$$

Proof. Same as that for equation (4).
Lemma 5. If $Q \in S_{u}(t-1, t, 2 t+1)$ and Q has no repeated blocks, then $x_{0}=u-1$.

Proof. Substitute into equation (5) and simplify.
Lemma 6. If $R \in S_{u}(t, t+1,2 t+2)$ and R has no repeated blocks, then $x_{0}=1$.

Proof. Substitute into equations (5) and simplify.
Theorem 2. The system $S_{u}(t-1, t, 2 t+1)$ contains designs without repeated blocks if and only if the system $S_{u}(t, t+1,2 t+2)$ contains designs without repeated blocks. Any such $Q \in S_{u}(t-1, t, 2 t+1)$ is uniquely embeddable in an $R \in S_{u}(t, t+1,2 t+2)$ as follows. Adjoin a new symbol to each of the blocks of Q and then the design R consists of the augmented blocks and their complements.

Proof. Use the results of Lemmas 5 and 6 and argue along lines similar to those used in Theorem 1.

The following example illustrates Theorem 2. In $S_{2}(2,3,7)$ there exists the system Q whose blocks are:

1	2	4
2	3	5
3	4	6
4	5	7
5	6	1
6	7	2
7	1	3
1	2	6
2	3	7
3	4	1
4	5	2
5	6	3
6	7	4
7	1	5

Note here that by Lemma 5 each block has exactly one other block which does not intersect it; e.g., 124 and 563 . Then Q is embedded in $R \in S_{2}(3,4,8)$ as follows:

1	2	4	8	3	5	6	7
2	3	5	8	1	4	6	7
3	4	6	8	1	2	5	7
4	5	7	8	1	2	3	6
5	6	1	8	2	3	4	7
6	7	2	8	1	3	4	5
7	1	3	8	2	4	5	6
1	2	6	8	3	4	5	7
2	3	7	8	1	4	5	6
3	4	1	8	2	5	6	7
4	5	2	8	1	3	6	7
5	6	3	8	1	2	4	7
6	7	4	8	1	2	3	5
7	1	5	8	2	3	4	6

An examination of this example shows how the argument in Theorem 1 should be modified to obtain Theorem 2.

References

1. N. S. Mendelsohn, Intersection numbers of t-designs, Notices Amer. Math. Soc. 16 (1969), 984. (Also University of Manitoba mimeographed series.)
2. J. Riordan, Combinatorial identities (Wiley, New York, 1968).
3. E. Witt, Über Steinersche Systems, Abh. Math. Sem. Hamburg Univ. 12 (1938), 265-275.

The University of Manitoba, Winnipeg, Manitoba

