
N e w Methods for Long-Time Numerical Integration of Planetary 

Orbits 

HIROSHI KINOSHITA AND HIROSHI NAKAI 

National Astronomical Observatory 

2-21-1 Osawa,Mitaka,Tokyo 181, Japan 

E- Ma il a ddress:Kin osh ita@cl.mtk.nao.ac.jp 

Abstract . When planetary orbits are numerically integrated for a long time by conventional 
integrators, the most serious problem is secular errors in the energy and the angular momentum 
of the planetary system due to discretization (truncation) errors. The secular errors in the energy 
and the angular momentum mean that the semi-major axes, the eccentricities, and the inclinations 
of planetary orbits have a secular error which grows linearly with time. Recently symplectic 
integrators and linear symmetric multistep integrators are found not to produce the secular errors 
in the energy and the angular momentum due to the discretization errors. Here we describe briefly 
both methods and discuss favorable properties of these integrators for a long-term integration of 
planetary orbits. 
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1. Introduction 

With a rapid increase of computer technology, the time span of a planetary orbit 

simulation is increasing from one million years( Cohen,Hubbard, and Oester winter 

1973) to one billion years( Sussman and Wisdom 1988). Now with use of a recent 

hardware of computer, it is not impossible to integrate the planetary system for 

the age of the solar system. As the integration time increases, the numerical results 

are more polluted due to various errors, which Millani and Nobili (1988) discussed 

in detail. Some of them are discretization (truncation) errors that are caused by 

the replacement of continuous differential equations by finite difference equations, 

round-off errors that are originated in the limit of the word length of a digital 

computer, and errors in the physical model used in the differential equations for 

the planetary system. Among them the most serious error is the accumulation of 

the discretization error due to a finite stepsize. The conventional integrators such 

as Runge-Kutta methods, multistep methods, Taylor methods, cause linear secular 

errors to the energy and the angular momentum which means that the semi-major 

axis, the eccentricity, and the inclination change linearly with time and the linear 

secular error in the semi-major axis produces a quadratically secular error in the 

planetary longitude. Therefore it is quite difficult to discuss the stability of the 

planetary system from a long term integration which is suffered from the spurious 

errors mentioned above. 

On the other hand symplectic integrators (Ruth 1983,Neri 1988, or see more 

detail in Kinoshita et al. 1991) do not produce secular truncation errors in the 

actions of a Hamiltonian system, which means that the total energy of the Hamil-

tonian do not have a secular truncation error and the truncation error in longitude 

grows only linearly with time. This remarkable feature of the symplectic integra-

tors is mathematically proved by Yoshida (1990a). Recently Quinlan and Tremaine 

(1990) found linear symmetric multistep integrators produce only a linear secular 
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truncation error in the planetary longitude, but they did not give a mathematical 

proof for this fact. Here we give a mathematical proof that symmetric multistep 

integrators do not produce a quadratic secular error in longitude in Section 3. 

So far a computer time has been one of obstacles to carry out a long integra-

tion. Now this situation is drastically changed by an appearance of a high-speed 

and less expensive work station and a special purpose computer(ex. Digital Or-

rery(Sussuman and Wisdom 1988) and GRAPE(Sugimoto et al. 1990)), and the 

computer time is now a minor problem. A very expensive super computer is not 

effective for a few body problem like the planetary system, since the vectorization 

of a few body problem is quite low compared with a many-body problem like a 

globular cluster system. 

2. Explicit Symplectic Integrators 

We assume that a Hamiltonian with an arbitrary number of degrees of freedom has 

the following form : 

F(p,q) = K(p) + U(q), (1) 

where q and ρ are canonical sets. In the following algorithm, the separation of ρ and 

q in the Hamiltonian is essential and a conservative Newtonian dynamical system 

is described in the form of the Hamiltonian (1). However a disturbed Hamiltonian 

with the following form can be treated with the same algorithm (Kinoshita et al. 

1991): 

% î ) = % î ) + % ) , (2) 

where Fo(p, q) is an unperturbed and solvable part and R(q) is a perturbed po-

tential. Symplectic Runge-Kutta integrators for a more general form of F(p, q) are 

discussed by Sanz-Serna(1991). 

A general fc-stage symplectic integrator is expressed as 

q% = q i - i +Cih—(Pi_i),pt- =Pi-i - dih—{qi),i = l , . . . , fc . (3) 

Here ft is a step-size and qo a nd po are initial values, and qk and pk are the numerical 

solution after ft. 

As for a four stage method of fourth order, the numerical coefficients ct- and d{ 

in the formula are determined from the requirement that the local truncation error 

is of order ft5. However they are not uniquely determined. If we require the time 

reversibility of the numerical solution, we can determine them uniquely: 

ι (i-ß) J , ι J -ß J n 

C l = C 4 = 2 ( ^ ' C 2 = C 3 = 2 ( ^ 

where, β = 2 1 / 3 (Forest 1987, Neri 1988, and Kinoshita et al. 1991). 

There does not exist a Är-stage method of order k(k > 4) like Runge-Kutta 

methods. The highest attainable order of a fc-stage method is not known. Recently 

Yoshida( 1990b) has found a practical method to determine the coefficients of higher 

https://doi.org/10.1017/S0074180900091439 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091439


397 

order explicit symplectic integrators. The coefficients ct- and a1, for the integrators 

higher than fourth order are not unique even if we require the time reversibility 

of the integrators. Yoshida (1990b) actually found three sets for 6-th order and 

five sets for 8-th order by numerically solving nonlinear sets of algebraic equations. 

These 6-th order symplectic integrators require 7 evaluations of the force functions, 

the same number as the explicit 6-th order Runge-Kutta integrators. 

2.1. N U M E R I C A L E X A M P L E S 

In order to see the properties of the symplectic integrators we at first choose the 

two-body problem whose analytical solution is known. Figure 1 shows errors in 

Keplerian elements over 2000 revolutions, where initial conditions are the semi-

major axis = 1, the eccentricity = 0.1, the inclination = 20°, the argument of 

pericenter = 20°, the longitude of node = 20°, the mean anomaly = 20°, and the 

step size h = 0.01, μ = 1. The solid lines are by the 6-th order symplectic integrator 

(SI6A in Kinoshita et al. 1991) and the dotted lines by the 6-th order Runge-Kutta 

integrator (Butcher 1964). The errors in the semi-major axis and the eccentricity 

by the Runge-Kutta integrator grow in proportion to the first order of time, and 

the error in the mean anomaly increases in proportion to the square of time. The 

discretization errors in the semi-major axis and the eccentricity by the symplectic 

integrator show only periodic changes. The truncation error in the mean anomaly 

and the argument of pericenter grows linearly in time. The secular discretization 

error in the mean anomaly is also caused from the fact that the mean value of 

the discretization error in the energy is not zero, and this mean value depends 

on the initial values and especially on the mean anomaly at the epoch and the 

accumulation of truncation errors by symplectic integrators can be treated by a 

canonical perturbation method (Kinoshita et al. 1991). 

The errors in the inclination and the longitude of node by the symplectic integra-

tor are not discretization errors but round-off errors, since the symplectic integrator 

does conserve the angular momentum vector exactly. Even if the Runge-Kutta inte-

grator does not conserve the angular momentum vector, it conserves the orientation 

of the angular momentum vector, as seen in Figure 1. 

The secular errors in the pericenter by both 6-th order methods have a same 

order as seen in Figure 1. As for 4-th order methods, however, the secular errors in 

the pericenter by a 4-th order Runge-Kutta method are much smaller than those 

in a 4-th order symplectic integrator (Kinoshita et al. 1991), whose mathematical 

or dynamical explanation is not known. 

We integrated five outer planets with 50 days step size for 500000 years by the 

symplectic integrator SI6A and the 13-th order Stornier's integrator, which were 

used in the numerical integration of the five outer planets by Cohen et al. (1978), 

Kinoshita and Nakai (1984), Applegate et al. (1986), and Sussman and Wisdom 

(1988). In order to reduce the round-off errors, we performed these integrations 

with a quadruple precision arithmetic. The errors in the total energy and the total 

angular momentum, which are integrals in this dynamical system, are shown in 

Figure 2. The results by the symplectic integrator does not show any secular trend, 

but Stornier's integrators clearly show a secular trend that is proportional to time. 
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Fig. 1. Numerical errors in Keplerian elements over 2000 revolutions integration of the 
two-body problem by 6-th order symplectic integrator ( solid Unes ) and 6-th order 
Runge-Kutta integrator ( dotted Unes). The units for angular variables are degree. 
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Fig. 2. Numerical errors in the total energy and the total angular momentum (AE/Eq 

and AA/Aq) in the numerical integrations of outer five planets with 6-th order symplectic 

integrator ( SI6A ) and 13-th order Stormer's integrator(Sl3). 

However the computer time with SI6A is about 5 times longer than that with 

Stormer's integrators, since the number of evaluations of the force function in SI6A 

is 7 and on the other hand that of Stormer's method is only one per one step. The 

symplectic integrators have a capability to integrate planetary systems in the time 

scale of 5 x 10 9 years without being polluted by the truncation errors, if we can 

reduce the round-off errors with use of quadruple precision arithmetics or a newly 

proposed method by Quinn and Tremaine(1990). 

3 . Linear Symmetric Multistep Integrators 

We consider a system of the second-order differential equations 

^3Γ = ' ( * . * ) , (4) 

where χ = (χχ,... ,xn),f = ( / i , . . . , / n ) . The numerical solutions by k-tb. step 
multistep integrators are computed recursively by the following difference equation: 

a k X n + k + ... + a 0 X „ = ft2 ( & f ( Χ „ + * , t + kh) + ... + /?of(X„, <)) , (5) 

where the coefficients a and β are independent of the form f. The local truncation 
error associated with the difference equation (5) is 

L[x(t); h] = Cp+2hP+2x^+2\t) + Cp+3h"+3x^+3\t) + 0(h"+4), (6) 

where ρ is the order of the difference equation(5),and C p + 2 , C p + 3 are functions of 

a and β. 
Symmetric multistep integrators (Henrici 1962) are defined as 

»ίΧη+ί + Û i - l X n + ί - Ι + . . . + (X-sXn-s = 
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h2 (ßsf(Xn+s ,t + 8h) + ... + /?_,f ( X n - , , t - 8hj) , (7) 

where αμ = α_μ,βμ = β-μ,μ = 0, . . . ,s , fc = 2s. Henrici(1962) showed that the 

order ρ of the difference equation(5) is even. The local truncation error for (7) is 

expressed as 

L[x; h] = < 7 Ρ + 2 Λ Ρ + V p + 2 > ( < ) + C ,

p + 4 / » p + 4 x ( p + 4 ) ( < ) + 0 ( Λ ρ + 6 ) , (8) 

which is easily derived with use of the symmetry of a and β. It should be noted 

that L[x(i);h] does not have odd order derivatives of x(t) with respect time, which 

is the most important point in the discussion of the secular truncation errors. This 

symmetry also gives an exact time reversibility to a symmetric multistep integrator 

if a round-off error is neglected. Quinlan and Tremaine (1990) found symmetric 

integrators produce only a linear secular truncation error in the planetary longitude, 

and they did not give a mathematical explanation for this fact. In the following we 

discuss the global truncation errors of symmetric multistep integrators. 

The truncation error δχ = X — x, where X is the solution of the difference 

equation (5) and χ is the solution of the original differential equations (4), is given 

by Henrici(1962): 

6x(t) = e(t)hp + d(t), (9) 

where e(t) is defined by 

= G(t)e - £ l X ( p + 2 > ( < ) + 0 ( A ) , e(0) = e'(0) = 0, (10) 

with G(t) = dî(x,t)/dx . The coefficient E\ of the second term in (10) is related 

to the first term of (6) and defined by 

Ει = C P + 2 / ( & + · · . + # > ) . (11) 

The third term in (10) comes from the second and third terms of (6). The first 

term of the truncation error (9) is the genuine term that is inevitable in the nu-

merical computation, and the second term d(2), which satisfies a similar equation 

to (10)(Henrici 1962), is due to errors in starting values. If the starting values are 

determined precisely, the second term can be neglected. We, therefore, neglect the 

second term in the following discussions. Even if the starting values have errors, 

the second term does not produce a secular error in the Keplerian elements of the 

two-body problem (Kinoshita 1968). 

Now we discuss the accumulation of truncation errors for the two-body problem 

with use of the equation (10). The equation (10) is linear but non-homogeneous. 

The homogeneous part of (10) is the variational equation of the two-body problem . 

Since the general solutions of the two-body problem are expressed analytically, the 

general solutions of the variational equations are easily obtained by differentiating 

the general solutions with respect to the six Keplerian elements and the solution of 

the non-homogeneous linear equation (10) is analytically solved ( see more detail 

in Kinoshita 1968). 
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With use of results and similar methods by Kinoshita(1968), who discussed the 

truncation error for the first-order differential equation, the truncation error in the 

true longitude λ is expressed as 

6X/(-Elhn = - | 2 * ! Ç E m ' + s in/(2 + e c o s / ) f f l , ( 1 2 ) 

2 r 1 — c 

a 2 n \ / l — e 2 

-Cp - 2y/l - e 2 (2 + e cos / ) cos fDp, 

where, 

A" = 2 /' + i ^ U 4 ^ » ) d< ( 1 3 ) 
Jto \ η ν 1 — e J n y l - / 

B>= / Y - r r i n / ^ c ) « ^ ) ( 0 + 
r ( l + c o s ^ c o s / ) y t ( p + 2 ) ( < A < t 

a^ny 1 — / 

C? = CP + CP

2, (15) 

Cf = 3 / ' ( _ ^ - / , · ( Ρ + » ( 0 - JÇ^/^p^)) Ä > ( 1 6 ) 

Cf = j f 7 K c o » / - « ) P + « c ° s / ) i . ( , t ; ) ( | ) + 

'»»m+j^f)y.(,t»(i)yi: (17) 

î^nV'^'h (18) 

with 

x* = a(cos tx — e), y* = a \ /1 — e 2 sin u. (19) 

Here a,e, and η are the semi-major axis, the eccentricity, and the mean motion, 

and / , tt, and / are the true, eccentric, and mean anomaly. The function x* is an 

even periodic function with respect to time and y* is an odd periodic function. 

At first we discuss the case where the order ρ is even. The function x*(?+2) is an 

even periodic function and i / * ( p + 2 ) is an odd periodic function. The coefficients of 

£*(p+2) a n ( j y*(p+2) m ^ n e Jnside of the integral (13) are odd and even,respectively. 

Therefore the inside of the integral (13) is an odd periodic function, and, therefore, 
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TRUE LONGITUDE 

0- 5 I 1 ι 1 ι 1 1 1 1 r 

Fig. 3. Truncation errors of the true longitude of the two-body problem for 100,000 revo-
lutions by 12th-order symmetric multistep integrator. The unit is arcsecond. 

A(P) is an even periodic function without a secular term. Similarly B^ is an even 

periodic function without a secular term, and both and are odd periodic 

functions with a linear secular term. When the order ρ is odd, and B^ have 

a linear secular term, has a quadratic secular term, and does not have a 

secular term. 

The order ρ for the symmetric multistep integrators is even as described before, 

and, therefore, the linear secular truncation error in the longitude does appear from 

the first,third, and fourth terms in (12), but the quadratic secular errors does not 

appear. The truncation error from the third term of (10), whose order is 0(h2) 

for the symmetric integrators, does not produce the quadratic secular errors in 

the longitude, since the second and thirds terms of (8) include only even order 

derivatives of x(tf) with respect to time. The linear secular error from these terms 

is smaller by order h2 than the principal linear secular error. 

We applied the 12th-order symmetric integrator constructed by Quinlan and 

Tremaine (1990) to the two-body problem and integrated an orbit(a = 1.0, e = 
0.05,/ = 0.0, a; = 0.0) for 100,000 revolutions with a stepsize h = 0.009228 χ 

2π. The orbital elements and the stepsize in this example were used by Quinlan 

and Tremaine(1990), and the eccentricity is close to Jupiter's one and the stepsize 

corresponds to a 40 day stepsize for Jupiter. In order to reduce round-off errors we 

carried out the numerical integration with a quadruple precision arithmetic. Figure 

3 show the residuals of the true longitude that grows linearly with time. 

The variations of Keplerian elements of this orbit are shown in Figure 4. The 

semi-major axis and the eccentricity do not have a secular trend at all. 

Then we integrated the five outer planets for 10,000 years by the same symmetric 

integrator and 13th-order Störmer multistep integrator. Also we integrated the 

outer five planets by the extrapolation method developed by Gragg (1965) with a 

quadruple precision arithmetic as a standard orbit for comparison. The accuracy 

of the standard orbit is checked by the time reversibility of the numerical solution: 

we integrated the motion over 10,000 years in backward with use of the positions 

and the velocity at the final epoch of the forward integration and examined how 

the positions at the initial epoch are close to the initial positions. The differences in 

the longitudes between forward and backward integrations increase quadratically 

with time and the maximum difference in the longitude of Jupiter is only 3 x 1 0 ~ 8 

arcsecond. The standard orbit thus obtained is accurate enough to test the precision 
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Fig. 4. Truncation errors of the Keplerian elements of the two-body problem for 100,000 
revolutions by 12th-order symmetric multistep integrator. The units for angular variables 
are arcsecond. 

A) 
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Fig. 5. Truncation errors of Jupiter's longitude in the numerical integration of outer five 
planets by two multistep integrators: (the unit is arcsecond) 
A)12th-order symmetric multistep integrator, 
B)13th-order Stornier multistep integrator. 
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of the orbits integrated by the multistep methods. Figure 5 shows the residuals in 
Jupiter's longitude. The truncation error of the symmetric method increases linearly 
with time, and that of the Störmer integrator grows quadratically with time. 

Here we give a short comment on one-leg method which is one version of linear 
multistep methods and becomes symplectic. We introduce two polynomials with 
coefficients a and β: 

k j 

p{E) = Σ°ί&,σ(Ε) = Σ > £ ' \ (2°) 
i = 0 j = 0 

where Ε denotes the shift operator Eyn = yn+i« Let us consider a first-order 
differential equation 

J = /<«>. PD 

Linear multistep method for (21) is express as 

p(E)xn = ha(E)f(xn). (22) 

Dahlquist(1976) introduced a new type of integrators with use of the same ρ and 
σ: 

p(E)xn = hf(a(E)xn), (23) 

and called it the one-leg method associated with (22). Eirola and Sanz-Serna(1990) 

showed that if the linear multistep method is symmetric, the corresponding one-leg 

method is canonical when applied to Hamiltonian systems of differential equations. 

4 . Summary 

The merits of symplectic integrators are summarized as follows: 

1. the numerical solutions have a property of area preserving, 

2. the energy integral does not have a secular truncation error, which means that 

the longitude error grows linearly with the time instead of quadratic growth, 

3. the angular momentum vector of η-body problem is exactly conserved, 

4. the numerical solution has a property of time reversibility, when the coefficients 

of integrators are symmetric, 

5. the global truncation errors,especially the secular error in the angle variables, 

can be easily estimated by an canonical perturbation method. 

The demerit of the symplectic integrators for a long integration is time-consuming, 

since the number of evaluations of the force function in the symplectic integrators 

is larger than the traditional integrators. For example, the symplectic integrators 

with order 6 require seven evaluations of the force function per one step and on the 

other hand multistep integrators of any order require only one evaluation of the 

force function per one step. 

The merits of linear symmetric multistep integrators are 

1. the longitude error grows linearly with the time instead of quadratic growth, 

2. the energy and the angular momentum do not have a secular truncation error, 
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3. the numerical solution has a property of time reversibility, 

4. the number of evaluations of the force function is only one per one step, which 

means the computer time with linear multistep integrators is shorter than with 

symplectic integrators. 

Recently Quinlan and Toomre (1991) found a dangerous character of symmetric 

integrators: at special stepsizes they exhibit instabilities that result from resonances 

between the orbital motion and one or more spurious roots of the method itself. 

However, Quinlan (1991) thinks that since the resonances are rare and are easy 

to avoid, the symmetric method is still useful provided that it is used with some 

caution. 
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Discussion 

J.Laskar - Do I understand that you want to abandon symplectic integrator for 

long term integrations of the solar system? 

H.Kinoshita - If symmetric multistep methods do not have instabilities discov-

ered by Quinlan, I'll use symmetric integrators rather than symplectic integrators 

from the economical point of view of CPU time. If one-leg methods have the same 

instabilities as the corresponding symmetric integrators, then I'll use symplectic 

integrators whose mathematical characters are well understood. 
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