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Abstract. Let M be an n-dimensional totally real minimal submanifold in CPn.

We prove that if M is semi-parallel and the scalar curvature τ , −(n−1)(n−2)(n+1)
2 ≤ τ ≤ 0,

then M is an open part of the Clifford torus Tn ⊂ CPn. If M is semi-parallel and the

scalar curvature τ , n(n − 1) ≤ τ ≤ n3−3n+2
2 , then M is an open part of the real projective

space RPn.

2000 Mathematics Subject Classification. 53C42, 53C40, 53C20.

1. Introduction. Among all submanifolds of an almost Hermitian manifold, there

are two typical classes: one is the class of holomorphic submanifolds and, the other

is the class of totally real submanifolds. A submanifold M of an almost Hermitian

manifold M̃ is called holomorphic (resp. totally real) if each tangent space of M is

mapped into itself (resp. the normal space) by the almost complex structure of M̃.

Given an isometric immersion f : M −→ M̃, let h be the second fundamental

form and ∇ the van der Waerden–Bortolotti connection of M. If ∇h = 0, then M is

said to have parallel second fundamental form. The class of isometric immersions in

a Riemannian manifold with parallel second fundamental form is very wide, as it is

shown, for instance, in the classical paper of D. Ferus [8]. Certain generalisations of

these immersions have been studied, obtaining classification theorems in some cases.

H. Naitoh [11] and M. Takeuchi [13] classified submanifolds in a real and complex

space form with parallel second fundamental form. Among such examples, there exist

three n-dimensional conformally flat totally real minimal submanifolds in a complex

projective space CPn of constant holomorphic sectional curvature 4:

(i) a totally geodesic submanifold;

(ii) a flat torus;
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(iii) a Riemannian product

S1,n−1 : S1(sin a cos a) × Sn−1(sin a),

where Sn(r) is an n-dimensional sphere with radius r and tan a = √
n.

The purpose of this paper is to give the characterisation of (i) and (ii) of n
dimension.

On the other hand, in [7], N. Ejiri studied four-dimensional compact orientable

conformally flat totally real minimal submanifold in CP4. Precisely, he proved the

following theorem:

THEOREM A. If M is four-dimensional compact, orientable and conformally flat and
has non-negative Euler number and the scalar curvature τ , 0 ≤ τ ≤ 15

2 , then M is flat or
locally isometric to S1,3.

In [12], D. Perrone considered six-dimensional case. Under the same conditions in

Ejiri’s result, he obtained that if the scalar curvature τ , 0 ≤ τ ≤ 70
3 , then M is locally

isometric to S1,5.

Recently, A. M. Li and G. Zhao [9] proved the following theorems:

THEOREM B. Let M be an n-dimensional totally real minimal submanifold with
constant sectional curvature c in CPn. Then M is either totally geodesic or flat.

THEOREM C. Let M be an n-dimensional totally real minimal embedding submanifold
in CPn with constant sectional curvature. Then M is either an open part of the real
projective space RPn ⊂ CPn or an open part of the Clifford torus Tn ⊂ CPn.

THEOREM D. Let M be an n-dimensional totally real minimal submanifold with
parallel second fundamental form in CPn. If τ ≤ 0 (namely ‖h‖2 ≥ n(n − 1)), then M is
an open part of the Clifford torus Tn ⊂ CPn.

Furthermore, in [4], J. Deprez defined the immersion to be semi-parallel if

R̄(X, Y ) · h = (∇X∇Y − ∇Y∇X − ∇ [X,Y ])h = 0 (1)

holds for any vectors X, Y tangent to M. The semi-parallelity condition is a local

holonomy condition on the second fundamental form with respect to the connection ∇,

which is the induced connection on the tensor product of the Levi-Civita connection on

the tangent bundle and the normal connection in the normal bundle of the submanifold

M. It is well known that if second fundamental form of M is parallel, then it is

semi-parallel. But the converse is not necessary to be parallel. J. Deprez studied semi-

parallel immersions in real space forms [4, 5] . In [10], Ü. Lumiste showed that a

semi-parallel submanifold is the second-order envelope of the family of submanifolds

with parallel second fundamental form. Later, studying hypersurfaces in the sphere

and the hyperbolic space, F. Dillen showed that they are flat surfaces, hypersurfaces
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with parallel Weingarten endomorphism or rotation hypersurfaces of certain

helices [6].

In the present study, taking semi-parallelity condition instead of the parallelity of

the second fundamental form of M in Li and Zhao’s [9] result we obtain the following

results:

THEOREM 1. Let M be an n-dimensional totally real minimal submanifold in CPn.
If M is semi-parallel and the scalar curvature τ, n(n − 1) ≤ τ ≤ n3−3n+2

2 , then M is an
open part of real projective space RPn.

THEOREM 2. Let M be an n-dimensional totally real minimal submanifold in CPn.
If M is semi-parallel and the scalar curvature τ,

−(n−1)(n−2)(n+1)
2 ≤ τ ≤ 0, then M is an

open part of the Clifford torus Tn ⊂ CPn.

2. Preliminaries. Let M be an n-dimensional totally real submanifold of complex

projective space CPn; that is M is immersed in CPn and J(TxM) is orthogonal to TxM
for all x ∈ M, where J denotes the almost complex structure of CPn (see [14] and [15]).

We denote by g̃ and g the Riemannian metric of CPn and M, respectively. The Gauss

and Weingarten formulas are given by

∇̃X Y = ∇X Y + h(X, Y )

and

∇̃Xξ = −Aξ X + DXξ,

respectively, where ξ is a normal vector field and X, Y are tangent vector fields on M;

h is called the second fundamental form of M. If h = 0, then M is said to be totally
geodesic. The mean curvature vector H of M is defined to be

H = 1
n

tr(h).

A submanifold M is said to be minimal if H = 0 identically.

The covariant derivative ∇h of h is defined by

(∇X h)(Y, Z) = ∇⊥
X (h(Y, Z)) − h(∇X Y, Z) − h(Y,∇X Z), (2)

where, ∇h is a normal bundle valued tensor of type (0, 3) and is called the third
fundamental form of M. Here, ∇ is called the van der Waerden–Bortolotti connection of

M. If ∇h = 0, then f is called parallel [8]. The second covariant derivative ∇2
h of h is
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defined by

(∇2
h)(Z, W, X, Y ) = (∇X∇Y h)(Z, W )

= ∇⊥
X ((∇Y h)(Z, W )) − (∇Y h)(∇X Z, W ) (3)

−(∇X h)(Z,∇Y W ) − (∇∇X Y h)(Z, W ).

Then we have

(∇X∇Y h)(Z, W ) − (∇Y∇X h)(Z, W ) = (R(X, Y ) · h)(Z, W )

= R⊥(X, Y )h(Z, W ) − h(R(X, Y )Z, W ) − h(Z, R(X, Y )W ), (4)

where R is the curvature tensor belonging to the connection ∇. The basic equations of

Gauss and Ricci are

R(X, Y, Z, W ) = g(R(X, Y )Z, W ) = g̃(R̃(X, Y )Z, W )

+̃g(h(Y, Z), h(X, W )) − g̃(h(X, Z), h(Y, W )), (5)

g̃(R⊥(X, Y )ξ, η) = g([Aξ , Aη]X, Y ); ξ, η ∈ N(M), (6)

respectively, and N(M) denotes the normal bundle of M. Here R̃ and R⊥ denote the

curvature operator of CPn and the normal connection defined by

g̃(R̃(X, Y )Z, W ) = g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )

and

R⊥(X, Y )Z = ∇⊥
X ∇⊥

Y Z − ∇⊥
Y ∇⊥

X Z − ∇⊥
[X,Y ]Z,

respectively. The Weyl conformal curvature tensor of an n-dimensional Riemannian

manifold (M, g) is defined by

C(X, Y, Z, W ) = R(X, Y, Z, W ) − 1
n−2 {S(Y, Z)g(X, W )

−S(X, Z)g(Y, W ) + S(X, W )g(Y, Z) − S(Y, W )g(X, Z)}
+ τ

(n−1)(n−2) {g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )} .

(7)

For n ≥ 4, if C = 0, then M is called conformally flat [15].

We choose local field of orthonormal frames {e1, e2, . . . , en, Je1 = e1∗ , . . . , Jen =
en∗ } in CPn such that, restricted to M, the vectors e1, e2, . . . , en are tangent to M. Then

for 1 ≤ i, j ≤ n, the components of the second fundamental form h are given by

h(ei, ej) =
∑

hk∗
i j ek∗ (8)

and satisfy

hk∗
ji = hk∗

i j = hi∗
k j. (9)
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Similarly, the components of the first and the second covariant derivative of h are given

by

hα
i jk = g((∇ek h)(ei, ej), eα) = ∇ek hα

i j (10)

and

hα
i jkl = g((∇el ∇ek h)(ei, ej), eα)

= ∇el h
α
i jk (11)

= ∇el ∇ek hα
i j,

respectively.

Moreover, the components Ri jkh of the curvature tensor R, the components Sik =∑
Ri jkj of the Ricci tensor S and the scalar curvature τ = ∑

Sii are given by

Ri jkh = (δikδjh − δihδjk) +
∑ (

hl∗
ikhl∗

jh − hl∗
ihhl∗

jk

)
, (12)

Sik = (n − 1)δik +
∑

(trAl∗)g(Al∗ei, ek) −
∑

g(Al∗ei, Al∗ek) (13)

and

τ = n(n − 1) +
∑ (

trAl∗
)2 − ‖h‖2, (14)

respectively, where

‖h‖2 =
∑

tr
(
A2

l∗
) =

∑ (
hl∗

ik

)2
. (15)

Proof of Theorem 1. It was proven in [3] that the second fundamental form of the

immersion satisfies

1
2
�‖h‖2 = ‖∇h‖2 +

∑
tr(Ai∗Aj∗ − Aj∗Ai∗ )2

−
∑

tr(Ai∗Aj∗ )2 + (n + 1)‖h‖2. (16)

Since ∑
tr(Ai∗Aj∗ − Aj∗Ai∗ )2 = −

∑ (∑ (
hi∗

kmhj∗
lm − hj∗

kmhi∗
lm

))2
,

by the use of Gauss equation we have∑
tr(Ai∗Aj∗ − Aj∗Ai∗ )2 = ‖R‖2 + 4τ − 2n(n − 1) (17)

and ∑
tr(Ai∗Aj∗ )2 = ‖S‖2 − 2(n − 1)τ + n(n − 1)2, (18)
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(see [12]). In view of (17) and (18), equation (16) can be written as

1
2
�‖h‖2 = ‖∇h‖2 − ‖R‖2 − ‖S‖2 + (n + 1)τ. (19)

Furthermore, it is known that (see [2])

‖R‖2 ≥ 4
n − 2

‖S‖2 − 2τ 2

(n − 1)(n − 2)
, (20)

equality holding if and only if M is conformally flat.

Since M is semi-parallel, then by definition the condition

R(el, ek) · h = 0 (21)

is fulfilled for 1 ≤ k, l ≤ n.

By (4), we have

(R(el, ek) · h)(ei, ej) = (∇el ∇ek h)(ei, ej) − (∇ek∇el h)(ei, ej). (22)

By the use of (10) and (11) the semi-parallelity condition (21) turns into

hα
i jkl = hα

ijlk, (23)

where g(ei, ej) = δi j and 1 ≤ i, j, k, l ≤ n, n + 1 ≤ α ≤ 2n.

Recall that the Laplacian �hα
i j of hα

i j is defined by

�hα
i j =

n∑
i,j,k=1

hα
i jkk. (24)

Then we obtain

1
2
�(‖h‖2) =

n∑
i,j,k=1

2n∑
α=n+1

hα
i jh

α
i jkk + ‖∇h‖2, (25)

where

‖h‖2 =
n∑

i,j,k=1

2n∑
α=n+1

(hα
i j)

2 (26)

and

‖∇h‖2 =
n∑

i,j,k=1

2n∑
α=n+1

(hα
i jkk)2 (27)
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are the squares of the lengths of the second and third fundamental forms of M,

respectively. In addition, using (8) and (11), we obtain

hα
i jh

α
i j kk = g(h(ei, ej), eα)g((∇ek∇ek h)(ei, ej), eα)

= g((∇ek∇ek h)(ei, ej)g(h(ei, ej), eα), eα) (28)

= g((∇ek∇ek h)(ei, ej), h(ei, ej)).

Therefore due to (28), equation (25) becomes

1
2
�(‖h‖2) =

n∑
i,j,k=1

g((∇ek∇ek h)(ei, ej), h(ei, ej)) + ‖∇h‖2. (29)

Furthermore by definition

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

Hα =
n∑

k=1

hα
kk,

‖H‖2 = 1
n2

2n∑
α=n+1

(Hα)2,

and using equations (23)–(25), we get

1
2
�(‖h‖2) =

n∑
i,j,k=1

2n∑
α=n+1

hα
i j(∇ei∇ej H

α) + ‖∇h‖2. (30)

Using minimality condition, equation (30) reduces to

1
2
�(‖h‖2) = ‖∇h‖2. (31)

So comparing equations (19) and (31) we obtain

‖R‖2 + ‖S‖2 − (n + 1)τ = 0, (32)

which gives us, from (32) and (20),(
n + 2
n − 2

)
‖S‖2 − 2τ 2

(n − 1)(n − 2)
− (n + 1)τ ≤ 0. (33)

Using (18), equation (33) turns into(
n + 2
n − 2

)
(2(n − 1)τ − n(n − 1)2 +

∑
tr(Ai∗Aj∗ )2)

− 2τ 2

(n − 1)(n − 2)
− (n + 1)τ ≤ 0, (34)
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which gives us

− 2
(n − 1)(n − 2)

τ 2 + n2 + 3n − 2
n − 2

τ − n(n − 1)2(n + 2)
n − 2

≤ 0.

If τ is between n(n − 1) and n3−3n+2
2 , then τ = n(n − 1) or τ = n3−3n+2

2 . If τ = n(n − 1),

then using (14) we have

n(n − 1) = n(n − 1) − ‖h‖2,

which implies that M is totally geodesic. If τ = n3−3n+2
2 , then using (14), we have

n3 − 3n + 2
2

= n(n − 1) − ‖h‖2.

But this contradicts the fact that ‖h‖2 ≥ 0. Hence in view of Theorem C, M is an open

part of real projective space RPn. This completes proof of the theorem. �

Proof of Theorem 2. From (33), since ‖S‖2 ≥ 0, we get

τ

(
2τ

(n − 1)(n − 2)
+ (n + 1)

)
≥ 0. (35)

If τ is between −(n−1)(n−2)(n+1)
2 and 0 we have τ = −(n−1)(n−2)(n+1)

2 or τ = 0. If τ =
−(n−1)(n−2)(n+1)

2 , then using (33) we get S = 0. This contradicts τ = −(n−1)(n−2)(n+1)
2 . If

τ = 0, then using (32) we get R = 0. Hence in view of Theorem C, M is an open part

of the Clifford torus Tn ⊂ CPn. So we get the result as required. �

There are examples of semi-parallel minimal submanifolds of totally real

submanifolds of CPn except RPn and Tn. We give the following example:

EXAMPLE 2.1. The submanifolds

(i) SU(p)/Zp, n = p2 − 1,
(ii) SU(p)/SO(p)Zp, n = (p − 1)(p + 2)/2,

(iii) SU(2p)/Sp(p)Z2p, n = (p − 1)(2p + 1), and
(iv) E6/F4Z3, n = 26,

are n-dimensional compact totally real minimal submanifolds embedded in CPn with
parallel second fundamental forms [1]. It is well known that every submanifold with
parallel second fundamental form is semi-parallel. So the submanifolds (i )–(iv) are semi-
parallel.
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