A COMPACTIFICATION WITH *θ*-CONTINUOUS LIFTING PROPERTY

D. C. KENT AND G. D. RICHARDSON

1. Let X be a topological space, and let X' be the set of all non-convergent ultrafilters on X. If $A \subseteq X$, let $A' = \{\mathscr{F} \in X' : A \in \mathscr{F}\}$, and $A^* = A \cup A'$. If \mathscr{F} is a filter on X such that $\mathscr{F}' \neq \emptyset$ for all $F \in \mathscr{F}$, then let \mathscr{F}' be the filter on X* generated by $\{F' : F \in \mathscr{F}\}$; let \mathscr{F} * be the filter on X* generated by $\{F' : F \in \mathscr{F}\}$. If \mathscr{F}' exists then $\mathscr{F}^* = \mathscr{F} \cap \mathscr{F}'$; otherwise, $\mathscr{F}^* = \mathscr{F}$.

A convergence is defined on X^* as follows: If $x \in X$, then a filter $A \to x$ in X^* if and only if $\mathscr{A} \geq \mathscr{V}_X(x)^*$, where $V_X(x)$ is the X-neighborhood filter at x; if $\mathscr{G} \in X'$, then $\mathscr{A} \to \mathscr{G}$ in X^* if and only if $A \geq \mathscr{G}^*$. The resulting space X^* is a pretopological space and the X^* -neighborhood filter of α is denoted by $\mathscr{V}_{X^*}(\alpha)$; if $\alpha = x \in X$, then $\mathscr{V}_X(\alpha) = \mathscr{V}_X(x)^*$, and if $\alpha = \mathscr{G} \in X'$, then $\mathscr{V}_X(\alpha) = \mathscr{G}^*$. The space X^* is not topological in many standard examples. It is shown in [3] that the space X^* is compact (meaning that each ultrafilter is convergent) and X is a subspace of X^* . Indeed, X^* is a convergence space compactification of X (see [3]).

In this paper, we obtain a toplogical compactification X^{\wedge} of X by taking the "topological modification" of X^* (i.e., X^{\wedge} and X^* have the same underlying set, and X^{\wedge} has the finest topology coarser than X^*). The open sets for X^{\wedge} are obtained as follows: $A \subseteq X^*$ is open if and only if $\alpha \in A$ implies $A \in \mathscr{V}_{X^*}(\alpha)$. We shall now show that X^{\wedge} is a compactification of X, and give an explicit construction for an open base for X^{\wedge} in terms of the open sets in X.

LEMMA 1.1. If U is an open subset of X, then U^* is open in X^{\wedge} . If $x \in X$, then $\mathscr{V}_{X^*}(x) = \mathscr{V}_{X^{\wedge}}(x) = \mathscr{V}_X(x)^*$.

Proof. Let $\alpha \in U^*$. If $\alpha = x \in U$, then $U \in \mathscr{V}_X(x)$ implies $U^* \in \mathscr{V}_X(x)^*$. If $\alpha = \mathscr{G} \in U'$, then $U \in G$ implies $U^* \in \mathscr{G}^*$. Thus U^* is an X^* -neighborhood of each of its elements, and hence open in X^{\wedge} , and the first assertion is proved.

Since X^{\wedge} is coarser than X^* ,

 $\mathscr{V}_{X^{\bullet}}(x) \leq \mathscr{V}_{X^{\bullet}}(x) = \mathscr{V}_{X}(x)^{*}.$

But the first assertion of the lemma implies $\mathscr{V}_{X^{\wedge}}(x) \geq \mathscr{V}_{X}(x)^{*}$, and hence the second assertion is established.

Receiv d October 13, 1981 and in revised form December 1, 1981.

1330

THEOREM 1.2. X^{\wedge} is a compactification of X.

Proof. Since X^* is known to be a compactification of X, X^{\wedge} is compact and X is dense in X'. The fact that X is a subspace of X^{\wedge} is an immediate consequence of Lemma 1.

Sets of the form U^* for U open in X will not, in general, form a base for X^{\wedge} . We next describe another class of open sets in X^{\wedge} which enable us to form a base for this topology.

If A is a non-empty subset of X, we define a neighborhood function for A to be a function s such that, for each $x \in A$, s(x) is an open neighborhood of x in X. Let N(A) be the set of all neighborhood functions for A. If $s \in N(A)$, define

$$W_s(A) = A^* \cup (\cup \{s(x)^* : x \in A\}).$$

PROPOSITION 1.3. Under the assumption of the preceding paragraph $W_s(A)$ is open in X^{\wedge} .

Proof. Let $\alpha \in W_s(A)$. If $\alpha = x \in W_s(A) \cap X$, then clearly $x \in s(y)^*$ for some $y \in A$, which is an X[^]-open subset of $W_s(A)$ by Lemma 1. If $\alpha = \mathscr{G} \in W_s(A) \cap X'$, and $\alpha \in s(y)^*$ for some $y \in A$, then again $W_s(A)$ is an X[^]-neighborhood of α . Otherwise, $\mathscr{G} \in A^*$, which implies $A \in \mathscr{G}$ and $A^* \in \mathscr{G}^* = \mathscr{V}_{X^*}(\alpha)$; thus $W_s(A) \in \mathscr{V}_{X^*}(\alpha)$ and the proof is complete.

PROPOSITION 1.4. The collection

$$\mathscr{W} = \{W_s(A) : A \subseteq X, A \neq \emptyset, s \in N(A)\}$$

is a base for the topology of X^{\wedge} .

Proof. Let $B \subseteq X^{\wedge}$ be open and $\alpha \in B$. If $\alpha \in B \cap X$, then by Lemma 1 there is an X-open set U such that $\alpha \in U^* \subseteq B$. If $\alpha = \mathscr{G} \in B \cap X'$, then let $A = B \cap X$. Since B is open in X^{\wedge} , there is for each $x \in A$ an open neighborhood s(x) of x such that $s(x)^* \subseteq B$. Also, since $\mathscr{G} \in B$, there is $G \in \mathscr{G}$ such that $\mathscr{G}^* \subseteq B$. Since $G \subseteq A$, then if s' denotes the restriction of the neighborhood function s to G, it follows that $\alpha \in W_{s'}(G) \subseteq B$.

COROLLARY 1.5. If $\alpha = \mathscr{G} \in X'$, then sets of the form

 $\{W_s(G): G \in \mathscr{G}, s \in N(G)\}$

form an open base for $\mathscr{V}_{X^{\wedge}}(\alpha)$.

THEOREM 1.6. If X is T_1 , then X^{\wedge} is T_1 .

Proof. Let $\alpha \in X^{\wedge}$ and $B = X^{\wedge} - \{\alpha\}$. If $\alpha = x \in X$, then $U = X - \{x\}$ is X-open, and so $B = U^*$ is X^{\wedge}-open. Suppose $\alpha = \mathscr{G} \in X'$. If $x \in X$, then there is an X-open neighborhood U of x such that $U \notin \mathscr{G}$,

and $x \in U^* \subseteq B$. If $\beta = \mathscr{F} \in B \cap X'$, then choose $F \in \mathscr{F}$ such that $F \notin \mathscr{G}$. If $x \in F$, then as before there is an X-open neighborhood s(x) of x such that $s(x)^* \subseteq B$. Also, $F \notin G$ implies $F^* \subseteq B$. Thus $\beta \in W_s(F) \subseteq B$, and B is X*-open.

2. We next consider $f: X \to Y$, where X and Y are topological spaces and f is a continuous function. We first show that f can fail to have any continuous extension to the respective compactification spaces, but that a θ -continuous extension always exists.

A function $f: X \to Y$ is said to be θ -continuous (see [1]) at $x \in X$ if, for each closed neighborhood W of f(x), there is a closed neighborhood V of x such that $f(V) \subseteq W$. Note that continuity always implies θ -continuity, and if Y is regular these concepts are equivalent.

Given $f: X \to Y$, let $A \subseteq X$ and $B \subseteq Y$. To minimize confusion, we shall use A^* to denote the "*-operation" relative to X, and B^{**} to denote the same operation relative to Y; a similar convention will apply to filters on X and Y, respectively.

Example 2.1. Let X be the set **R** of real numbers equipped with the discrete topology. Let Y be the set **R** with a topological base consisting of all open sets in the usual topology of **R** along with the set $\{\{x\}: x \text{ a rational number}\}$. Let $f: X \to Y$ be the identity map. We shall show that there is no continuous function $F: X^{\wedge} \to Y^{\wedge}$ which is an extension of f.

Let **N** be the set of natural numbers, and let $A = \{n\pi: n \in \mathbf{N}\}$. For each $n \in \mathbf{N}$, let $(x_{nm})_{m \in \mathbf{N}}$ be a sequence of rational numbers which converges in the usual topology on **R** to $n\pi$. Let $B_n = \{x_{nm}: m \in \mathbf{N}\}$, and let \mathscr{F} be a free ultrafilter on **R** which contains the set $B = \bigcup \{B_n: n \in \mathbf{N}\}$ and has the property that each $F \in \mathscr{F}$ has an infinite intersection with infinitely many B_n 's (e.g. let \mathscr{F} be an ultrafilter containing $\{B - \bigcup_{n=1}^{\infty} A_n, B - B_n: n \in \mathbf{N}, A_n$ is a finite subset of $B_n\}$). Note that $\mathscr{F} \in Y'$, and since \mathscr{F} has a filter base of Y-open sets, it follows from Corollary 1.5 that $\mathscr{V}_{Y^n}(\mathscr{F}) = \mathscr{F}^{**}$.

Suppose $F:X^{\wedge} \to Y^{\wedge}$ is a continuous extension of f. From the fact that $\mathscr{V}_{Y^{\wedge}}(\mathscr{F}) = \mathscr{F}^{**}$, it follows necessarily that $F(\mathscr{F}) = \mathscr{F}$. If U = R - A, then U^* is X^{\wedge} -open, $U^* \in \mathscr{F}^{*}$, and $\mathscr{F}^* \to \mathscr{F}$ in X^{\wedge} . It is also true that U^{**} is Y^{\wedge} -open and $\mathscr{F} \in U^{**}$. But $U^{**} \notin F(\mathscr{F}^{*})$. For by construction of \mathscr{F} , $(cl_Y F) \cap A \neq \emptyset$ for all $F \in \mathscr{F}$, and so $F(D^*) \cap A^{**} \neq \emptyset$ for all $D \in \mathscr{F}$. It follows that $F(\mathscr{F}^{*})$ does not Y^{\wedge} -converge to $F(\mathscr{F}) = \mathscr{F}$, and so F is not continuous.

THEOREM 2.2. If $f: X \to Y$ is continuous, then there is a θ -continuous extension $F: X^{\wedge} \to Y^{\wedge}$.

Proof. Let $F: X^{\wedge} \to Y^{\wedge}$ be any extension of f with the following properties:

(a) If $\mathscr{F} \in X'$, and $f(\mathscr{F})$ converges in Y, then $F(\mathscr{F}) = y$, where y is any limit in Y of $f(\mathscr{F})$.

(b) If $\mathscr{F} \in X'$ and $f(\mathscr{F}) \in Y'$, then $F(\mathscr{F}) = f(\mathscr{F})$.

Next, observe that if A is a closed subset of X, then $A^* = X^* - (X - A)^*$ is closed in X[^] by Lemma 1.1. This result, along with Proposition 1.4, enables us to deduce that sets of the form $(cl_X U)^*$, where U is X-open and $x \in U$, form a base of X[^]-closed neighborhoods at $x \in X$, and sets of the form $(cl_X U)^*$, where $U \in \mathscr{G}$ is X-open, form an X[^]-closed neighborhood base for $\mathscr{G} \in X'$.

Let $\alpha \in X^{\wedge}$ and $F(\alpha) = \beta$. If $\alpha = x \in X$, then $F(\alpha) = f(x) = y = \beta \in Y$; if V is any Y-open neighborhood of y, then $(cl_Y V)^{**}$ is a basic Y^{+}-closed neighborhood of y in Y^{+} by our preceding discussion. By continuity of f, there is an X-open neighborhood U of x such that $f(U) \subseteq V$, and it is easy to verify that

 $F((\operatorname{cl}_X U)^*) \subseteq (\operatorname{cl}_Y V)^{**}.$

Thus θ -continuity is established at all points α in X.

If $\alpha = \mathscr{G} \in X'$, then β may belong to Y or Y', depending on whether or not $f(\mathscr{G})$ converges in Y. If $\beta = y \in Y$, and $(cl_Y V)^{**}$ is a basic $Y^{-closed}$ neighborhood of y in Y^{\wedge} as described above, then $V \in f(\mathscr{G})$; if $U = f^{-1}(V)$, then $(cl_X U)^*$ is a closed X^{\wedge} -neighborhood of α in X^{\wedge} and, as before,

 $F((\mathrm{cl}_X)^*) \subseteq (\mathrm{cl}_Y V)^{**}.$

If $\beta = f(\mathscr{G}) \in Y'$, then V can be chosen to be any Y-open set in $f(\mathscr{G})$, and the same argument repeated.

It follows that F is θ -continuous for all $\alpha \in X^{\wedge}$, and the proof is complete.

COROLLARY 2.3. If $f: X \to Y$ is continuous, and Y^{\wedge} is regular, then there is a continuous extension $F: X^{\wedge} \to Y^{\wedge}$.

COROLLARY 2.4. If X^{\wedge} is T_2 , then $X^{\wedge} = \beta X$.

Proof. If Y is a compact, T_2 space, and $f: X \to Y$ is continuous, then $Y = Y^{\wedge}$ and, by Corollary 2.3, there is a continuous extension $F: X^{\wedge} \to Y$. This extension is unique because Y is T_2 , and so X^{\wedge} is the largest T_2 compactification of X; i.e., $X^{\wedge} = \beta X$.

A T_3 topological space X is defined to be a *G-space* if each non-convergent ultrafilter has a filter base of closed sets. This condition (but not the terminology) is due to Gazik [2], who showed that the pre-topological compactification X^* of a T_3 -topological space X is equivalent to βX if and only if X is a *G*-space. When X^* is a topological space, $X^* = X^{\wedge}$. Thus if X is a *G*-space, it follows from [2] that X^{\wedge} is equivalent to βX .

THEOREM 2.5. For a T_3 topological space X, the following statements are equivalent:

(1) X is a G-space.

(2) If \mathscr{F} and \mathscr{G} are distinct non-convergent ultrafilters on X, then there are disjoint open sets U, V such that $U \in \mathscr{F}$, $\mathscr{V} \in \mathscr{G}$.

(3) X^{\wedge} is T_{2} .

(4) X^{\wedge} is equivalent to βX .

Proof. (3) \Leftrightarrow (4). This was established in Corollary 2.4.

 $(1) \Rightarrow (4)$. This was established in the paragraph preceding the theorem.

 $(3) \Rightarrow (1)$. If X is not a G-space, then there is $\mathscr{F} \in X'$ such that $\operatorname{cl}_X \mathscr{F} \neq \mathscr{F}$, and so there is an ultrafilter $\mathscr{G} \geq \operatorname{cl}_X \mathscr{F}$ such that $\mathscr{G} \neq \mathscr{F}$. If \mathscr{F} is the filter on X^ generated by \mathscr{F} , then $\mathscr{F} \to \mathscr{F}$ in X^. If \mathscr{G} is the filter on X^ generated by \mathscr{G} , then, because X^ is regular, $\mathscr{G} \to \mathscr{F}$ in X^. But either $\mathscr{G} \in X'$, in which case $\mathscr{G} \to \mathscr{G} \neq \mathscr{F}$, or else there is $x \in X$ such that $\mathscr{G} \to x$ in X, in which case $\mathscr{G} \to x$ in X^; either way there is a contradiction, since X^ is assumed to be T_2 .

(3) \Rightarrow (2). Let $\mathscr{F}, \mathscr{G} \in X'$. Since X^{\wedge} is T_2 , it follows by Corollary 1.5 that there are disjoint sets of the form $W_s(F)$ and $W_{s'}(G)$, where $F \in \mathscr{F}, G \in \mathscr{G}$. If $U = W_s(F) \cap X$ and $V = W_{s'}(G) \cap X$, then U and V satisfy the conditions of (2).

(2) \Rightarrow (3). Let α , β be distinct elements of X^{\wedge} . If α , $\beta \in X$, then there are disjoint X-open neighborhoods U and V of α and β , respectively, and U^* , V^* are disjoint X^{\wedge} -open neighborhoods of these elements. If $\alpha \in X$, $\beta \in X'$, then because X is T_3 there are disjoint X-open sets U and V such that $\alpha \in U$ and $V \in \mathscr{G} = \beta$, and again it follows that U^* and V^* are disjoint X^{\wedge}-open neighborhoods of α and β . Finally, if $\alpha = \mathscr{F}$ and $\beta = \mathscr{G}$ and both in X', then the sets U, V given in (2) yield disjoint X^{\wedge}-open neighborhoods of α and β . Thus X^{\wedge} is T_2 .

References

- R.F. Dickman and J.R. Porter, θ-perfect and θ-absolutely closed functions, Ill. J. Math. 21 (1977), 42-60.
- 2. R. J. Gazik, Regularity of Richardson's compactification, Can. J. Math. 26 (1974), 1289-1293.
- G. D. Richardson, A Stone-Čech compactification for limit spaces, Proc. Amer. Math. Soc. 25 (1970), 403-404.

Washington State University, Pullman, Washington; East Carolina University, Greenville, North Carolina