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Abstract. A free boundary problem for a parabolic system arising from the
mathematical theory of combustion will be considered in the one dimensional case.
The existence and uniqueness of the classical solution locally in time will be obtained
by the use of a fixed point theorem. Also the existence of the classical solution globally
in time and a convergence result with respect to a parameter λ will be proved under
some reasonable assumptions.
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1. Introduction. The aim of this paper is to investigate the existence and
uniqueness of following free boundary problem

∂tθ − ∂xxθ = 0, x < g(t) (1.1)

∂tS1 − ∂xxS1 = −λ∂xxθ, x < g(t) (1.2)

∂tS2 − ∂xxS2 = 0, x > g(t) (1.3)

θ = 1, x = g(t) (1.4)

∂xθ = eS1 , x = g(t) (1.5)

S1 = S2, x = g(t) (1.6)

∂xS1 − ∂xS2 = λ∂xθ, x = g(t) (1.7)

θ (x, 0) = θ0(x), (1.8)

S1(x, 0) = S1,0(x), S2(x, 0) = S2,0(x) (1.9)

g(0) = 0, (1.10)

where θ represents the renormalized temperature in combustion processes, S1 and
S2 are reduced enthalpies, λ = −l/2, l is a constant representing the reduced Lewis
number and x = g(t) is an (unknown) curve. In this system θ (x, t), S1(x, t), S2(x, t) and
g(t) are unknown functions. For more physical background see [1], where the problem
was originally derived, and [2], where instabilities of travelling wave solution of this
problem were studied in the two dimensional case.
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It is easy to check that system (1.1)–(1.7) admits a travelling wave solution, with
velocity −1, defined by

g(t) = −t,

θ (x, t) = ex+t, S(x, t) = λ(x + t)ex+t, if x ≤ −t

θ (x, t) = 1, S = 0, if x ≥ −t.

The free boundary problem (1.1)–(1.10) is the one predicted by physicists in the
near equi-diffusional limit of a parabolic system without a free boundary (see [3], [4]),
and this prediction was proved mathematically in [5].

If S1 ≡ S2 ≡ 0, the system becomes

∂tθ − ∂xxθ = 0, x < g(t)

θ = 1, x = g(t)

∂xθ = 1, x = g(t)

θ (x, 0) = θ0(x),

g(0) = 0.

It is also called a combustion free boundary problem. Its global classical solution
was obtained in [6]. In the multidimensional case this free boundary problem was
thoroughly researched in the elliptic case (see [7]) and the parabolic case (see [8]).

In fact there is a special method for studying the problem (1.1)–(1.10) in the one
dimensional case. That is we set

u(x, t) = ∂xθ (x, t), (1.11)

noticing that (1.4) implies

∂tθ (g(t), t) + ∂xθ (g(t), t)g′(t) = 0

and it follows that, by (1.1), (1.5) and (1.11),

g′(t) =−e−S1∂xu on x = g(t). (1.12)

The advantage of this transformation is that we have an explicit presentation (1.12)
for the free boundary just as in a Stefan problem. In this way we have the problem for
u(x, t), S1(x, t), S2(x, t) and g(t)

∂tu − ∂xxu = 0, x < g(t) (1.13)

∂tS1 − ∂xxS1 = −λ∂xu, x < g(t) (1.14)

∂tS2 − ∂xxS2 = 0, x > g(t) (1.15)

u = eS1 , x = g(t) (1.16)

g′(t) = −e−S1∂xu, x = g(t) (1.17)

S1 = S2, x = g(t) (1.18)

∂xS1 − ∂xS2 = λu, x = g(t) (1.19)

u(x, 0) = u0(x), (1.20)

and (1.9), (1.10), where u0(x) = θ ′
0(x).
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In the next section we prove the local classical existence and uniqueness of the
solution to problem (1.9), (1.10) and (1.13)–(1.20). In Section 3 we prove the global
classical existence of the solution when λ = 0. This is preliminary work for Section 4,
in which we prove a global classical existence of the solution for sufficiently small λ.
At the end of this paper we state a convergence result which holds as λ → 0.

2. Classical solution locally in time. It is convenient to straighten the free
boundary. Let

y = x − g(t), t = t,

set

u(x, t) = u(y + g(t), t) = v(y, t),

Si(x, t) = Si(y + g(t), t) = wi(y, t), i = 1, 2

and then

∂xu = ∂yv, ∂xxu = ∂yyv, ∂tu = ∂tv − g′(t)∂yv.

Therefore the problem (1.9), (1.10) and (1.13)–(1.20) becomes

∂tv − ∂yyv − g′(t)∂yv = 0, y < 0 (2.1)

∂tw1 − ∂yyw1 − g′(t)∂yw1 = −λ∂yv, y < 0 (2.2)

∂tw2 − ∂yyw2 − g′(t)∂yw2 = 0, y > 0 (2.3)

v = ew1 , y = 0 (2.4)

g′(t) = −e−w1∂yv, y = 0 (2.5)

w1 = w2, y = 0 (2.6)

∂yw1 − ∂yw2 = λv, y = 0 (2.7)

v(y, 0) = v0(y), (2.8)

w1(y, 0) = w1,0(y), w2(y, 0) = w2,0(y) (2.9)

g(0) = 0, (2.10)

where v0(y) = u0(x), wi,0(y) = Si,0(x), i = 1, 2.

We assume, for 0 < α < 1,

v0(y), w1,0(y) ∈ C1+α(−∞, 0], (2.11)

w2,0(y) ∈ C1+α[0, + ∞), (2.12)

and the consistency condition

v0(0) = ew1(0), w1,0(0) = w2,0(0), (2.13)

w′
1,0(0) − w′

2,0(0) = λv0(0). (2.14)

Define D1,T = (−∞, 0) × (0, T), D2,T = (0, + ∞) × (0, T).
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THEOREM 2.1. Under the assumptions (2.11)–(2.14), there is a T > 0, such that
the problem (2.1)–(2.10) has a unique solution (v,w1, w2, g) ∈ C1+α,(1+α)/2(D1,T ) ×
C1+α,(1+α)/2(D1,T ) × C1+α,(1+α)/2(D2,T ) × C1+α/2[0, T ], moreover

|v|C1+α,(1+α)/2(D1,T ) + |w1|C1+α,(1+α)/2(D1,T ) + |w2|C1+α,(1+α)/2(D2,T ) + |g|C1+α/2[0,T ] ≤ C (2.15)

where C, T depend on |v0|C1+α(−∞,0], |w1,0|C1+α(−∞,0] and |w2,0|C1+α [0, + ∞), but are
independent of the lower bound of |λ|.

Proof. Define

D1 = {
g(t) ∈ C1[0, T ]; g(0) = 0, g′(0) = −e−w1,0(0)v′

0(0)
}
,

D1,M = {
g(t) ∈ D1; |g′(t)|C[0,T ] ≤ M

}

where M = e−w1,0(0)|v′
0(0)| + 1, and

D2 = {
v(y, t) ∈ C1,1/2(D1,T ); v(y, 0) = v0(y)

}
,

D2,N = {
v(y, t) ∈ D2; |v(y, t)|C1,1/2(D1,T ) ≤ N

}

where N = 2|v0(y)|C1+α(−∞,0] + 1 and T is determined later on. Set

DM,N =D1,M ×D2,N,

then DM,N is a closed convex set in C1[0, T ] × C1,1/2(D1,T ).
For given (g(t), v(y, t)) ∈ DM,N , first we consider the diffraction problem (2.2),

(2.3), (2.6), (2.7) and (2.9) for w1, w2. This problem has a unique solution (w1, w2) ∈
C1+α,(1+α)/2(D1,T ) × C1+α,(1+α)/2(D2,T ) (see [9]), moreover

|w1|C1+α,(1+α)/2(D1,T ) + |w2|C1+α,(1+α)/2(D2,T ) ≤ C1 (2.16)

where C1 depends on M, N, |w1,0|C1+α(−∞,0] and |w2,0|C1+α [0,+∞).
Recalling (2.1), (2.4) and (2.8) we define v(y, t) as a solution of the problem

∂tv − ∂yyv − g′(t)∂yv = 0, y < 0 (2.17)

v = ew1, y = 0 (2.18)

v(y, 0) = v0(y). (2.19)

This problem also has a unique solution v ∈ C1+α,(1+α)/2(D1,T ) (see [10]), and

|v|C1+α,(1+α)/2(D1,T ) ≤ C2 (2.20)

where C2 depends on M, N, |w1,0|C1+α(−∞,0] and |w2,0|C1+α [0,+∞) by (2.16).
Finally we define a new free boundary g(t) by the conditions (2.5) and (2.10)

g(t) =
t∫

0

−exp{−w1,0(0, τ )}∂yv(0, τ ) dτ,

therefore

g′(t) =−exp{−w1,0(0, t)}∂yv(0, t),
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so g′(t) ∈ Cα/2[0, T ] and

|g′(t)|Cα/2[0,T ] ≤ C3, (2.21)

where C3 depends on M, N, |w1,0|C1+α(−∞,0] and |w2,0|C1+α [0,+∞) by (2.16) and (2.20).
Define a mapping F : DM,N −→ C1[0, T ] × C1,1/2(D1,T ) by

F(g(t), v(y, t)) = (g(t), v(y, t)).

In the following we prove that F(DM,N) ⊂ DM,N , in fact

g(0) = 0, g′(0) = −e−w1,0(0)v′
0(0),

by the definition of g(t). Using (2.21) we arrive at

|g′(t)|C[0,T ] ≤ |g′(t) − g′(0)|C[0,T ] + |g′(0)|
≤ Tα/2|g′(t) − g′(0)|Cα/2[0,T ] + e−w1,0(0)|v′

0(0)|
≤ Tα/2C3 + e−w1,0(0)|v′

0(0)|, by (2.21).

So, if we take T ≤ ( 1
2C3

)2/α, we have

|g′(t)|C[0,T ] ≤ e−w1,0(0)|v′
0(0)| + 1 = M,

which means that g′(t) ∈ D1,M .
On the other hand, in a similar way, using interpolation inequalities and (2.20),

for any σ > 0,

|v(y, t)|C1,1/2(D1,T ) ≤ |v(y, t) − v(y, 0)|C1,1/2(D1,T ) + |v(y, 0)|C1(−∞,0]

≤ σ |v(y, t) − v(y, 0)|C1+α,(1+α)/2(D1,T ) + C(σ )|v(y, t) − v(y, 0)|L∞(D1,T )

+ |v0(y)|C1+α(−∞,0]

≤ σ |v(y, t)|C1+α,(1+α)/2(D1,T ) + C(σ )T (1+α)/2|v(y, t)|C1+α,(1+α)/2(D1,T )

+ (σ + 1)|v0(y)|C1+α(−∞,0]

≤ [
σ + C(σ )T (1+α)/2]C2 + 2|v0(y)|C1+α(−∞,0] by (2.20)

= 2|v0(y)|C1+α(−∞,0] + 1 = N,

if we let σ be sufficiently small, then let T be sufficiently small. Therefore v(y, t) ∈ D2,N ,
so F maps DM,N into itself. The proof for the continuity of F is standard and so we
omit the details.

Since F(DM,N) is precompact, as g(t) ∈ C1+α/2[0, T ] and v(y, t) ∈ C1+α,(1+α)/2 ×
(D1,T ) with the estimates (2.20) and (2.21), so from the Schauder fixed point theorem we
know that there is some (g(t), v(y, t)) ∈ DM,N such that F(g(t), v(y, t)) = (g(t), v(y, t)).
This means that (v(y, t), w1(y, t), w2(y, t), g(t)) is the solution of problem (2.1)–(2.10).

The estimate (2.15) is a consequence of the estimates (2.16), (2.20), (2.21) and
interpolation inequalities.

Finally, we prove uniqueness. Suppose (v(y, t), w1(y, t), w2(y, t), g(t)) and (v(y, t),
w1(y, t), w2(y, t), g(t)) are two solutions of the problem (2.1)–(2.10). Set

V = v − v, W1 = w1 − w1, W2 =w2 − w2, G = g − g.
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Notice that

exp{w1} − exp{w1} =
∫ 1

0

d
dτ

exp{τw1 + (1 − τ )w1} dτ

=
∫ 1

0
exp{τw1 + (1 − τ )w1}dτ (w1 − w1),

and so (V, W1, W2, G) satisfies

∂tV − ∂yyV − g′(t)∂yV = ∂yvG′, y < 0 (2.22)

∂tW1 − ∂yyW1 − g′(t)∂yW1 = −λ∂yV + ∂yw1G′, y < 0 (2.23)

∂tW2 − ∂yyW2 − g′(t)∂yW2 = ∂yw2G′, y > 0 (2.24)

V =
∫ 1

0
exp{τw1 + (1 − τ )w1}dτ W1, y = 0 (2.25)

G′(t) =−e−w1∂yV + ∂yv

∫ 1

0
exp{−τw1 − (1 − τ )w1}dτ W1, y = 0 (2.26)

W1 = W2, y = 0 (2.27)

∂yW1 − ∂yW2 = λV, y = 0 (2.28)

V (y, 0) = 0, (2.29)

W1(y, 0) = 0, W2(y, 0) = 0 (2.30)

G(0) = 0. (2.31)

From (2.22), (2.25) and (2.29) we find that

|V |C1+α,(1+α)/2(D1,T ) ≤ C
(|G′|C[0,T ] + |W1|C1+α,(1+α)/2(D1,T )

)
. (2.32)

(2.23), (2.24), (2.27), (2.28) and (2.30) imply that

|W1|C1+α,(1+α)/2(D1,T ) + |W2|C1+α,(1+α)/2(D2,T ) ≤ C
(|V |C1,1/2(D1,T ) + |G′|C[0,T ]

)
, (2.33)

and from (2.26) it follows that

|G′|C[0,T ] ≤ C
(|V |C1,1/2(D1,T ) + |W1|C(D1,T )

)
. (2.34)

Substituting (2.34) into (2.33), we have

|W1|C1+α,(1+α)/2(D1,T ) + |W2|C1+α,(1+α)/2(D2,T ) ≤ C
(|V |C1,1/2(D1,T ) + |W1|C(D1,T )

)
; (2.35)

then substituting (2.34) and (2.35) into (2.32), we obtain

|V |C1+α,(1+α)/2(D1,T ) ≤ C
(|V |C1,1/2(D1,T ) + |W1|C(D1,T )

)
. (2.36)

Adding two equalities (2.35) and (2.36), using the interpolation inequality we get

|V |C1+α,(1+α)/2(D1,T ) + |W1|C1+α,(1+α)/2(D1,T ) + |W2|C1+α,(1+α)/2(D2,T )

≤ C
(|V |C1,1/2(D1,T ) + |W1|C(D1,T )

)
≤ CT

(|V |C1+α,(1+α)/2(D1,T ) + |W1|C1+α,(1+α)/2(D1,T )

)
,
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and it follows that

V (y, t) = W1(y, t) = W2(y, t) = 0

if T is sufficiently small. Then G(t) = 0 is reduced by (2.26) and (2.31).
This completes the proof of Theorem 2.1.

REMARK. If we set consistency conditions

v′′
0 (0) + g′(0)v′

0(0) = ew1,0(0)[w′′
1,0 + g′(0)w′

1,0(0) − λv′
0(0)],

w′′
1,0 + g′(0)w′

1,0 − λv′
0(0) = w′′

2,0 + g′(0)w′
2,0(0),

where g′(0) = −e−w1,0(0)v′
0(0), then the solution (v,w1, w2, g) ∈ C2+α,1+α/2(D1,T ) ×

C2+α,1+α/2(D1,T ) × C2+α,1+α/2(D2,T ) × C1+(1+α)/2[0, T ].

3. Global classical solution with λ = 0. If λ = 0, the problem (2.1)–(2.10) can be
solved by defining a function w(y, t)

w(y, t) =
{
w1(y, t), if y ≤ 0,

w2(y, t), if y > 0.

Considering conditions (2.6) and (2.7), (v(y, t), w(y, t), g(t)) should be a solution of
following system

∂tv − ∂yyv − g′(t)∂yv = 0, y < 0 (3.1)

∂tw − ∂yyw − g′(t)∂yw = 0, x ∈ �1, t > 0 (3.2)

v = ew, y = 0 (3.3)

g′(t) = −e−w∂yv, y = 0 (3.4)

v(y, 0) = v0(y), y < 0 (3.5)

w(y, 0) = w0(y), y ∈ �1, (3.6)

g(0) = 0, (3.7)

where w0(y) = w1,0(y) if y ≤ 0 and w0(y) = w2,0(y) if y > 0.

REMARK. If w(y, t) is a constant, the problem for (v, g) is simply a one phase
Stefan problem (see [11]–[14]).

Suppose that

w0(y) ∈ C1+α(�1), |w0(y)|L∞(�1) ≤ M0, w′
0(y) ≤ 0, (3.8)

v0(y) ∈ C1+α(−∞, 0], v0(y) − ew0(y) ≥ 0 for y < 0, (3.9)

v0(0) = ew0(0). (3.10)

Global existence theorem depends on the following a priori estimate with respect to
∂yv(0, t).

LEMMA 3.1. Under the assumptions of (3.8)–(3.10), for any T > 0, g ∈ C1[0, T ]
and g′(t) ≥ 0. (u, w) ∈ C1+α,(1+α)/2(D1,T ) × C1+α,(1+α)/2(�1 × [0, T ]) is the solution of
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the problem (3.1)–(3.3), (3.5) and (3.6), then

−C0 ≤ ∂yv(0, t) ≤ 0. (3.11)

where C0 is a positive constant which only depends on |v0|C1(−∞,0] and |w0|C1(�1), but is
independent of T.

REMARK. The key point is that C0 does not depend on |g(t)|C1[0,T ] as well.

Proof. First, by maximum principle,

|w(y, t)| ≤ sup |w0(y)| = M0 (3.12)

|v(y, t)| ≤ sup |v0(y)
∣∣ + sup |ew(y,t)

∣∣≤ sup |v0(y)| + eM0 . (3.13)

Also, if we differentiate the equation (3.2) with respect to y, use the condition (3.8) and
maximum principle for ∂yw(y, t), then we obtain

inf w′
0(y) ≤ ∂yw(y, t) ≤ 0. (3.14)

Letting

Z(y, t) = v(y, t) − ew(y,t),

then, by (3.13),

|Z(y, t)| ≤ sup |v(y, t)| + sup
∣∣ew(y,t)

∣∣ ≤ sup |v0(y)| + 2eM0

and Z(y, t) satisfies, by (3.1)–(3.3),

∂tZ − ∂yyZ − g′(t)∂yZ = ew(∂yw)2, y < 0 (3.15)

Z = 0, y = 0 (3.16)

Z(y, 0) = v0(y) − ew0(y). (3.17)

From (3.15) we see that Z(x, t) is a supersolution of the equation (3.1) and Z(y, t) attains
its minimum on the boundary y = 0 by (3.9) and (3.16), so ∂yZ(0, t) < 0. Considering

∂yZ(0, t) = ∂yv(0, t) − ew(0,t)∂yw(0, t)

and (3.14), we have

∂yv(0, t) ≤ 0.

In order to prove that ∂yv(0, t) has a lower bound which is independent of T , we
construct a comparison function in the domain Q = {(y, t) ∈ D1,T ; −1 < y < 0},

K(y, t) = C ln(1 − y),

where C > 0 is determined later. Since

∂tK = 0, ∂yK = C
−1

1 − y
, ∂yyK = C

−1
(1 − y)2

,
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so for (y, t) ∈ Q

∂t(K − Z) − ∂yy(K − Z) − g′(t)∂y(K − Z) = C
1

(1 − y)2
+ C

g′(t)
1 − y

− ew(∂yw)2

≥ C
(1 − y)2

− ew(∂yw)2 (by g′(t) ≥ 0)

≥ C
4

− ew(∂yw)2 ≥ 0,

if C ≥ 4 sup ew(∂yw)2.
Obviously K − Z = 0 on y = 0. Also notice that, if −1 < y < 0,

∂yK(y, 0) = −C
1 − y

≤−C
2

,

so K(y, 0) ≥ Z(y, 0) = v0(y) − ew0(y), if we take C is big enough such that

−C
2

≤ inf
[
v0(y) − ew0(y)]′

.

This means that K(y, 0) − Z(y, 0) ≥ 0. On the other hand, on the boundary y = −1

K(y, t) − Z(y, t) = C ln 2 − Z(−1, t) ≥ 0

if we let C ≥ (ln 2)−1 sup {Z(y, t)} = (ln 2)−1(sup |v0(y)| + 2eM0 ). These calculations
imply that K(y, t) − Z(y, t) attains its minimum on y = 0, therefore

∂y[K(y, t) − Z(y, t)] ≤ 0 on y = 0,

i.e.,

∂yZ(0, t) ≥ ∂yK(0, t) = −C,

where

C = max
{
2 sup ew(∂yw)2, −2 inf

[
v0(y) − ew0(y)]′

, (ln 2)−1( sup |v0(y)| + 2eM0
)}

is independent of T . So,
∂yv(0, t) − ew(0,t)∂yw(0, t) ≥ −C.

Therefore
∂yv(0, t) ≥ −C + eM0 inf w′

0(y) := −C0

where C0 is independent of T .

THEOREM 3.2. Under the assumptions of (3.8)–(3.10), for any T > 0, the problem
(3.1)–(3.7) has a unique solution

(v,w, g) ∈ C1+α,(1+α)/2(D1,T ) × C1+α,(1+α)/2(�1 × [0, T ]) × C1+α/2[0, T ].

Moreover

g′(t) ≥ 0. (3.18)

|g′(t)|C[0,T ] ≤ C, (3.19)

|v|C1+α,(1+α)/2(D1,T ) ≤ M1, (3.20)

|w|C1+α,(1+α)/2(�1 × [0,T ]) ≤ M2. (3.21)

where C, M1 and M2 are independent of T.
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Proof. The uniqueness is included in Theorem 2.1. Once we have an a priori
estimate (3.11), the global existence is easy to prove.

In fact for any T > 0, define a compact convex set in C[0, T ]

D= {
g(t) ∈ C1[0, T ]; g(0) = 0, g′(0) = −ew0(0)v′

0(0), 0 ≤ g′(t) ≤ C
}

where C = eM0 C0 and C0 is from the priori estimate (3.11).
For given g(t) ∈ D, let w ∈ C1+α,(1+α)/2(�1 × [0, T ]) be the unique solution of the

Cauchy problem (3.2) and (3.6) with the estimates

|w|L∞(�1 × [0,T ]) ≤ sup |w0| = M0, (3.22)

inf w′
0(y) ≤ ∂yw ≤ 0 (3.23)

by (3.8) and maximum principle, moreover

|w|C1+α,(1+α)/2(�1 × [0,T ]) ≤ C|w0|C1+α(�1). (3.24)

where C depends on C and is independent of T since the maximum of |w| is independent
of T .

Then we define v(y, t) is the unique solution of the problem (3.1), (3.3) and (3.5)
with the estimate

|v|L∞(�1 × [0,T ]) ≤ sup |v0| + eM0 (3.25)

−C0 ≤ ∂yv(0, t) ≤ 0 (3.26)

by maximum principle and Lemma 3.1, moreover

|v|C1+α,(1+α)/2(D1,T ) ≤ C
(|v0|C1+α(−∞,0] + |w|C1+α,(1+α)/2(�1 × [0,T ])

)
≤ C

(|v0|C1+α(−∞,0] + |w0|C1+α(�1)
)
. (3.27)

where C depends on C and is independent of T because that the maximum of |v| is
also independent of T .

Now we define a new free boundary g(t) by

g(t) =
t∫

0

−exp{−w(0, τ )}∂yv(0, τ ) dτ,

therefore

g′(t) = −exp{−w(0, t)}∂yv(0, t), (3.28)

from (3.26) we have

0 ≤ g′(t) ≤ eM0 C0 = C.

We define a mappingF : D → D byF(g) = g. The proof of continuity ofF is standard,
we omit the details. Now we use the Schauder fixed point theorem: (see [15])

Let D be a compact convex set in Banach space and let F be a continuous mapping
of D into itself. Then F has a fixed point.
It means (v(y, t), w(y, t), g(t)) is the solution of problem (3.1)–(3.7).
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The estimates (3.19)–(3.21) are the consequences of the estimates (3.24), (3.27) and
(3.28).

4. Global classical solution. Using the result of Theorem 3.2 we can prove
following result.

THEOREM 4.1. Under the assumptions of Theorem 2.1 and Lemma 3.1, for
any T > 0, there exists a λ0 > 0, such that if 0 < |λ| ≤ λ0, the problem (2.1)–
(2.10) has a unique solution (vλ(y, t), wλ

1 (y, t), wλ
2 (y, t), gλ(t)) ∈ C1+γ,(1+γ )/2(D1,T ) ×

C1+γ,(1+γ )/2(D1,T ) × C1+γ,(1+γ )/2(D2,T ) × C1+γ /2[0, T ], where 0 < γ < α, with the esti-
mate

|vλ|C1+γ,(1+γ )/2(D1,T ) + ∣∣wλ
1

∣∣
C1+γ,(1+γ )/2(D1,T ) + ∣∣wλ

2

∣∣
C1+γ,(1+γ )/2(D2,T ) + |gλ|C1+γ /2[0,T ] ≤ C (4.1)

where C depends on |v0|C1+α(−∞,0], |w1,0|C1+α(−∞,0], |w2,0|C1+α [0,+∞) and T, but is
independent of the lower bound of |λ|.

Proof. We observe that the length of the interval [0, σ ] for the existence of
solution in Theorem 2.1 depends on |v0|C1+α(−∞,0] + |w1,0|C1+α(−∞,0] + |w2,0|C1+α [0,+∞).
When we extend the solution to t > σ, t = σ is the initial time, so we should control
|v(y, σ )|C1+α (−∞,0] + |w1(y, σ )|C1+α (−∞,0] + |w2(y, σ )|C1+α [0,+∞).

We denote the solution (v,w1, w2, g) of the problem (2.1)–(2.10) by
(vλ,wλ

1 , wλ
2 , gλ). From the uniform estimate (2.15) we have

|vλ|C1+α,(1+α)/2(D1,σ ) + ∣∣wλ
1

∣∣
C1+α,(1+α)/2(D1,σ ) + ∣∣wλ

2

∣∣
C1+α,(1+α)/2(D2,σ ) + |gλ|C1+α/2[0,σ,] ≤ C. (4.2)

It follows that, possibly taking subsequences,

gλ(t) −→ g∗(t) in C1+β/2[0, σ ], γ < β < α (4.3)

vλ(y, t) −→ v∗(y, t) in C1+β,(1+β)/2(D1,σ ), (4.4)

wλ
1 (y, t) −→ w∗

1(y, t) in C1+β,(1+β)/2(D1,σ ), (4.5)

wλ
2 (y, t) −→ w∗

2(y, t) in C1+β,(1+β)/2(D2,σ ), (4.6)

where (v∗(y, t), w∗
1(y, t), w∗

2(y, t), g∗(t)) is the unique solution of the problem (2.1)–
(2.10) with λ = 0, i.e., if we define

w∗(y, t) =
{
w∗

1(y, t), if y ≤ 0,

w∗
2(y, t), if y > 0,

then (v∗(y, t), w∗(y, t), g∗(t)) is the unique solution of the problem (3.1)–(3.7), so from
Theorem 3.2 we have

(g∗)′(t) ≥ 0.

|(g∗)′(t)|C[0,T ] ≤ C,

|v∗|C1+α,(1+α)/2(D1,T ) ≤ M1,

|w∗
1 |C1+α,(1+α)/2(D1,T ) ≤ M2,

|w∗
2 |C1+α,(1+α)/2(D2,T ) ≤ M2.
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From (4.3)–(4.6) we obtain

(gλ)′(σ ) −→ (g∗)′(σ )

vλ(y, σ ) −→ v∗(y, σ ) in C1+β(−∞, 0],

wλ
1 (y, σ ) −→ w∗

1(y, σ ) in C1+β(−∞, 0],

wλ
2 (y, σ ) −→ w∗

2(y, σ ) in C1+β [0,+∞).

So there is a λ1 > 0 such that if 0 < |λ| ≤ λ1,

|(gλ)′(σ )| ≤ C + 1,

|vλ(y, σ )|C1+β (−∞,0] ≤ M1 + 1,∣∣wλ
1 (y, σ )

∣∣
C1+β (−∞,0] ≤ M2 + 1,∣∣wλ

2 (y, σ )
∣∣
C1+β [0,+∞) ≤ M2 + 1.

In this way if we let vλ(y, σ ), wλ
1 (y, σ ) and wλ

2 (y, σ ) be the initial values, then
we can extend the solution of the problem (2.1)–(2.10) to the time interval [σ, 2σ ].
Especially we have, by Theorem 2.1,

|vλ|C1+β,(1+β)/2(D1,σ,2σ ) + ∣∣wλ
1

∣∣
C1+β,(1+β)/2(D1,σ,2σ ) + ∣∣wλ

2

∣∣
C1+β,(1+β)/2(D2,σ,2σ ) + |gλ|C1+β/2[σ,2σ ] ≤ C,

(4.7)
where Di,σ,2σ = Di,2σ \Di,σ , i = 1, 2. C depends on M1 and M2.

Combining the estimates (4.2) and (4.7) we obtain the estimate (4.1) in the interval
[0, 2σ ] in which γ ia replaced by β. After finite steps we arrive at the estimate (4.1) for
any finite T > 0, but C depends on T as well.

We complete the proof of Theorem 4.1.

The following result is the consequences of the uniform estimate (4.1).

THEOREM 4.2. Under the assumptions of Theorem 4.1, as λ → 0, the solutions
(vλ,wλ

1 , wλ
2 , gλ) of the problem (2.1)–(2.10) converge, possibly taking subsequences,

to (v∗, w∗
1, w

∗
2, g∗) in C1+γ,(1+γ )/2(D1,T ) × C1+γ,(1+γ )/2(D1,T ) × C1+γ,(1+γ )/2(D2,T ) ×

C1+γ /2[0, T ], where 0 < γ < α, (v∗, w∗
1, w

∗
2, g∗) is the solution of problem (2.1)–(2.10)

with λ = 0.

Conclusion. We established local existence and uniqueness of the solution of a
free boundary problem for a parabolic system. We also proved the global existence
of a solution if λ is sufficiently small. As for general λ, it is difficult to control the
C1+α-norms of v,w1 and w2. We shall consider this problem in the future. Another
problem which we shall consider is the solvability and convergence of the problem in
the multidimensional case.
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