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We describe the interaction of parallel-propagating Alfvén waves with ion-acoustic
waves and other Alfvén waves, in magnetized, high-β collisionless plasmas. This is
accomplished through a combination of analytical theory and numerical fluid simulations
of the Chew–Goldberger–Low (CGL) magnetohydrodynamic (MHD) equations closed by
Landau-fluid heat fluxes. An asymptotic ordering is employed to simplify the CGL-MHD
equations and derive solutions for the deformation of an Alfvén wave that results from
its interaction with the pressure anisotropy generated either by an ion-acoustic wave or
another, larger-amplitude Alfvén wave. The difference in time scales of acoustic and
Alfvénic fluctuations at high-β means that interactions that are local in wavenumber space
yield little modification to either mode within the time it takes the acoustic wave to Landau
damp away. Instead, order-unity changes in the amplitude of Alfvénic fluctuations can
result after interacting with frequency-matched acoustic waves. Additionally, we show
that the propagation speed of an Alfvén-wave packet in an otherwise homogeneous
background is a function of its self-generated pressure anisotropy. This allows for
the eventual interaction of separate co-propagating Alfvén-wave packets of differing
amplitudes. The results of the CGL-MHD simulations agree well with these predictions,
suggesting that theoretical models relying on the interaction of these modes should be
reconsidered in certain astrophysical environments. Applications of these results to weak
Alfvénic turbulence and to the interaction between the compressive and Alfvénic cascades
in strong, collisionless turbulence are also discussed.
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1. Introduction

Until recently, our understanding of Alfvén waves (AWs) at scales much larger than
plasma-kinetic scales has been largely agnostic of the rate of Coulomb collisions. Indeed,
linear shear AWs and nonlinear torsional AWs do not change the form of the velocity
distribution function of the particles, but rather define the moving frame in which
any changes to it are to be measured (e.g. Schekochihin et al. 2009). As a result, it
has been predicted that many defining characteristics of Alfvénic turbulence, such as
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its spectral indices or spatial anisotropies, are at most subtly affected by a lack of
collisions. In introducing the concept of AW interruption however, Squire, Quataert &
Schekochihin (2016) and Squire, Schekochihin & Quataert (2017b) established that shear
AWs in collisionless, high-β plasmas are susceptible to non-equilibrium effects that place
constraints on their ability to propagate freely, complicating the Alfvénic dynamics in
new and novel ways.1 This is just one example of how even small deviations from local
thermodynamic equilibrium (LTE), made possible by low collisionality, can have large
dynamical consequences for the evolution of high-β systems. As a result, there has been
increased interest in revisiting many problems in collisionless, high-β plasmas that are
fundamentally connected to Alfvénic dynamics, such as turbulence (Bott et al. 2021;
Arzamasskiy et al. 2023; Squire et al. 2023), the fluctuation dynamo (Santos-Lima et al.
2014; Rincon, Schekochihin & Cowley 2015; St-Onge & Kunz 2018; St-Onge et al. 2020;
Sironi, Comisso & Golant 2023; Zhou et al. 2024) and magnetic reconnection (Cassak
et al. 2015; Alt & Kunz 2019; Winarto & Kunz 2022; Egedal et al. 2023).

In well-magnetized and collisionless plasmas, the importance of these non-equilibrium
effects can be parametrized by the product βΔ, where Δ

.= p⊥/p‖ − 1 is the
normalized difference between thermal pressures across (⊥) and along (‖) the local
magnetic-field direction. Aside from determining whether a plasma is unstable to
various pressure-anisotropy-driven microinstabilities, the quantity βΔ also quantifies the
competition between the plasma’s pressure anisotropy and the magnetic tension, with the
characteristic propagation speed of magnetic disturbances being the effective Alfvén speed
vA,eff

.= vA
√

1 + βΔ/2. When βΔ ∼ ±1, the restoring tension force can be significantly
enhanced or even entirely eliminated, rendering Alfvénic fluctuations impotent. If β � 10,
then such circumstances are rather easy to achieve by even small deviations from LTE.

The collisionless high-β plasmas in which these effects appear are in fact pervasive
throughout the universe. Indeed, from radiatively inefficient accretion flows onto
supermassive black holes, to the hot and dilute intracluster medium of galaxy clusters,
to certain regions of the solar wind at and beyond the Earth’s orbit, it is often the case
that Coulomb collisions are rare and magnetic fields, while strong enough to magnetize
particles, are energetically weak (Kunz et al. 2019). Further, turbulence is a ubiquitous
phenomenon within these systems, and it plays a crucial role in processes like plasma
heating (e.g. Sharma et al. 2007; Kunz et al. 2018; Kawazura, Barnes & Schekochihin
2019; Arzamasskiy et al. 2023) and angular-momentum transport (e.g. Sharma et al. 2006;
Kunz, Stone & Quataert 2016; Bacchini et al. 2022; Sandoval et al. 2023). To describe
these processes within high-β astrophysical environments accurately, some refinement
of our understanding of their turbulent fluctuations is necessary. Therefore, with a focus
on the role of βΔ, this work revisits the following three tenets of Alfvénic turbulence
that are known to hold in magnetohydrodynamics (MHD) and even β ∼ 1 collisionless
gyrokinetics: (i) that co-propagating AWs do not interact with one another; (ii) that weak
interactions between AWs do not modify their field-aligned wavenumbers; and (iii) that
compressive fluctuations in the inertial range are only passively mixed by the Alfvénic
cascade.2

1β
.= 8πp/B2 is the ratio of the thermal pressure of the plasma particles, p, and the energy density stored in the

magnetic field, B2/8π, or equivalently twice the ratio of the squares of the sound speed cs and the Alfvén speed vA,
viz. β .= 2c2

s /v
2
A. In this paper, ‘high-β’ means β � 1.

2We are primarily concerned with effects on the inertial range of Alfvénic turbulence where the fluctuations are
spatially anisotropic with respect to the background magnetic field with k‖/k⊥ � 1 (e.g. Goldreich & Sridhar 1995).
Within intervals of the cascade not exhibiting this predominantly perpendicular polarization (e.g. near the forcing
scale(s)), strong interactions between slow and Alfvén waves can occur (e.g. Howes & Nielson 2013).
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High-β collisionless wave interactions 3

The assertion that co-propagating AWs do not interact with each other in Alfvénic
turbulence (point (i)) is a simple result of vA being relatively insensitive to nonlinearities
in β ∼ 1 plasmas. This effect arises naturally from the MHD equations and governs wave
interactions across both weak and strong turbulence. Specific to weak AW interactions
however (point (ii)), one can effectively apply energy and momentum conservation to
pairs of interacting waves since they remain correlated for many linear times. Those
constraints, combined with the fact that all Alfvénic fluctuations propagate at vA, prevent
the generation of a cascade in k‖. Lastly, for point (iii), inertial-range compressive
fluctuations being passively mixed by AWs results from the lack of overlap between
the linearized eigenvectors of acoustic and Alfvénic fluctuations in β ∼ 1 plasmas when
k⊥ � k‖. None of the perturbed quantities of the acoustic waves enter to linear order in
the propagation of AWs. However, among other things, AWs distort the direction of the
magnetic field along which acoustic waves linearly perturb the thermal pressure. As such,
they are sensitive to the presence of Alfvénic fluctuations. Yet, all of these phenomena
may be expected to change in collisionless high-β plasmas.

To understand the need for revisiting these wave interactions, consider the example
of AW interruption (Squire et al. 2016, 2017b). In the interruption process, a transverse
perturbation (δB⊥) to the magnetic field begins to oscillate at the Alfvén frequency
and initially decreases in amplitude. As a result, the field strength |B| ∼ B0 + δB2

⊥/2B0
decreases nonlinearly. Conservation of the double adiabats p⊥/ρB and p‖B2/ρ3 then
dictates that negative pressure anisotropy Δ < 0 is produced. If the amplitude is large
enough (δB⊥/B0 � 2β−1/2), a pressure anisotropy of Δ ∼ −2β−1 can be produced by
the changing |B|, although limited to Δ = −2β−1 by the Alfvénic firehose instability
threshold. However, the rate of anisotropy production is Alfvénic, while p⊥/‖ are
diffused by heat fluxes operating on sonic time scales (τsonic ∝ L/cs � L/vA, where
cs ≡ √

(2p⊥/3 + p‖/3)/ρ is the sound speed). The anisotropy is then smoothed out by
the heat fluxes and fills the domain with a nearly constant Δ = −2β−1. At this point, the
magnetic tension that supports the AW is nullified and the fluctuation ceases propagation,
hence the term ‘interruption’.3 If an AW is capable of experiencing a dramatic change in
its propagation due to its own nonlinearly generated anisotropy, then one would expect
that it would similarly respond to the anisotropy generated by other fluctuations within a
turbulent system. It is for this reason that we revisit wave–wave interactions within high-β
collisionless plasmas.

In this paper, we focus on the dynamical and thermodynamical interactions between
two waves: either ion acoustic waves (IAWs) and AWs, or two co-propagating AWs. In
§ 2, we outline expectations for these interactions based off of analytical theory performed
within the CGL-MHD framework with the help of simplified Landau-fluid heat fluxes
(Chew, Goldberger & Low 1956; Snyder, Hammett & Dorland 1997). Following this, in
§ 3, we test these predictions using a finite-volume Riemann-based code that numerically
solves the CGL-MHD equations using the Landau-fluid heat fluxes. Finally, § 4 lays out
the implications our results have for both weak and strong turbulence, and details some of
the barriers that remain to establish a complete theory of Alfvénic turbulence in high-β
collisionless plasmas.

3It has recently been found that certain conditions lead to the dominance of the resonant oblique firehose instability,
which has a threshold of β‖Δ ≈ −1.4 rather than ≈ − 2 (Hellinger & Matsumoto 2000; Bott et al., in preparation). At
this more restrictive threshold, the magnetic tension is not nullified by the pressure anisotropy and so full interruption
does not occur. Within the purview of this work, we do not rely on the realizability of interruption, nor do we address the
role of microinstabilities in detail.
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2. Theory

The degrees of freedom associated with wave–wave interactions in a collisionless
plasma are numerous, and so to focus our investigation, we make several simplifying
assumptions. First, we take the electrons to be much colder than the ions, so that we may
set their temperature Te = 0. Certain high-β astrophysical plasmas are thought to produce
these circumstances, such as radiatively inefficient accretion flows onto supermassive
black holes (e.g. Quataert 2003). However, the results we present are easily generalizeable
to non-zero electron temperature (see § 4). Second, our focus is on the dynamics that
occurs on wavelengths much larger than the ion Larmor radius and at frequencies
much smaller than the ion gyrofrequency. Accordingly, we employ a fluid model that
accounts for the adiabatic production of pressure anisotropy, its spatial redistribution by
field-aligned heat fluxes and its dynamical feedback on the plasma through the action of an
anisotropic pressure, all while neglecting finite-Larmor-radius effects. These ‘CGL-MHD’
equations (Chew et al. 1956) are

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇
(

p⊥ + B2

8π

)
+ ∇ ·

[
b̂b̂

(
p⊥−p‖+ B2

4π

)]
, (2.1b)

∂B
∂t

= ∇ × (u × B), (2.1c)

∂p⊥
∂t

+ ∇ · ( p⊥u)+ p⊥∇ · u + ∇ ·
(

q⊥b̂
)

+ q⊥∇ · b̂ = p⊥b̂b̂ : ∇u, (2.1d)

∂p‖
∂t

+ ∇ · (
p‖u

) + ∇ ·
(

q‖b̂
)

− 2q⊥∇ · b̂ = −2p‖b̂b̂ : ∇u. (2.1e)

Our notation is standard: ρ is the mass density, u is the bulk fluid velocity, B is
the magnetic field, and p⊥ and p‖ are the components of the pressure tensor oriented
perpendicular and parallel to the local magnetic-field direction b̂ = B/B. Note that (2.1a)
and (2.1c) may be used in (2.1d) and (2.1e) to obtain

p⊥
d
dt

ln
p⊥
ρB

= −∇ · (q⊥b̂)− q⊥∇ · b̂, (2.2a)

p‖
d
dt

ln
p‖B2

ρ3
= −∇ · (q‖b̂)+ 2q⊥∇ · b̂, (2.2b)

where d/dt .= ∂/∂t + u · ∇ is the comoving time derivative. These equations express
conservation of the first and second adiabatic invariants in the frame of the flow but
for the conservative redistribution of p⊥ and p‖ by the field-aligned conductive flows of
perpendicular and parallel heat, q⊥ and q‖, respectively. Our third assumption is that these
heat fluxes are given by the ‘3 + 1 model’ of Snyder et al. (1997), which is tailored to
capture the linear collisionless damping rates of small-amplitude fluctuations:

q⊥ = − 2c2
s‖√

2πcs‖
∣∣k‖

∣∣
[
ρ∇‖

(
p⊥
ρ

)
− p⊥

(
1 − p⊥

p‖

) ∇‖B
B

]
, (2.3a)

q‖ = − 8c2
s‖√

8πcs‖
∣∣k‖

∣∣ρ∇‖

(
p‖
ρ

)
, (2.3b)
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where cs,‖ = √
p‖/ρ is the parallel sound speed. The parameter |k‖| is a characteristic

field-aligned wavenumber for the fluctuations in B, p⊥/‖, and ρ (e.g. Sharma et al. 2006);
it is a simplification of the magnitude of the magnetic-field-aligned gradient operator,
which would otherwise be very costly to calculate exactly because it is defined with
respect to the local magnetic field and involves global operations. Because these heat
fluxes describe linear collisionless damping, inherent in their use is the assumption that
any perturbations produced by the waves studied here are sufficiently small with respect
to the background plasma that nonlinear effects, such as saturation of the collisionless
damping, can be ignored. Accordingly, while their analytical simplicity is invaluable in
closing the CGL-MHD system, we discuss in § 2.3 some circumstances in which these
heat fluxes become inaccurate.

2.1. Formulation of the problem
Armed with (2.1), we now constrain the waves whose interactions are the focus of this
paper. First, we consider only waves that propagate parallel to the background magnetic
field B0, such that k⊥ = 0. This choice removes the nonlinear Alfvénic interaction that
normally drives a cascade to small scales, meaning that any interaction seen is solely
a consequence of the effects of pressure anisotropy discussed in this work. Admittedly,
many problems of interest involve fluctuations that possess k⊥/k‖ of order unity or even
much greater, such as critically balanced Alfvénic turbulence (Goldreich & Sridhar 1995).
However, as we demonstrate in § 2.2, one of the most important aspects of these wave
interactions concerns the time scales associated with each interacting wave. Because AWs
and IAWs possess frequencies that are independent of k⊥, this facet of their interaction
is captured regardless of k⊥ (further discussion of the k⊥ = 0 assumption can be found
within § 4). Second, we assume that no constant background pressure anisotropy Δ0 is
present in the plasma. A non-zero background pressure anisotropy may be included with
little effect to the results (so long as the plasma remains stable) by replacing the Alfvén
speed vA

.= B0/
√

4πρ0, where ρ0 is the (assumed uniform) background density, with an
effective Alfvén speed vA,eff

.= vA
√

1 + βΔ0/2.
Our chief interest in this paper is how an AW responds to the fluctuating pressure

anisotropy that results from other waves – a channel of communication that is customarily
ignored in studies of plasma turbulence. Therefore, to distil this physics from (2.1),
we pursue an asymptotic ordering of the wave perturbations that isolates the Alfvénic
response to an externally generated pressure anisotropy Δ = Δ(t, r). First, the AWs
subject to Δ are taken to be small enough in amplitude that their own nonlinearities can
be ignored on the time scales of interest here, viz. δB⊥/B0 ∼ u⊥/vA � 1. With k⊥ = 0,
the vectors δB⊥ and u⊥ can be oriented along any perpendicular coordinate without loss
of generality, and so henceforth we refer only to δB⊥ and u⊥. Second, we take Δ to be
large enough that its effect on the Alfvénic dynamics cannot be neglected, i.e. |βΔ| ∼ 1.
This ordering allows the stress associated with the pressure anisotropy, ( p⊥ − p‖)b̂b̂, to be
comparable to the Maxwell stress, BB/4π. Lastly, we allow for compressive fluctuations
in the parallel velocity (u‖) and density (δρ). Because k⊥ = 0 implies δB‖ = 0, these
fluctuations are purely acoustic, propagating at a speed ∼cs that is much faster than vA.
These assertions combined, the resulting maximal ordering is given by

|Δ| ∼ δB⊥
B0

∼ u⊥
vA

∼ u‖
cs

∼ δρ

ρ0
∼ 1
β

.= ε � 1. (2.4)

To complete the ordering, we also make assumptions regarding the time evolution of these
quantities. In particular, we assume that the time derivatives of δB⊥ and u⊥ are Alfvénic
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(∂t ∼ k‖vA), while all other (compressive) quantities evolve on sonic time scales (∂t ∼
k‖cs).

Without yet discussing the production/evolution of Δ (to be addressed in §§ 2.2 and
2.3), we may then derive the evolution equations for our ordered Alfvénic fluctuations.
Applying (2.4) to the components of (2.1b) and (2.1c) that are perpendicular to the guide
field, and retaining only the leading-order terms in ε, we find that

∂δB⊥
∂t

= B0
∂u⊥
∂x
, (2.5a)

ρ0
∂u⊥
∂t

= B0

4π

∂B⊥
∂x

+ β

2
B0
∂

∂x
(δB⊥Δ) . (2.5b)

The transparency of these equations can be improved somewhat by rewriting them in terms
of Elsässer variables z± = u⊥ ± δB⊥/

√
4πρ0 (Elsässer 1950):

∂z±

∂t
∓ vA

∂z±

∂x
= vA

β

4
∂

∂x

[
(z+−z−)Δ

]
. (2.6)

The left-hand side of these Elsässer equations describe forward (−) and backward (+)
propagating AWs. The right-hand side provides the nonlinear interaction with another
fluctuation that perturbs the pressure anisotropically. This anisotropy can arise from linear
acoustic modes, or even other large-amplitude AWs that generate Δ nonlinearly. We
analyse both of these situations in §§ 2.2 and 2.3.

2.2. Interaction between ion-acoustic and Alfvén waves
In this section, we describe the interaction between monochromatic IAWs and AWs in
an otherwise uniform plasma with density ρ0 and pressure p0 = βB2

0/8π. This demands
an understanding of the evolution of the Δ that appears on the right-hand side of (2.6).
In our high-β ordering (2.4), the IAW fluctuations are energetically dominant over the
Alfvénic fluctuations and, given their compressive nature, are chiefly responsible for the
pressure perturbations δp‖ and δp⊥. This can be seen by applying (2.4) to the compressive
components of (2.1), recalling that the time derivatives of compressive quantities are
ordered as ∂t ∼ kcs, and retaining only leading-order terms:

∂δρ

∂t
+ ρ0

∂u‖
∂x

= 0, (2.7a)

ρ0
∂u‖
∂t

= −∂δp‖
∂x

, (2.7b)

1
p0

∂δp⊥
∂t

= 1
ρ0

∂δρ

∂t
+

√
2cs√

π|k‖|p0

∂

∂x

(
∂δp⊥
∂x

− p0

ρ0

∂δρ

∂x

)
, (2.7c)

1
p0

∂δp‖
∂t

= 3
ρ0

∂δρ

∂t
+

√
8cs√

π|k‖|p0

∂

∂x

(
∂δp‖
∂x

− p0

ρ0

∂δρ

∂x

)
. (2.7d)

These equations describing ion-acoustic fluctuations are entirely linear, with no feedback
from the Alfvénic fluctuations. Therefore, we may simply prescribe the pressure
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anisotropy in (2.6) being due to ion-acoustic fluctuations as

Δ(t, x) = Δ0 exp(ikCx + iωCt), (2.8)

where ωC ≈ (±1.47 + 0.46i)kCcs is the (complex) linear frequency of a damped
ion-acoustic wave.4 Substituting this anisotropy (with +ωC to start) into the Elsässer
equation (2.6) and Fourier transforming into k-space yields the following evolution
equation for AWs at each wavenumber:

∂z±(k)
∂t

∓ ikvAz±(k) = ikvA
βΔ0

4
eiωCt

[
z+(k − kC)− z−(k − kC)

]
. (2.9)

The right-hand side of (2.9) shows that both forward- and backward-propagating AWs are
generated at different wavenumbers when an AW is subject to the pressure anisotropy of
an acoustic wave. Although this interaction term is not precisely proportional to the level
of imbalance |z+(k)|2 − |z−(k)|2, no change to either z+ or z− will result if their initial
amplitudes are exactly equal.

Assuming only an initial z−, which makes the acoustic and Alfvén waves
counter-propagating, the dynamics at the initial Alfvén mode’s wavenumber kA is simply

∂z±(kA)

∂t
∓ ikAvAz±(kA) = 0 =⇒ z−(kA) = z0 exp(−ikAvAt); z+(kA) = 0. (2.10)

The leading-order wave–wave interaction can be found at kA + kC by evaluating (2.9) given
(2.10):

z+(kA + kC) ≈ z0
βΔ0

4

(
ωA + kCvA

2ωA −ωC + kCvA

) [
exp(i(ωC −ωA)t)− exp(i(kA + kC)vAt)

]
,

z−(kA + kC) ≈ z0
βΔ0

4

(
ωA + kCvA

ωC + kCvA

) [
exp(i(ωC − ωA)t)− exp(−i(kA + kC)vAt)

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

where we have defined ωA
.= kAvA. Note that the choice kC ∼ kA implies |ωC| � ωA, and

thus a weak interaction in high-β plasmas. To obtain a stronger interaction, we focus on
the amplitude of the reflected wave packet (for Re(ωC) > 0) and maximize the absolute
value of the z+ coefficient. Doing so indicates that the strongest interaction occurs when

kC

kA
= 2kCvA(kCvA + ωC,r)

ω2
C,r + ω2

C,i − k2
Cv

2
A

≈ 2√
β
, (2.12)

where the subscripts ‘r’ and ‘i’ denote the real and imaginary parts of ωC. With β � 1,
(2.12) makes the absolute value of the z− coefficient ≈0.3z0βΔ0. For βΔ0 ∼ 1, this is
always an O(1) interaction, decreasing linearly with the amplitude of the acoustic mode.
Perhaps unsurprisingly, the strongest interaction occurs when the frequencies are nearly
matched, although this also means that there is effectively no change in wavenumber of the
Alfvénic fluctuations, since kA + kC ≈ kA(1 + 2/

√
β) ∼ kA. In this sense, the strongest

IAW–AW interaction resembles the frequency-matching condition of the parametric decay
instability (Sagdeev & Galeev 1969). Additionally, while the maximum z+ coefficient

4A non-decimal expression is available given that the ‘3 + 1’ heat fluxes yield a cubic dispersion relation. However,
the analytic expression in this case is more complicated than it is useful.
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occurs for ωC,r > 0, the situation with kC ∼ kA/
√
β still yields an O(1) reflection if

ωC,r < 0 (i.e. if the waves are co-propagating).
To apply these conclusions to physical systems, we must also consider the case where

Δ is purely real. This demands that the Fourier expansion of Δ contains both +ikC and
−ikC exponentials, which in turn create source terms on the right-hand side of (2.9) from
both k − kC and k + kC. While this complicates the problem somewhat, (2.11) can still
be used to obtain an order-of-magnitude estimate for the solution. The reason for this
stems from the fact that the acoustic mode collisionlessly damps on the same time scale
as it propagates. By the time an Alfvénic fluctuation at kA + kC grows because of the
interaction to a similar amplitude as that of the original wave at kA,Δ has largely vanished.
The subsequent interaction of the kA + kC AW with the now nearly depletedΔ to generate
a kA + 2kC mode will be considerably weaker. As a result, the amplitude of the kA + 2kC
fluctuation is likely to be small, and may not provide significant feedback to the evolution
of the mode at kA + kC. This prediction is tested using numerical simulations in § 3.

The conservation of certain quantities by this interaction may also be of interest.
In particular, it may appear jarring that there is a nonlinear mechanism in (2.6) by
which new Alfvénic fluctuations can be generated, but no corresponding sink present
in (2.7). This would seem to imply that energy is not conserved if |z±|2 increase but
nothing happens to the acoustic fluctuations. In this case, the apparent mismatch stems
from the fact that, if u‖/cs ∼ u⊥/vA, then there is considerably more (∼β×) energy
present in the acoustic fluctuations than in the Alfvénic ones. As a result, any energy
given up by the acoustic fluctuations is higher order to themselves, but leading order to
an AW with comparable amplitude. This can be demonstrated by going to third order
in the compressive equations and re-establishing conservation of energy, a calculation
presented in detail in Appendix A.5 Why energy goes to the Alfvénic from the acoustic
fluctuations is not as obvious. The reason becomes apparent, however, when considering
the same interaction without damping of the acoustic wave. With ωC,i = 0 in (2.11), the
leading-order Alfvénic response would then have a purely periodic amplitude at each
k. Essentially, the effects of a fluctuation with Δ > 0 would be nearly wiped out by
the subsequent equivalent negative anisotropy. Only the root mean square amplitude of
the newly generated fluctuations would grow, and on a time scale much slower than the
AW propagation. Instead, if the anisotropy decays, then the positive anisotropy generated
during the first half of the acoustic period would be larger than the negative anisotropy
generated during the second half-period, meaning that the difference in the nonlinear
effects accumulates. Once the acoustic wave is decayed away, each k of the Alfvénic
spectrum is left with only a steady-state amplitude and energy.

2.3. Interaction between two AWs
The other source of pressure anisotropy we consider for (2.6) is another, larger-amplitude
AW. In particular, we are interested in the ability of nonlinear AWs to generate pressure
anisotropy, thereby modifying their own vA,eff in a manner that is dependent upon their
amplitudes (similarly to the interruption process described in § 1; Squire et al. 2016).
We therefore choose to study the interaction between two co-propagating AW packets,
which are initially isolated such that their self-modified vA,eff do not affect the other
wavepacket. In this set-up, one of the wave packets will be large enough in amplitude such

5For the same reason, the dynamical equations to leading order for each wave are unaffected by frequency matching.
Although an increase in the gradients of Alfvénic quantities enhances their ability to affect the acoustic mode, the fact that
those Alfvénic gradient terms are multiple orders of ε smaller than the linear compressive terms means that increasing
kA by a factor of

√
β or even β will not render the solution (2.11) inaccurate.
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that it generates a pressure anisotropy Δ ∼ β−1, thereby fulfilling the role of the IAW in
§ 2.2. This will be called the ‘primary’ wave packet (with relevant quantities denoted by
the subscript ‘p’). We first calculate the pressure anisotropy generated by this primary
wave packet and demonstrate that its vA,eff is increased as a result. Given sufficient time
then, the two initially separated wave packets will be able to interact if the trailing wave
packet is of larger amplitude. To study the subsequent interaction, we consider the leading
(‘secondary’) wave packet to satisfy the Alfvénic components of (2.4), thereby allowing us
to employ (2.6) in solving for its nonlinear deformation, while ignoring the back reaction
on the primary AW packet.

The mechanism for producing pressure anisotropy differs considerably between IAWs
and shear-Alfvén waves. While pressure anisotropy is produced at linear order for the
former, the latter change neither the magnetic-field strength nor the plasma density to
linear order in the fluctuation amplitude, and so by adiabatic invariance have no associated
linear pressure anisotropy. Indeed, (2.2) without the heat fluxes give6

d
dt

(
p⊥
ρB

)
= 0 =⇒ dp⊥

dt
= p⊥
ρ

dρ
dt

+ p⊥
B

dB
dt
, (2.13a)

d
dt

(
p‖B2

ρ3

)
= 0 =⇒ dp‖

dt
= 3p‖

ρ

dρ
dt

− 2p‖
B

dB
dt
. (2.13b)

The magnetic-field strength changes only at second order in the fluctuation amplitude,
according to B =

√
B2

0 + δB2
⊥,p (while δρ = 0). From this, it is clear that δB2

⊥,p/B
2
0 must

be �1/β for the stress associated with the induced pressure anisotropy to be comparable to
the Maxwell stress (the usual restoring force in an AW; Squire et al. 2016). In AW packets
of this amplitude, the addition of a competitive pressure-anisotropic stress dictates that
their initial perturbation will be unable to propagate rigidly at vA as is the case when
Δ = 0. Instead, a strictly positive (owing to δB2

⊥,p > 0) nonlinear pressure anisotropy
will be generated by the oscillating δB⊥,p with a dominant wavenumber of k = 2kA. This
cannot, however, last in the presence of the heat fluxes (2.4). The pressure anisotropy Δp
is generated by the AW packet as it propagates at a rate of ∼ kvA, while it is diffused
by the heat fluxes at a much faster rate of ∼ kcs. As a result, Δp is smeared out across
the wave packet as it propagates, inheriting the spatial structure of the wave packet
envelope rather than the mode itself. The end result is that shear AW packets initialized
with an amplitude δB⊥/B0 � β−1/2 generate smooth, envelope-scale, positive pressure
anisotropies. Accordingly, vA,eff > vA and such packets propagate faster than those with
small (linear) amplitudes.7

With a Δp profile resembling the envelope of the parent AW packet (rather than the
oscillating wave within the envelope), there will be a peak in the magnitude of Δp at
the centre of the packet, where δB2

⊥,p is the largest. Through vA,eff = vA
√

1 + βΔp(x)/2,
this region of the packet will travel faster than the regions with lower δB2

⊥,p that occur
at the trailing edge of the envelope. In time, an isolated AW packet should therefore

6Although ignored for illustrative purposes here, it is never justified to neglect the heat fluxes entirely in the evolution
of high-β collisionless plasmas. Owing to their thermal nature, the contribution of heat fluxes in the pressure evolution
equations (2.1d) and (2.1e) is typically on the order of ∼k‖csδp⊥/‖. In high-β plasmas, this time scale (k‖cs) is comparable
to the rate-of-change of p⊥/‖ generated by acoustic fluctuations (ωC) and much larger than that of Alfvénic fluctuations
(k‖vA).

7Note that we only address shear AWs within this work. In the case of an infinite wave train of torsional AWs, no
pressure anisotropy is produced, although they may still be affected by an externally supplied pressure anisotropy. In the
case of a torsional AW packet, however, the front of the packet would still produce Δ > 0 while the tail would generate
Δ < 0.
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10 S. Majeski and M.W. Kunz

steepen to form a shock-like wavefront, which propagates at an enhanced vA,eff from the
background.8 It is this shocked, more rapidly propagating wave packet that can interact
with smaller amplitude AW packets in front of it. In a collisionless plasma, however,
the heat fluxes driven by a shock-like gradient in the pressure cannot be accurately
described by (2.3). This complicates our effort to solve (2.1d) and (2.1e) for the Δp of
the steepened packet. In this case, two alternative descriptions of q⊥/‖ are likely to be
more accurate. For one, the heat fluxes may simply be that of free streaming particles.
Unless reflected by the mirror force, plasma particles would transit the shock front and
change their perpendicular temperature adiabatically according to δT⊥,p/T0 ≈ δB2

⊥,p/2B2
0.

Another possibility, which is likely for near-interruption AW packets in particular, is that
the distribution of particle velocities resulting from an adiabatic response to δB⊥,p would
be unstable to kinetic microinstabilities. Larmor-scale magnetic fluctuations generated by
the ion-acoustic or whistler heat-flux instabilities (Komarov et al. 2018; Roberg-Clark et al.
2018) could scatter particles in pitch angle, giving the heat fluxes a similar functional form
as (2.3), but with a different effective diffusion rate. We choose to continue our analysis
under this assumption of diffusive heat fluxes, both because it may apply in particular to
near-interruption AW packets, and for the fact that our ‘3 + 1’ Landau-fluid heat fluxes
(2.3) are also diffusive, allowing us to verify the results numerically for arbitrary diffusion
coefficients by modifying |k‖| (Appendix B). In this case, given that particle motions are
thermal, the upstream plasma with its higher temperature is able to pass through the shock
front and diffuse downstream, at a rate controlled by the diffusion coefficient. This leads
to the development of a pressure anisotropy precursor, which stretches in front of the shock
as it propagates. For a finite diffusion coefficient, this precursor decays away steadily
as one moves further downstream of the shock. We derive this precursor analytically in
Appendix B for a general diffusion coefficient κ , finding that the functional form of the
pressure anisotropy is a decaying exponential in a frame moving with the shock.

What remains to be discussed is how the Δp precursor of a large AW packet affects
smaller-amplitude AW packets that cannot outrun its increased propagation speed, vA,eff >

vA. As the tail of a secondary wave packet begins to feel the Δp of the larger-amplitude
primary packet approaching from behind it, there will be a larger vA,eff at the back of the
secondary wave packet than at the front. This will cause the secondary packet to compress,
shortening its parallel wavelength. Unlike the IAW–AW interaction however, no backward
propagating AW packet will be created. To see why, consider the evolution equation (2.6)
for z+ assuming only an initial z−:

dz+

dt
.= ∂z+

∂t
− vA,eff(x)

∂z+

∂x
= vA

β

4
z+ ∂Δp

∂x
− vA

β

4
∂

∂x

(
z−Δp

)
. (2.14)

The final term on the right-hand side represents a possible source or sink, depending on its
sign. However, for ∂xΔp < 0, the first term on the right-hand side damps z+ exponentially
along the wave characteristics. Given that the Δ-precursor of a large-amplitude z− packet
is monotonically decreasing in x, z+ fluctuations are always damped in this interaction.
This simplifies the equation for z−, which can be written in terms of its energy density
E−(x) .= |z−|2 by assuming z+ = 0:

∂

∂t
ln E− + vA

(
1 + βΔp

4

)
∂

∂x
ln E− = −vA

β

2
∂Δp

∂x
. (2.15)

8Squire et al. (2016) also found that as AW amplitudes approach the ‘interruption limit’, they are reshaped into
square waves. Such a profile minimizes the variation in |B|2, thereby minimizing the generation of Δ. Although this
effect has little impact on the interaction of the waves, it is observed in our simulations of large-amplitude AW packets.
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Solving (2.15) using the method of characteristics yields

E−(x, t) = E−
0 (x0(t, x)) exp

⎧⎨
⎩−vA

β

2

t∫
0

dt′
∂Δp

∂x

∣∣∣∣
x(t′,x0)

⎫⎬
⎭ , (2.16)

where x(t, x0) is the trajectory of the x0 characteristic determined by the solution of

dx
dt

= vA

(
1 + βΔp(t, x)

4

)
, (2.17)

and x0(t, x) is the foot of the characteristic obtained by inverting x(t, x0). Equation (2.16)
states that the tail of the smaller-amplitude AW packet will steepen according to dtx,
while growing exponentially along characteristics (and more rapidly so for steeper Δp).
Motivated by the derivation of the Δp precursor for diffusive heat fluxes in Appendix B,
we consider an exponentially decaying anisotropy

Δp(x) = Δp,0 exp[(x − vA,efft)/lΔ], (2.18)

which propagates rigidly at vA,eff = vA
√

1 + βΔp,0/2. Figure 1(a) shows the characteristics
that such an anisotropy would generate if Δp,0 = β−1 and l = 0.1L, where L is a
characteristic domain length. The compression of characteristics indicates that the trailing
end of the secondary mode develops a shorter wavelength over time. Figure 1(b) exhibits
the gain in energy experienced by a Gaussian wave packet that is subjected to this Δp(x)
after t = L/vA, for different values of the decay length lΔ/L. As lΔ/L becomes smaller, the
gain in energy of the mode begins to increase. In general, this trend of increasing energy
gain will continue, but here the gain curve drops when lΔ/L becomes small enough that
the packets becomes too well separated to feel the effect of Δ within a time t = L/vA (for
verification of this, we show the gain curve for two identical secondary packets initially
separated from the primary by δx = 0.4L and δx = 0.8L). Without the interference of
other waves in this duo, the secondary packet compression will likely continue until the
anisotropy of the primary wave damps away, or the wavelength of the secondary packet
reaches dissipation scales. In a scenario where the large-amplitude wave interacts with
many smaller-amplitude fluctuations, the compression (and therefore energization) of the
smaller modes should be considered in the damping of the larger-amplitude mode, likely
enhancing the rate of decay.9

We do not describe in any detail the interaction between primary and secondary
anti-propagating AWs; however, there is a notable asymmetry in the Δ-mediated
interactions between co- and anti-propagating AWs. Anti-propagating interactions are
considerably weaker, both because of the much shorter interaction time caused by the
larger difference in propagation velocity, and because of the difficulty of establishing any
sort of frequency matching with an exponential pressure anisotropy. With co-propagating
AW packets, the primary packet modifies vA,eff nonlinearly, thus the difference in velocities
between packets is proportional to δB2

⊥/B
2
0; in the anti-propagating case, the difference in

velocities is ≈2vA. Furthermore, due to the monotonically decreasing vA,eff associated
with theΔ-precursor of the primary packet, the primary packet carries the co-propagating

9We have made no mention of energy conservation in the AW–AW interaction, even though the energy of
the secondary packet increases. This is analogous to the IAW–AW interaction, given the σ ∼ √

ε ordering used in
Appendix B. The energy gain of the secondary packet is first order to itself, but higher order to the larger amplitude
primary packet.

https://doi.org/10.1017/S0022377823001435 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001435


12 S. Majeski and M.W. Kunz

(a) (b)

FIGURE 1. (a) Characteristic curves for an AW subjected to an exponentially decaying pressure
anisotropy (2.18) with characteristic decay length lΔ = 0.1L and phase speed vA,eff = √

2vA.
Characteristics originating near the left of the domain begin to converge by the time they
reach the right side of the domain, indicating Δ-induced AW steepening. (b) Energy gain by
the secondary AW packet after one Alfvén-crossing time for different lΔ, demonstrating that a
steeper Δ profile leads to more rapid gain in energy by the secondary packet.

secondary packet with it and the two can interact until microphysical effects interfere.
Alternatively, for an anti-propagating interaction, if one were to calculate the k-space
dependence of the primary packet’s Δ, then the corresponding version of (2.9) could be
solved, but instead with numerous kC because Δ would not be monochromatic. That said,
unlike in the IAW–AW interactions, the fact thatΔ is not monochromatic makes it difficult
to achieve any semblance of frequency matching, and thus the interaction cannot similarly
be tuned to maximize its strength.

3. Numerical simulations

To test the predictions made in § 2, we perform fluid simulations of each wave–wave
interaction within the CGL-MHD framework (2.1). Our numerical approach uses a
new Riemann solver implemented in a version of the finite-volume simulation code
Athena++ (Stone et al. 2008) that evolves p⊥ and p‖ using CGL equations that are
closed with Landau-fluid heat fluxes (2.3) (Squire et al. 2023). Unless otherwise stated,
the field-aligned wavenumber |k‖| in the Landau-fluid heat fluxes is set equal to the initial
dominant wavenumber of the primary pressure-anisotropy-generating fluctuation, viz. the
IAW in the acoustic–Alfvén interaction and the larger-amplitude AW in the Alfvén–Alfvén
interaction. All simulations are performed with β = 400, with only linear perturbations
being initialized for the fluid moments of each wave: u⊥ and δB⊥ for AWs; and u‖, δρ and
δp⊥/‖ for acoustic waves. The interaction of acoustic and Alfvénic fluctuations is studied
primarily using monochromatic plane waves, while Alfvén–Alfvén interactions are studied
using wave packets to demonstrate how a larger-amplitude AW packet can ‘catch up’
with an initially separated, smaller-amplitude AW packet. An acoustic–Alfvén interaction
simulation was also performed using wave packets to visually depict the generation of a
reflected AW as well as the non-locality of the interaction with respect to wavenumber.
All monochromatic plane-wave simulations use periodic boundary conditions, while all
simulations involving wave packets make use of outflow boundary conditions (where
the derivatives of all fluid fields are set to zero at the boundaries).10 The only spatial

10In a periodic box, any finite-width wave packet that increases the local pressure anisotropy will, subject to heat
fluxes, increase the background pressure anisotropy as well (and quite rapidly at high β). To simulate a wave packet
that is much smaller than the extent of the background plasma then, only outflow boundary conditions can appropriately
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coordinate is x ∈ [0, 1], aligned with the background magnetic field and measured in
dimensionless Alfvénic units (where vA = B0/

√
4πρ0 = 1) such that the Alfvén crossing

time of a domain of length L = 1 is L/vA = 1. AW packets are initialized according to
δB⊥ = αB0ψ(x) cos(kx) and u⊥ = ±αvAψ(x) cos(kx), with amplitude α and Gaussian
envelopes ψ(x) having standard deviations of approximately 2π/k. For the AW–AW
interaction, the primary packet amplitude is α = 4/

√
β, while the secondary packet

amplitude is α = 1/β. In the IAW–AW interaction, the acoustic wave is initialized with
amplitude δu‖/vth = 2/3β, and the Alfvén wave is initialized with δB⊥/B0 = δu⊥/vA =
1/2β. Because strong IAW–AW interactions at high β are very non-local in k space, AW
fluctuations with wavelengths of as little as one-hundredth of the domain length need to be
resolved. Similarly, for an AW packet to remain well separated from the outflow boundaries
but still propagate for several linear times, the wave packet envelope and its dominant
wavelength must be much smaller than the domain length. To capture these high-k
fluctuations adequately, a resolution of 9216 cells is used for the AW–AW interactions
and up to 12 288 cells for the IAW–AW interactions. Importantly, the amplitudes of all
fluctuations are chosen such that their associated pressure anisotropies are within the
bounds of the firehose and mirror instabilities, −2 � βΔ � 1 (Rudakov & Sagdeev 1958;
Southwood & Kivelson 1993).

3.1. Interaction between ion-acoustic and Alfvén waves
To illustrate the problem being studied, we begin with a simple example of
co-propagating, quasi-monochromatic acoustic- and Alfvén-wave packets. We set the
dominant wavenumber of the acoustic wave to kC = kA/

√
β, such that the modes are nearly

matched in their linear frequencies. Figure 2 shows the evolution of these two packets
from the initial set-up until the point when the IAW has passed out of the domain, leaving
behind only the modified AW packet(s). The top panel, showing the initial conditions,
demonstrates that the initial pressure anisotropy associated with the IAW (black) dips
as low as βΔ ≈ −2, and does not overlap with the AW to any significant degree. As
the acoustic wave propagates, it decays rapidly at a rate of �0.31ωC. Therefore, by the
time it overlaps with the AW, the amplitude of its driven pressure anisotropy has decayed
significantly (middle panel). Nonetheless, the modification of the local vA,eff can be seen
in the tail of the AW as giving rise to a new, smaller-amplitude fluctuation. By the time
the IAW has decayed away and propagated out of the simulation domain, two changes
have occurred to the initial wave packet. Most obvious is that, as predicted by (2.11),
a smaller-amplitude, backward-propagating AW packet of roughly equal wavelength to
the parent AW packet has been generated. This process therefore appears to mimic
some features of the parametric decay instability of AWs. It distinguishes itself from
parametric decay, however, by the more subtle increase in the amplitude of the initial
forward-propagating AW packet. Instead of reflecting a portion of the initial wave packet
and decreasing its amplitude, the IAW spawns these modifications to the AW packet by
giving up an infinitesimal (with respect to itself, not the AW) portion of its own energy.
In the end, the degree of Alfvénic imbalance, normalized by the total energy of the AW
fluctuations, decreases by roughly 5 %.

The interaction between the wave packets in figure 2 is expected to peak when the
frequencies of the IAW and AW are roughly matched. However, the exact amplitude of
the reflected fluctuation will depend on the minutia of the initial conditions, such as the
packets’ initial separation and the widths of their envelopes. We therefore move to the

maintain the pressure anisotropy as a local perturbation, while removing the portion of �p that diffuses out away from
the packet.
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FIGURE 2. Landau-fluid CGL-MHD simulation of the interaction between the pressure
anisotropy driven by an IAW packet (black) and an AW packet (orange) with matched
frequencies. The IAW packet collisionlessly damps rapidly from the initial conditions (top
frame), before nonlinearly deforming the short-wavelength AW packet (middle). After the IAW
has decayed and propagated rightwards out of the domain, a backward-propagating AW packet
has developed, with no apparent change to the wavenumber of the parent AW.

periodic plane-wave set-up used to derive (2.9), so that we can assess the accuracy of
(2.11) with fewer variable factors. In doing so, we choose to initialize a standing IAW
with zero initial pressure anisotropy (otherwise the intensity of the interaction would
be hidden by an immediate Alfvénic response to the non-zero anisotropy at t = 0).
This is accomplished by perturbing u‖(x, t = 0) = αvth sin(kCx) alone, with an amplitude
α = 2/3β such that the corresponding ‘forced’ anisotropy in (2.6) would be given by
Δ(x) = β−1 sin(ωC,rt) cos(kCx) exp(−ωC,it). We simulate the interaction for a range of
kA/kC, all for an elapsed time of tf = 2πω−1

A . The energy E− = |z−|2 contained within all
z− fluctuations at the end of each simulation is plotted versus kA/kC in figure 3, compared
with an analytic estimate based off of (2.11). The analytic estimate is simply obtained by
accounting only for the initial AW within the source term on the right-hand side of (2.9).
Separating the expression for the pressure anisotropy generated by the standing wave into
its complex exponential parts, the approximation is given by

E−(t) ≈ 1
8

[∣∣z−(kA + kC, ωC,r)− z−(kA + kC,−ωC,r)
∣∣2

+ ∣∣z−(kA − kC, ωC,r)− z−(kA − kC,−ωC,r)
∣∣2

]
, (3.1)

where the ±ωC in parentheses indicates the direction of IAW propagation used when
evaluating z(kA + kC). As expected, both the prediction and the analytic estimate peak in
interaction strength when kA/kC ∼ √

β/2 ∼ 10 and agree rather well. The reason for this
agreement can be found within figure 4(a), which shows the energy spectra of the forward-
and backward-propagating Alfvénic fluctuations at t = 2π(5ωA)

−1 and t = 2π(ωA)
−1.

In figure 4(a), the slow, diffusive k-space nature of the IAW–AW interaction can be
seen. With the initial AW represented by the peak in E−(k), each Fourier component
of the energy is several orders of magnitude smaller than the initial kA, with the sole
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FIGURE 3. Energy contained within backward-propagating AWs after one Alfvén time of
interaction between a forward-propagating monochromatic AW and a standing monochromatic
IAW, determined numerically as a function of the ratio of the Alfvén and acoustic wavenumbers
using Landau-fluid simulations (red pluses). An approximate analytical solution for the energy
(3.1) is shown as the solid line. Overall good agreement between theory and simulation is found,
demonstrating strong interaction when the wave frequencies are approximately matched.

(a) (b)

FIGURE 4. (a) Energy spectrum of forward- and backward-propagating Alfvénic fluctuations
during interaction with a standing IAW. (b) Total change in wave energy (orange) and imbalance
(black), normalized to the initial Alfvénic fluctuation energy E0, versus time. In panel (a),
the IAW–AW interaction primarily generates new AW fluctuations at kA ± kC, exhibited by
the steepness of the spectra outside of the interval k ∈ [kA − kC, kA + kC]. This explains the
accuracy of (3.1), as fluctuations at kA ± 2kC are too weak to affect the solution dramatically.
In panel (b), the change in energy imbalance is several orders of magnitude smaller than the
increase in total energy of the Alfvénic fluctuations, demonstrating that the IAW–AW interaction
decreases imbalance with respect to overall AW energy.

exception being kA ± kC (denoted by two vertical dotted lines). Furthermore, the difference
between E(kA ± kC) at t = 2π(5ωA)

−1 and t = 2π(ωA)
−1 is much smaller than that for

the higher/smaller k. Indeed, it is possible to show that when energy cascades in both
directions and kC/kA is infinitesimal, (2.9) exhibits diffusive-like behaviour in k-space,
with a diffusion rate that is proportional to k2

C. Therefore, our estimate (3.1) is supported
by this observation of kA ± kC being the dominant newly generated wavenumbers within
a single Alfvén time. The E± additionally evolve nearly identically, demonstrated by
the relatively small change in cross-helicity with respect to the total energy shown in
figure 4(b). This is expected, given that the form of (2.9) suggests this interaction relates
to the degree of imbalance at each wavenumber and appears to effectively damp it over
time.
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3.2. Interaction between two AWs
The interaction of co-propagating AWs relies upon the differing propagation speeds
that result when different amplitudes generate different local pressure anisotropies.
Accordingly, all simulations presented in this section will be of initially isolated
wave packets with outflow boundary conditions. Both wave packets are initialized
with a dominant wavenumber of kA = 80π, with amplitudes of δBz/B0 = −δuz/vA =
4/

√
β and δBy/B0 = −δuy/vA = β−1 for the large-amplitude and small-amplitude waves,

respectively. The magnetic perturbations have been assigned to different directions only for
the purpose of visualizing them separately; this choice is not necessary for the interaction
itself. The standard deviations of the Gaussian wave envelopes are 2π/kA for both packets,
the centres of which are initially separated by a distance of �x = 0.11.

Before examining the interaction between these two wave packets, we first verify
our predictions about the evolution of the primary wave packet. Figure 5(a) displays
the primary AW packet after it has steepened to form a shock. As reported by Squire
et al. (2016), the waveform (orange) has become square-like to minimize the change in
δB2

⊥,p. Due to the rapid action of the heat fluxes, the pressure anisotropy (black) has
assumed a shape similar to that of the wave envelope, with an additional precursor that
extends in front of the magnetic perturbation. A negative dip in βΔ is present behind
the tail of the wave packet, although it does not propagate with the packet; it actually
results from the magnetic perturbation departing from its initial location, causing a net
decrease in |B| at the location where it was initialized. This localized dip is akin to
the negative anisotropy generated during the more conventional interruption process of
a monochromatic AW (Squire et al. 2017a), as we did not initialize the wave packet
with the pressure anisotropy that it generates shortly thereafter. Interruption does not
occur here because the βΔ dip is not sufficiently negative to nullify the magnetic
tension. Figure 5(b) demonstrates the relationship between the perpendicular temperature
and the perturbation to the magnetic-field strength. After an initial adjustment into the
near-steady-state shocked AW packet, δT⊥ closely follows the peak value of δ|B| = δB2

⊥,p
at the shock front. This supports our prediction made in Appendix B that the maximum
value of the pressure anisotropy can be calculated via conservation of the double
adiabats.

In § 2.3, we predicted that the pressure-anisotropy-enhanced propagation speed of
large-amplitude (primary) AW packets would allow them to ‘catch up’ to and then distort
smaller-amplitude (secondary) AW packets. Evidence of this physics can be found in
figure 6, which shows how the pressure anisotropy generated by the primary (black)
interacts with the magnetic-field perturbation of the secondary (orange).

In the top panel, shortly after the magnetic disturbance of the large-amplitude mode
begins to propagate, there is a short-wavelength Δ. This pressure anisotropy is smoothed
out rapidly by the action of heat fluxes, however, and leads to a smoothly increasing
positive anisotropy perturbation whose front propagates at a slightly enhanced vA,eff > vA.
The middle panel at kAvAt = 9.9 illustrates the moment that this front catches up to the tail
end of the smaller-amplitude AW; the overlap between the two fluctuations causes this tail
to propagate slightly faster, thereby compressing the waveform of the secondary. As this
process continues into the final frame, the small-amplitude wave packet has had its width
reduced by roughly half, and its amplitude increased due to the growth of E−(x) (see
(2.16)). Because the difference in Alfvén speeds between these two packets is relatively
small, the cumulative deformation occurs slowly with respect to the Alfvén time of one of
the packets, making this a weak interaction even though it leads to such a dramatic change
in the structure of the wave packet envelope. This compression is expected to continue
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(a) (b)

FIGURE 5. (a) Magnetic field and pressure anisotropy profiles of the steepened AW packet, and
(b) relationship between the perpendicular pressure and the magnetic perturbation amplitude at
the front of the shock. The steepened wave packet is led by a shock in the magnetic-field profile,
with a smoothed pressure anisotropy profile and Δ precursor modifying the local Alfvén speed.
The dip in Δ behind the wave packet results from the initial conditions of the AW not including
Δ, hence the magnetic-field strength decreases in this region as the packet propagates away. As
this packet propagates, the approximate conservation of the T⊥/B adiabat sets the amplitude of
the decaying anisotropy, and thus vA,eff, at the shock front.

FIGURE 6. Time slices of a Landau-fluid simulation of the the AW–AW packet interaction. The
pressure anisotropy of the primary packet is evolved alongside the magnetic perturbation of the
secondary packet. The packets are initially separated (top), yet over time, the enhanced effective
speed allow the primary packet to approach the secondary from behind (middle). By the end of
the simulation, the effective wavenumber of the secondary packet has more than doubled from
the steepening induced by the primary packet’s Δ precursor.

until the anisotropy of the large-amplitude packet has nonlinearly damped to be sufficiently
small, or it is deformed by interaction with other wave packets.

4. Discussion: applications in turbulence

The analysis presented in §§ 2 and 3 suggests that modern theories of turbulence
in high-β collisionless plasmas must account for fundamentally different wave–wave
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interactions. In weak MHD turbulence, energy and momentum conservation dictate that
AWs are unable to modify their k‖ through interaction (Montgomery & Turner 1981;
Galtier et al. 2000). Yet, we have just demonstrated a weak interaction of two AWs with
differing amplitudes where the parallel wavelength does in fact change significantly. In
a similar vein, the compressive cascade of MHD turbulence relies on the fact that slow
modes possess a linear time scale that never exceeds the Alfvénic time scale of the
turbulence that mixes them. Further, these slow modes have no effect on the Alfvénic
cascade and effectively decouple from it below the forcing scale (Lithwick & Goldreich
2001; Cho & Lazarian 2003; Schekochihin et al. 2009; Nazarenko & Schekochihin
2011; Howes & Nielson 2013). However, when slow modes are replaced by collisionless
IAWs, these roles nearly reverse, with acoustic modes propagating too fast to be mixed
effectively by the AWs, and in some cases, even demonstrating an ability to reflect Alfvénic
fluctuations.

Still, certain aspects of these waves that may be important in a turbulence setting are
not considered in this study. In particular, because we focused solely on wave amplitudes
for which the induced pressure anisotropies satisfy |Δ| � 1/β, we do not consider the
effects of the firehose or mirror instabilities. Previous work has shown that AWs, IAWs,
and other compressive fluctuations evolve quite differently if their self-generated pressure
anisotropies are large enough in magnitude to excite these Larmor-scale instabilities
(Squire et al. 2017a; Kunz et al. 2020; Majeski, Kunz & Squire 2023). As demonstrated
from first principles by Arzamasskiy et al. (2023), the anomalous scattering that results
from these instabilities is likely to influence the entire turbulent cascade, yielding yet
another source of non-local energy transfer.

As mentioned in § 2, this study was performed assuming cold electrons. However,
generalizing to electrons with finite temperature is quite straightforward, as long as the
electrons remain barotropic. With an electron pressure tensor that satisfies pe = peI =
(ρTe/mi)I , no additional pressure anisotropy is produced by either wave, and so AW
propagation is entirely unaffected. The only modification is to the ratio of the real and
complex parts of the IAW frequency ωC,i/ωC,r, which, unless the electrons partake in
Landau damping of the acoustic mode, decreases with increasing Te. This would bolster
the effectiveness of the IAW–AW interaction by extending the lifetime of the pressure
anisotropy and allowing the interaction to occur over more than one linear time of the
frequency-matched modes.

In § 2.1, we noted the lack of k⊥ as a key difference between these pressure-anisotropy-
induced interactions and those found within standard Alfvénic turbulence. The nature of
the pressure-anisotropic stress we highlight is significantly different from the Reynolds
and Maxwell stresses, which dominate energy transfer in Alfvénic turbulence (Grete et al.
2017). Most importantly, βΔ, being a scalar, will always affect vA,eff regardless of the
ratio k⊥/k‖, doing so through the same nonlinearity that we retain in (2.6). Therefore, the
effects of IAWs or AWs with βΔ ∼ 1 are expected to remain leading order when k⊥ �= 0.
Furthermore, the linear time scales of IAWs and AWs are independent of k⊥, thus the
frequency-matching criterion of their interaction, and its spectral non-locality, are unlikely
to change.

Given the further complications of microinstabilities and other high-β effects such as
magneto-immutability (Squire et al. 2023), formulating an analytical model for turbulence
in this parameter regime remains a challenging task. The intention of this work is primarily
to hint at the physics underlying changes in the observed behaviour of collisionless
turbulence at β � 1, such as non-local energy transfer due to the pressure-anisotropic
stress (Arzamasskiy et al. 2023). To that end, we may still speculate upon some of the
more qualitative consequences of the wave–wave interactions described herein. One of
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the most effective tools for describing strong turbulence is an appropriately reduced set of
equations. For example, reduced MHD incorporates the concept of critical balance directly
by ordering the linear frequency comparable to the nonlinear frequency, τ−1

lin
.= k‖vA ∼

τ−1
nl ≈ k⊥u⊥ (Goldreich & Sridhar 1995; Schekochihin et al. 2009). Reinstating non-zero

k⊥ then, we can consider the reduced Alfvénic Elsässer equations that result from our 1-D
high-β ordering (2.4), modified to include k‖/k⊥ ∼ δB‖/B0 ∼ ε:

∂z±
⊥
∂t

∓ vA∇‖z±
⊥+z∓

⊥ · ∇⊥z±
⊥+∇⊥Ptotal

= vA
β

4
∇‖

[
(z+

⊥−z−
⊥)Δ

] + β

4
(z+

⊥−z−
⊥) · ∇⊥

[
(z+

⊥−z−
⊥)Δ

]
, (4.1)

where Ptotal represents the combined perpendicular and magnetic pressures. Contained
within the right-hand side of (4.1) are the various new effects discussed throughout this
work that are absent in a collisional MHD model, or even a β ∼ O(1) gyrokinetic model.
The first term on the right-hand side incorporates the ability of AWs to travel at different
vA,eff, while both terms describe the deformation in z± that results from wave–wave
interactions. Equation (4.1) does not distinguish between the source of βΔ; be it generated
by AWs with δB⊥/B0 ∼ β−1/2 or IAWs with δρ/ρ ∼ β−1, the Alfvénic cascade will be
modified. In each case, however, the description of the source of fluctuations can be more
difficult. For example, IAWs act non-locally to affect Alfvénic fluctuations in k-space, but
the reverse may not be true for Alfvénic mixing of acoustic waves. In that case, there is not
necessarily a single acoustic Elsässer equation that can be written at each scale, because
multiple k⊥ and k‖ are inherent to the problem. Furthermore, in a collisionless turbulent
cascade, βΔ cannot remain O(1) at every wavenumber throughout the inertial range. As
all of the other quantities cascade, β will remain constant, so it is likely that interactions
mediated by Δ are a leading-order effect only in a specific portion of the inertial range
where βΔ ∼ 1. One subtle conclusion of the above reduced equations is that pressure
balance in these plasmas should be struck primarily between B2 and the perpendicular
pressure p⊥, rather than the isotropic pressure (Squire et al. 2023). The leading order
of (4.1) implies that δp⊥/p0 ∼ β−1δB‖/B0 ∼ ε2. In essence, the anisotropy generated
should be dominated by the parallel pressure perturbation. This was found empirically in
simulations of incompressibly driven turbulence using the same CGL-MHD Athena++
code employed here (Squire et al. 2023), as well as in the hybrid-kinetic simulations of
Arzamasskiy et al. (2023).

Additional effects may be uncovered by studying the weak turbulence resulting from
these wave–wave interactions. Isolated wave packets are not typically considered within
strong turbulence; however, the long deformation times associated with weak turbulence
allows waves to remain correlated over many local Alfvén-crossing times (Iroshnikov
1964; Kraichnan 1968). This also expands upon the range of scales over which βΔ

exerts an influence by not requiring that the interaction remain strong. One effect that
may be impactful to weak turbulence is the ability of AWs to modify each others’ k‖.
Current understandings of weak AW interactions involve resonance conditions describing
three-wave interactions (Galtier et al. 2000):

k1 + k2 = k3 =⇒ k‖1 + k‖2 = k‖3 (4.2)

ω(k±
1 )+ ω(k∓

2 ) = ω(k±
3 ) =⇒ k‖1 − k‖2 = k‖3, (4.3)

which demand that k‖2 = 0 and k‖1 = k‖3. However, these resonance conditions assume
that vA(k‖) = vA, which is subject to modification if vA,eff is a function of the fluctuation

https://doi.org/10.1017/S0022377823001435 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001435


20 S. Majeski and M.W. Kunz

amplitude, and hence the scale k‖ of concern. In fact, for βΔ � 1, the frequency resonance
condition would become

vAk‖1

[
1 + β

4
Δ(k‖1)

]
− vAk‖2

[
1 + β

4
Δ(k‖2)

]
≈ vAk‖3

[
1 + β

4
Δ(k‖3)

]
. (4.4)

Unlike in weak MHD Alfvénic turbulence, a k‖2 = 0 mode is no longer a solution of
the above condition by virtue of Δ(k‖2) increasing with decreasing k‖2 (assuming a
cascade to higher wavenumbers for Δ). This holds regardless of the additional fact that
co-propagating interactions can occur, which have been shown to change k‖ as well.
Together, these effects may be capable of modifying the onset of critical balance, changing
the transition scale between weak and strong turbulence. Well-crafted simulations of
Alfvénic and compressive turbulence in both collisionless and weakly collisional high-β
plasmas are the clear next step.
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Appendix A. Energy conservation in IAW–AW interactions

Without going to higher order in ε when deriving an equation for the evolution of the
ion acoustic wave, the solution (2.11) describing the interaction of AWs with ion acoustic
waves does not conserve the total energy. The reasoning for this is that, while the effect of
the acoustic wave’s pressure anisotropy on the AW is leading order in ε, the back reaction
of the AW on the acoustic wave occurs at O(ε2). As assurance for the concerned reader,
however, we demonstrate here that by going to at least third order in the compressive
dynamical equations, energy conservation can be re-established. Additionally, this result
aids in confirming that the frequency matching condition kA ∼ √

βkC does not violate the
assumptions used to obtain the ordered equations (2.6) and (2.7). To achieve this task,
we begin by writing down the total energy of the background plus perturbations, which
we normalize using ρ0v

2
th,i = 2p0 to make the orders of each contribution more apparent.

Following this, we evaluate the time derivative of the total energy using the evolution
equations (2.1), with the proper adjustments made for our assumptions about the problem
geometry. Once this has been done, we examine the orders of the remaining terms to
demonstrate that energy conservation is re-established by including all terms of order ε3

or higher.
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The total energy normalized to ρ0v
2
th,i is given by

E
ρ0v

2
th,i

=
∫

dx

{
1
β

ρ

ρ0

(
u⊥
vA

)2

+ 1
β

(
1 + δB2

⊥
B2

0

)
+ ρ

ρ0

(
u‖
vth,i

)2

+ p⊥
p0

+ 1
2

p‖
p0

}
. (A1)

Already, it is clear from (A1) that, according to the ordering (2.4), the Alfvénic
contributions to the energy (terms involving u⊥ and δB⊥) are at most of order ε3, while
the compressive contributions (the last three terms) are up to linear in ε. Taking the time
derivative of (A1), the rate of change of the total energy is given by

1
ρ0v

2
th,i

dE
dt

=
∫

dx

{
1
β

∂

∂t

(
δρ

ρ0

)(
u⊥
vA

)2

+ 1
β

(
ρ

ρ0

)
∂

∂t

(
u⊥
vA

)2

+ 1
β

∂

∂t

(
δB⊥
B0

)2

+ ∂

∂t

(
δρ

ρ0

)(
u‖
vth,i

)2

+
(
ρ

ρ0

)
∂

∂t

(
u‖
vth,i

)2

+ ∂

∂t
δp⊥
p0

+ 1
2
∂

∂t
δp‖
p0

}
. (A2)

We examine these terms in turn with the aim of establishing the lowest order at which they
appear.

First, we focus on those terms relating directly to the energy carried by the Alfvénic
fluctuations, i.e. the top line of (A2). Denote the characteristic Alfvénic and compressive
wavenumbers by kA and kC, respectively. The first term is of order kCcsε

4 (due to
the continuity equation’s compressive nature in ∂t), while the second and third terms
are of order kAvAε

3. For all circumstances studied in this paper then (including
frequency-matched fluctuations), the leading order of the second and third terms will
dominate and be the main mechanism by which the Alfvénic fluctuations extract energy
from the compressive ones. Therefore, neglecting the first term and inserting (2.5) for ∂tu⊥
and ∂tδB⊥, the energy rate of change simplifies to

1
ρ0v

2
th,i

dE
dt

≈
∫

dx

{
u⊥
∂

∂x

(
δB⊥
B0

Δp
p0

)
+ ∂

∂t

(
δρ

ρ0

)(
u‖
vth,i

)2

+
(

2ρ
ρ0

)
u‖
vth,i

∂

∂t

(
u‖
vth,i

)
+ ∂

∂t
δp⊥
p0

+ 1
2
∂

∂t
δp‖
p0

}
. (A3)

For ωA ≈ ωC, the remaining Alfvénic term on the first line of (A3) is of the exact same
order as the kinetic energy terms on the bottom line, while, for kA ≈ kC, it is one half-order
in ε smaller. To satisfy energy conservation, we must then include all compressive terms
that are up to, but not including, those of order ε4.

Before embarking on the compressive terms, however, we note that the heat fluxes need
not be included in (2.1e) and (2.1d) for the proof of energy conservation between Alfvén
and acoustic waves. Their effect is to diffuse wave energy into the background, and not to
facilitate communication between the Alfvénic and compressive fluctuations. We therefore
proceed by evolving the pressure perturbations according to the double adiabats (2.13),
which can be combined in the following manner:

∂p⊥
∂t

+ 1
2
∂p‖
∂t

= 1
2
�p
B2

∂B2

∂t
+ 3p‖

2ρ
∂ρ

∂t
− u‖

2
∂p‖
∂x

+ 3u‖
2

(
p‖
ρ

)
∂ρ

∂x

+ p⊥
ρ

∂ρ

∂t
− u‖ρ

∂

∂x

(
p⊥
ρ

)
+ u‖

(p⊥
B

) ∂B
∂x

− u‖
(p‖

B

) ∂B
∂x
. (A4)
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Noting that δB ∝ δB2
⊥, which makes B−1∂xB second order in ε, the final two terms cancel

up to and including O(ε3). We also use the fact that (A4) will be integrated over space to
swap the remaining x-derivative on the bottom line from p⊥/ρ to u‖ρ, picking up a sign
change. Using the continuity equation to cancel the first two terms on the second line, no
more of the second line remains. Normalization and integration of the first term on the
right-hand side of (A4) then gives∫

dx
1
2

(
�p
p0

)
δB⊥
B0

∂

∂t

(
δB⊥
B0

)
= −

∫
dx

u⊥
2
∂

∂x

(
δB⊥
B0

�p
p0

)
, (A5)

where (2.5a) has been used to substitute for ∂tδB⊥. This term will cancel the first term on
the right-hand side of (A3), leaving us with the following expression for the energy rate of
change:

1
ρ0v

2
th,i

dE
dt

≈
∫

dx

{
3p‖
2p0

(
1
ρ

∂ρ

∂t

)
− u‖

2p0

∂p‖
∂x

+ 3u‖
2ρ

(
p‖
p0

)
∂ρ

∂x

+ ∂

∂t

(
δρ

ρ0

) (
u‖
vth,i

)2

+
(

2ρ
ρ0

)
u‖
vth,i

∂

∂t

(
u‖
vth,i

)}
+ O(ε4). (A6)

At this point, it is may become obvious that, with all of the remaining terms being
compressive in nature, they must cancel because the nonlinear interaction of a wave with
itself generally conserves energy in the absence of dissipative effects like heat fluxes or
collisions. Regardless, to solidify the argument, we will continue and demonstrate that
there are no other Alfvénic feedback terms that appear at orders greater than ε4. Using the
continuity equation to simplify the top line of (A6) yields∫

dx
{
−3p‖

2p0

[
1
ρ

∂

∂x
(ρu‖)

]
− u‖

2p0

∂p‖
∂x

+ 3u‖
2ρ

(
p‖
p0

)
∂ρ

∂x

}
=

∫
dx

u‖
p0

∂p‖
∂x
, (A7)

which, after once again employing continuity, reduces (A6) to

1
ρ0v

2
th,i

dE
dt

≈
∫

dx

{
u‖
p0

∂p‖
∂x

+ 2ρ
ρ0

(
u‖
vth,i

)2
∂u‖
∂x

+
(

2ρ
ρ0

)
u‖
vth,i

∂

∂t

(
u‖
vth,i

)}
+ O(ε4).

(A8)
The fully nonlinear parallel momentum in this case is given by

ρ
∂u‖
∂t

= −ρu‖
∂u‖
∂x

− ∂p‖
∂x

− ∂

∂x

(
δB2

⊥
B2

�p
)

− δB⊥
∂δB⊥
∂x

. (A9)

Multiplying (A9) by u‖/ρ0v
2
th,i = u‖/2p0, the last two terms on its right-hand side become

of order O(ε4), while the first two cancel the remaining terms in (A8). As a result, we have
shown that, up to and including O(ε3) terms, total energy is conserved by the interaction of
Alfvén and ion-acoustic waves according to the ordering (2.4). This finding tells us that,
even when the frequencies of the two modes are matched and kA ∼ √

βkC, the leading
order for the dynamical equations describing each wave remains unchanged. Naturally, no
terms neglected in deriving (2.5) are enhanced with respect to the leading order by letting
kA increase by ε−1/2. At the same time, Alfvénic feedback effects on the compressive
fluctuations were of order ε3, meaning the leading order compressive equations (2.7)
remain the same until ωA ∼ β2ωC. Nonlinear steepening will remain far more important in
the frequency-matched regime of strong interaction, thus for (small) acoustic fluctuations
of amplitude ∼β−1, the assumption of linearity is quite robust.
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Appendix B. The Δ profile of a Landau-fluid AW packet

This appendix provides a derivation of the pressure anisotropy generated by an isolated,
parallel-propagating, large-amplitude (δB⊥/B0 ∼ β−1/2) AW packet, specifically for the
diffusive heat fluxes of a Landau-fluid-type model. As discussed in § 2.3, we predict
that AWs of this type will steepen to form shocks in the profile of their δB⊥ and u⊥
perturbations. These shocks will propagate at a speed near vA, which is much slower than
the thermal speed of the plasma, allowing the change in pressure anisotropy generated by
δB⊥ to diffuse upstream ahead of the shock. Here we derive the functional form of Δ(x)
as it propagates with the shock.

The first step is to introduce another ordering that describes this large-amplitude AW
near the interruption limit and which is distinct from (2.4). The need for a new ordering
originates from the fact that in the AW–AW interaction, the primary AW cannot be derived
from the ordering (2.4) as (2.4) relies on linear perturbations to produce the pressure
anisotropy. As stated in § 2.3, the primary AW induces pressure anisotropy nonlinearly.
Therefore, to produce Δ ∼ β−1, it must have δB⊥/B0 larger than that of the secondary
packet, which obeys the Alfvénic components of (2.4). Our new ordering must then capture
the fact that AWs perturb the pressure and other compressive fields nonlinearly, while
being consistent with the high-β and βΔ ∼ 1 assumptions of (2.4) (such that the resultant
Δ(x) may be used in (2.6)):

δB2
⊥

B2
0

∼ u2
⊥
v2

A
∼ δρ

ρ0
∼ u‖
vA

∼ 1
β

∼ Δ ∼ σ 2 ∼ ε. (B1)

Here, σ is a new expansion parameter satisfying σ � ε. The estimates of ∂t for
compressive and Alfvénic fields are the same as those used with (2.4) (∼kcs and ∼kvA,
respectively). Note that as an ordering, this is unaffected by the Alfvénic dynamics
following vA,eff rather than vA, as the pressure anisotropy is strictly positive and thus will
never approach the firehose limit where vA,eff � vA.

The next step is to use (B1) to obtain an estimate for the size of the parallel pressure
perturbation δp‖, and show that it is much smaller than the perpendicular pressure
perturbation δp⊥. We apply (B1) to the parallel momentum equation evaluated downstream
of the shock (where the gradient in δB⊥ is non-existent), finding that the leading-order
equation is simply linear:

ρ0
∂u‖
∂t

≈ −∂δp‖
∂x

. (B2)

This approximate equation implies that δp‖ ∼ σ 2ρ0vAcs, or δp‖/p0 ∼ σ 3. Comparatively,
no such restraint is placed on δp⊥ by the perpendicular momentum equation, so the
pressure anisotropy must be dominated by δp⊥. The equation for δp⊥ is in this case more
easily formulated in terms of the perpendicular temperature δT⊥, which according to (B1)
and (2.1d) evaluated downstream from the shock satisfies

∂δT⊥
∂t

≈ κ
∂2δT⊥
∂x2

, (B3)

where κ is a diffusion coefficient (equal to ρ0vth/
√

π|k‖| in the ‘3 + 1’ Landau-fluid
model; Snyder et al. 1997). Given that κ operates on thermal time scales, the diffusion of
δT⊥, and thus �p, downstream is effectively instantaneous as the AW packet propagates.
In the frame of the shock then, δT⊥ attains a steady-state profile, meaning that it can be
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FIGURE 7. Comparison of the analytically predicted and simulated decay lengths of the
pressure anisotropy precursor of a steepened AW packet, for q⊥/‖ given by the ‘3 + 1’ heat
fluxes (2.3). The calculated decay length λT,⊥ is normalized by the dominant wavelength of the
AW packet λA. On the left, the decay length is varied with respect to the Landau wavenumber
|k‖|, while on the right, it is varied with respect to β.

represented as δT⊥(x − vA,maxt) (where vA,max is a constant equal to the peak value of vA,eff
evaluated at the shock front). Accordingly, the relation (B3) becomes

∂2δT⊥
∂x2

+ vA,max

κ

∂δT⊥
∂x

≈ 0 =⇒ δT⊥≈δT⊥,max exp
[vA,max

κ
(vA,maxt − x)

]
. (B4)

This gives the functional form of δT⊥ leading up to the shock front (where δT⊥,max is
determined), and motivates our choice of exponentially decaying pressure anisotropy as
a source for (2.6) used in § 2.3. To test the accuracy of this estimate of the decay length
of δT⊥, a series of Landau-fluid simulations were performed with varying choices of β
and for |k‖| in (2.3), shown in figure 7. The set-up of the wave packet in these runs is
the same as that of the primary packet described in § 3.2. The decay length of δT⊥ is
found in these simulations by waiting until the wave packet steepens to form a shock, then
fitting an exponentially decaying function to the region directly in front of the peak of the
magnetic-field perturbation. Compared with the theoretical estimate using the ‘3 + 1’ heat
fluxes, strong agreement is found.

The actual magnitude of δT⊥,max is determined by acknowledging that ∂xδB2
⊥ is large in

the region of the shock, and including its associated term at leading order in the equation
left of the arrow in (B4) provides

∂2δT⊥
∂x2

+ vA,max

κ

∂δT⊥
∂x

≈ vA,maxT0

2κB2
0

∂δB2
⊥

∂x
. (B5)

Integrating this equation from the shock front to the distant downstream region where
∂xδT⊥ ≈ 0, we obtain the simple result that δT⊥,max/T0 ≈ (1/2)δB2

⊥,max/B
2
0. Knowing that

δp‖ may be neglected, the same steps can be applied to (2.1e) to obtain a diffusion equation
for δρ, which is found to decay on a length scale of (3/2)κ/vA,max instead of κ/vA,max.
Similarly, δρmax is determined to be δρmax ≈ (1/3)δB2

⊥,max/B
2
0. Combined, these yield the

final result that Δmax ≈ δp⊥,max/p0 ≈ (5/6)δB2
⊥,max/B

2
0, and vA,max = vA

√
1 + βΔmax/2.
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