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1. Introduction

The group ring of a finite group is the set of integer sums of irreducible trace characters
R[G] = Z-span{χπ : π ∈ G∧}, which becomes a ring under the usual operations χπ+χµ =
χπ⊕µ and χπ ·χµ = χπ⊗µ; the identity element is the trivial character 1G. The irreducible
trace characters {χπ : π ∈ G∧} are, by definition, a Z-basis for the representation ring.

Though the theory of representations of finite groups is a well-developed subject, the
depth of our understanding of representations depends dramatically on the class of groups
being considered. In this respect, the best-understood class is the family of permutation
groups Sn; the theory for other classes of quasi-simple groups lags far behind.

The classical Brauer theorem [2] states that all elements in R[G], and, in particular,
all irreducible characters χπ, are integer linear combinations of trace characters induced
from one-dimensional representations on elementary subgroups. These are direct products
E = A × B, where A is cyclic and B is a p-group for some prime such that |B| = pr is
relatively prime to the order |A|. We write E(G) for the set of all elementary subgroups
in G.

Theorem 1.1 (Brauer). If G is a finite group, every element f of the group ring
R[G] is a Z-linear combination of induced characters IG

E (φ)(g) = Tr(IndG
E(φ)g),

f =
∑

i

miI
G
Ei

(φi),

where Ei ∈ E(G) and φi is a one-dimensional representation on Ei.
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We say that a particular group G is of Brauer type or type B if this result holds for G.
Many proofs of this result have been given (see [1,3]), perhaps the shortest being that

of [9]. In this note we observe that the theory for symmetric groups Sn is so strong that we
can give a constructive and straightforward proof of Brauer’s theorem for such groups,
and since every G is a subgroup of some Sn an application of the Mackey subgroup
theorem, which describes the irreducible decomposition of restrictions of an induced
representation, allows us to conclude that all finite groups are of Brauer type.

We approach Brauer’s theorem for Sn by mostly constructive methods, involving induc-
tion from well-understood classes of groups (much simpler than the arbitrary p-groups
appearing in the class E of elementary groups). We show first that Sn has a weaker
Brauer-type property, property (B∗), in which the class E(Sn) is replaced with the larger
class N (Sn) of nilpotent subgroups, and induction is from irreducible rather than one-
dimensional representations. This helps because the combinatorial properties of nilpotent
groups are much better than those of the class E ; for instance, E is not closed under direct
products. Next, we give a self-contained proof that all nilpotent groups are of Brauer
type, from which it follows immediately by induction in stages that symmetric groups
are actually of (strong) Brauer type.

Ultimately, the nilpotent case reduces to proving that particular small abelian groups
of the form Z2

pq = Z2
p×Z2

q are of Brauer type, which we do using finite Fourier transforms.
An interesting aspect of the proof is its use of certain properties of the Sylow subgroups

in Sn, when n is a prime power pm, and their relation to ‘long cycles’ such as σ0 =
(1, 2, . . . , n). Specifically, we show the following.

Theorem 1.2. When n = pm for some prime, every n-cycle in Sn lies in a unique
p-Sylow subgroup (although several n-cycles can lie in the same Sylow subgroup). For
any Sylow subgroup Sylp in Sn and any n-cycle σ ∈ Sylp, we have that

xσx−1 ∈ Sylp =⇒ x ∈ NSn
(Sylp) for all x ∈ Sn,

and the intersection with Sylp of the orbit under conjugation Cn = Sn · σ is the orbit
of σ under the normalizer NSn

(Sylp).

This relation between ‘long cycles’ and Sylow subgroups in symmetric groups seems
not to have been noted previously, and may prove useful in other investigations. When
n is not a prime power, long cycles reappear in a different way. Given a relatively prime
factorization n = n1n2, a long cycle σ is contained in a unique subgroup H that is a
copy of Sn1 × Sn2 embedded in Sn in a non-standard way via the Chinese remainder
theorem. The representation IndSn

H (1) induced from the trivial representation on H will
play a crucial role in our analysis.

Our initial efforts in this paper are focused on proving that symmetric groups have a
weak Brauer property (B∗). First, we present some background regarding representations
of Sn and their well-known characterization in terms of induced representations. For
arbitrary G there exists a general formula for the trace character induced from a finite-
dimensional representation ρ on a subgroup H ⊆ G. If Cg is a G-conjugacy class and
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χρ(h) = Tr(ρh), the trace character of the induced representation IndG
H(ρ) is

IG
H(ρ)(Cg) =

⎧⎪⎨
⎪⎩

∣∣∣∣ G

H

∣∣∣∣ · 1
|Cg|

∑
h∈Cg∩H

χρ(h) if Cg meets H,

0 if Cg is disjoint from H.

(1.1)

When G = Sn we write Λn for the set of partitions of an integer n � 2:

λ = (λ1, . . . , λn), with λ1 � · · · � λn � 0 and
∑

i

λi = n.

With each partition we associate a subgroup Sλ = Sλ1 × · · · × Sλn
in Sn (with the

convention that Sλ = Sλ1 × · · · × Sλr if λr > 0 and λr+1 = 0). The representation
Uλ = IndSn

Sλ
(1Sλ

) induced from the trivial character 1Sλ
on Sλ has a trace character

whose values are

ψ(λ)(Cg) = ISn

Sλ
(1Sλ

)(Cg) =

⎧⎪⎨
⎪⎩

∣∣∣∣Sn

Sλ

∣∣∣∣ ·
∣∣∣∣Cg ∩ Sλ

Cg

∣∣∣∣ if Cg meets Sλ,

0 if Cg is disjoint from Sλ.

(1.2)

Obviously, U(n,0,...,0) = 1Sn (the trivial representation on Sn) and U(1,...,1) is the left
regular representation L = IndSn

E (1E), where E = {e}. The index λ∗ = (n, 0, . . . , 0) is
exceptional in that all other Sλ are proper subgroups, while Sλ∗ = Sn.

We impose a lexicographic order on partitions of n, letting

λ < µ if λi < µi for the first index i = 1, 2, . . . such that λi �= µi,

so λ∗ = (n, 0, . . . , 0) < (n − 1, 1, 0, . . . , 0) < · · · < (1, 1, . . . , 1). The following well-known
result (see [4, pp. 52–57]) regarding irreducible representations of Sn is the basis of our
discussion of these groups.

Theorem 1.3 (Young’s rule). There exists a bijective correspondence between par-
titions Λ of n and irreducible representations πλ ∈ S∧

n such that

Uλ
∼= πλ ⊕

( ⊕
µ<λ

mµπµ

)
(with mµ ∈ Z+), (1.3)

thereby associating each λ with a unique irreducible representation πλ.

The result we actually need in our discussion of symmetric groups Sn follows immedi-
ately by a simple recursive argument.

Corollary 1.4. The trace characters ψ(λ) = ISn

Sλ
(1Sλ

) of the induced representations
{Uλ : λ ∈ Λ} form a Z-basis for the representation ring R[Sn].

We also note that (irreducible) trace characters on Sn can only have integer values.
Obviously, they lie in Q, by (2) and Corollary 1.4, but, as is well known, the values of
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trace characters on any finite group are algebraic integers; hence, they lie in Z when
G = Sn.

All Uλ are induced from proper subgroups except for Uλ∗ = 1Sn
. This poses a problem

if we wish to reduce the study of the Brauer property for Sn to certain proper subgroups.
We circumvent this by constructing a new trace character ψ(0) such that

{ψ(0)} ∪ {ψ(λ) : λ ∈ Λ, λ �= λ∗} is a Z-basis for R[Sn]. (1.4)

The ψ(0) we construct can take two forms, depending on whether or not n is a prime
power. When n = pm our new character will be a sum of induced characters ISn

Ni
(πi),

where

• Ni is a p-Sylow in Spm and πi = 1, or

• Ni is the cyclic subgroup generated by a long cycle σ in Spm and πi is the canonical
unitary character χ(σk) = e2πik/p.

When n is not a prime power, we can write n = n1n2 with relatively prime factors. In
this case, we start with a long cycle σ and construct a trace character

ψ(0) = ISn

H (1S),

where H ⊆ Sn is a subgroup that contains σ and is isomorphic to a direct product of
symmetric groups Sn1 × Sn2 . However, the embedded subgroup is not a product of the
subgroups SAi ⊆ Sn acting on disjoint subsets Ai ⊆ [1, n] of cardinality |Ai| = ni, unlike
the subgroups Sλ = Sλ1 × · · · × Sλn

corresponding to partitions of [1, n].
Finally, we recall that all finite p-groups are nilpotent; hence, elementary groups are

nilpotent. Furthermore, any finite nilpotent group N is a direct product of its Sylow
subgroups, which are unique (see [5, pp. 154–156]).

If a nilpotent group has order n =
∏r

i=1p
mi
i , each of its Sylow subgroups Spi

is normal and N is their direct product N =
∏r

i=1Spi .

We need the following general facts regarding tensor and Kronecker products of rep-
resentations.

(1) Tr(µ ⊗ ν)g = Tr(µg) · Tr(νg) for representations of a group G.

(2) If µ is a representation of a group G and π a representation of a subgroup H, then
µ ⊗ IndG

H(π) ∼= IndG
H((µ | H) ⊗ π) (see [8, § 4.3]).

(3) Kronecker products of representations on a direct product G1 × G2 have the fol-
lowing properties:

(i) Tr(µ × ν)(a,b) = Tr µa · Tr νb for (a, b) ∈ G1 × G2,

(ii) IG1×G2
H1×H2

(µ × ν)(a,b) = IG1
H1

(µ)a · IG2
H2

(ν)b as functions on G1 × G2,

(iii) every irreducible finite-dimensional complex representation ρ ∈ (A × B)∧ is
∼= µ × ν for some µ ∈ A∧, ν ∈ B∧.
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At the start of our discussion we consider the class N (G) of nilpotent subgroups in a
finite group G, in place of the elementary subgroups E(G) that figure in Brauer’s theorem.
The class N (G) includes all abelian and elementary subgroups, and any H ∈ N (G) is the
direct product of its p-Sylow subgroups. More importantly for our purposes, the class N
is closed under formation of direct products and subgroups, while the class E is not.

We write IG
H(ρ) for the trace character of an induced representation IndG

H(ρ). For any
class C(G) of subgroups we define the following subsets of the representation ring R[G]:

IG
∗ (C(G)) = Z -span{IG

H(π) : H ∈ C(G), π ∈ H∧},

JG
∗ (C(G)) = Z -span{IG

H(φ) : H ∈ C(G), dim φ = 1}.

The following observation is fundamental to our discussion.

Lemma 1.5. For any class of subgroups C(G) the functions IG
∗ (C(G)) form an ideal

in the group ring R[G].

Proof. As noted above, if H ∈ C(G), π ∈ H∧, and µ is any finite-dimensional repre-
sentation of G, then (µ | H) ⊗ π decomposes into the irreducibles

⊕
i πi and

µ ⊗ IndG
H(π) ∼=

⊕
i

IndG
H(πi).

Taking trace characters, we get χµ · IG
∗ (C(G)) ⊆ IG

∗ (C(G)). �

Since IG
∗ (C(G)) is an ideal, it equals R[G] if and only if it contains the trivial repre-

sentation 1G. The set of functions JG
∗ (C(G)) need not be an ideal, but, by the Mackey

subgroup theorem [6], it is a subring if the class C(G) is closed under intersections and
invariant under conjugation by elements of G.

2. Symmetric groups Sn

Brauer’s theorem asserts that
R[G] = JG

∗ (E(G)).

Our first step towards a proof is to show that the symmetric groups have the weaker
property (B∗):

for any permutation group Sn we have that R[G] = IG
∗ (N (Sn)). (B∗)

Thus, we have the following.

Theorem 2.1. Every symmetric group Sn has property (B∗): R[Sn] = ISn
∗ (N (Sn)),

where N is the class of nilpotent subgroups.

In § 3 we show that the nilpotent groups N have the strong Brauer property R[N ] =
JN

∗ (E(N)), and then, by induction in stages,

IndSn

H (φ) ∼= IndSn

N (IndN
H(φ)) (N ∈ N (Sn), H ⊆ N),

we conclude that all symmetric groups are of strong Brauer type.
The following lemma underlies our discussion of the symmetric groups.
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Lemma 2.2. Let Cn be the conjugacy class in Sn consisting of all n-cycles. For
f ∈ R[Sn] define the unital ring homomorphism P (f) = f(Cn). The kernel of P is
precisely M = Z -span{ψ(λ) : λ �= λ∗ in Λ}.

Proof. Obviously, P (R) = Z. Furthermore,

ker P ⊇ M = Z -span{ψ(λ) : λ �= λ∗}.

In fact, by (1.2), ψ(λ)(Cn) = 0, since Cn ∩ Sλ is empty for every λ �= λ∗. In the reverse
direction, if

f =
∑

π∈S∧
n

mπχπ (mπ ∈ Z),

each χπ is an integer combination of the ψ(λ), λ ∈ Λ, and so is f . Thus, if P (f) = 0, the
coefficient of ψ(λ∗) must be 0 and f ∈ M. �

We produce a new Z-basis for R[Sn], as in (1.4), by adjoining one extra trace character
to {ψ(λ) : λ �= λ∗}, which is already a Z-basis for M. By Lemma 2.2 we get a Z-basis
for R[Sn] if ψ(0) = ±1 on Cn. We construct a vector ψ(0) having the following particular
form:

ψ(0) is a sum
∑

i
miI

Sn

Hi
(πi) of trace characters induced from

irreducible representations πi ∈ H∧
i , and ψ(0) = ±1 on the

maximal class Cn. (2.1)

We accomplish this using only pairs (Hi, πi) of the following types.

• For general n we use ISn

H (1), where H is a copy of Sn1 × Sn2 (n = n1n2 relatively
prime) constructed from a long cycle in Sn.

• For n = pm we use ISn

H (1), where H is a p-Sylow subgroup of Spm , a class of
p-groups whose structure is well understood.

• For n = pm we use ISn

H (χ), where H = 〈σ〉 is the cyclic group generated by a long
cycle and χ is its canonical character χ(σk) = e2πik/p.

For general n, the remaining characters ψ(λ) needed to generate R[Sn] are induced from
the trivial character 1 on the products Sλ = Sλ1 × · · · × Sλn for λ ∈ Λ∗.

Constructing the extra character. In what follows we regard Sn as permutations of
X = {1, 2, . . . , n} on which we impose the standard cyclic order; with this in mind it
is convenient to identify X with Zn = {[1], [2], . . . , [n]}. Let σ0 be the particular ‘long
cycle’ (1, 2, . . . , n) in Cn and let H0 = 〈σ0〉 be the cyclic subgroup it generates in Sn.

Definition 2.3. A permutation τ ∈ Sn is a cyclic k-shift if τ(s) ≡ s + k (mod n) for
all s ∈ X. Obviously, σk

0 is the unique k-shift on X, and the various shifts comprise the
cyclic group H0 ∼= (Zn, +).
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Not all powers σk
0 are n-cycles; in fact, it is not hard to see that

σk
0 ∈ Cn ⇐⇒ o(σk

0 ) = n ⇐⇒ k ∈ Un = (multiplicative units in Zn).

Before proving the claims in (1.4) we establish a few facts we will need later.

Lemma 2.4. If σ is an n-cycle in Sn and H = 〈σ〉, this subgroup is its own centralizer:
ZSn(H) = H.

Proof. We may assume that σ = σ0 = (1, 2, . . . , n). Then τ ∈ Sn centralizes H ⇐⇒
τσ0τ

−1 = (τ(1), τ(2), . . . , τ(n)) is equal to σ0, which means that the cyclically ordered
list (τ(1), . . . , τ(n)) is just (1, 2, . . . , n) subjected to a cyclic k-shift, which means that
τ(s) ≡ s + k (mod n) for all s ∈ [1, n]. Thus, τ = σk

0 and ZSn(H) = H. �

One can also identify the normalizer of H0 as an explicit subgroup of Sn, showing that
it is the natural semi-direct product of (Zn, +) acted upon by the multiplicative group
of units (Un, ·), but we do not need this in the present work.

The second fact we need has already been posted as Theorem 1.2, which we now prove.

Proof of Theorem 1.2. When n = pm, we prove the uniqueness of the p-Sylow
containing a particular n-cycle by induction on the exponent m in pm, the result being
trivial if m = 1. Assuming that it holds for exponents � m − 1, we consider n = pm; we
may restrict our attention to the particular long cycle σ0 = (1, 2, . . . , n). For brevity we
write r = pm−1 and n = pm below.

The cardinalities of Sylow subgroups in Sn are well known (see [5, pp. 81–83]). When
n = pm we get that

|Sylp| = p(1+p+···+pm−1)

for any p-Sylow in Spm . This is related to the size of Sylow subgroups in Spm−1 by the
identities

|Sylp(Spm)| = |Sylp(Spm−1)|p · p = pr · |Sylp(Spm−1)|. (2.2)

The first identity is immediate from the wreath product construction described in [5,
pp. 81–83], where Sylp(Spm) is shown to be a semi-direct product

Sylp(Spm) ∼= N � Zp, where N ∼= Sylp(Spm−1) × · · · × Sylp(Spm−1).

The second identity follows because

p(1+p+···+pm−1) = pr · p(1+p+···+pm−2).

Now consider the power σr
0 (r = pm−1), an element of order p in H0 = 〈σ0〉. It decomposes

into r = pm−1 disjoint p-cycles

σr
0 = τ1 · · · · · τr, where τk = (k, k + r, k + 2r, . . . , k + (p − 1)r).

Orbits in [1, pm] under the action of A = 〈σr
0〉 are the supports

Ik = supp(τk) = {k, k + r, . . . , k + (p − 1)r}, 1 � k � r = pm−1,

of these cycles.
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Lemma 2.5. If Sylp is any p-Sylow subgroup in Spm that contains the long cycle
σ0 = (1, 2, . . . , pm), then σr

0 (r = pm−1) is in the centre Z = Z(Sylp) and Z ⊆ H0 = 〈σ0〉.

Proof. Sylp is nilpotent and has the non-trivial centre Z; this must be ⊆ H0 = 〈σ0〉.
In fact, if σ0 ∈ Sylp, elements of Z commute with σ0, but, by Lemma 2.4, the centralizer
of σ0 in Spm is H0.

For each divisor d of |H0| = pm there exists a unique subgroup such that |Hd| = d.
Since σr

0 has minimal order equal to p and Z = Hd for some d = pk we get that Z ⊇ 〈σr
0〉,

so σr
0 is central in Sylp. �

It follows from Lemma 2.5 that Sylp permutes the A-orbits in [1, pm], which are just
the supports Ik = supp(τk) of the cycles in σr

0. If X is the space of orbits and Per(X)
the full group of permutations, we get the sequence of homomorphisms

e → Mp → Sylp
π−→ Per(X) ∼= Spm−1 ,

where Mp is the ‘action kernel’ Mp = {x ∈ Sylp : x(Ik) = Ik for all k}. We identify
X ≈ [1, r] = [1, pm−1] via Ik → k. The action of Sylp is transitive: we know the cycles τk

explicitly, from which it is clear that

σ0τkσ−1
0 = τk+1 (reckoning subscripts mod pm−1),

but then σ0(Ik) = Ik+1 and, since σ0 ∈ Sylp, transitivity follows.
The action kernel Mp is the same subgroup of Spm for all p-Sylow subgroups contain-

ing σ0. To see this, consider the kernel Mp for a particular p-Sylow and the subgroup

M0 = {x ∈ Spm : xτkx−1 = τk, ∀k ∈ [1, p]}.

An element x ∈ M0 can only act as a k-shift on the cyclic-ordered entries of τk (perhaps
with a different shift on each cycle), and any element in Spm with this property is in M0.
Hence,

|M0| = pr (r = pm−1).

For a fixed p-Sylow let Mp be its action kernel. We first show that Mp ⊆ M0. If y ∈ Mp,
we have that y(Ik) = Ik, for all k, but σr

0 is central in Sylp, so

∏
k

τk = σr
0 = yσr

0y
−1 =

∏
k

yτky−1.

Each conjugate is a p-cycle with the same support as τk, so by uniqueness of disjoint
cycle decompositions we get that yτky−1 = τk for all k. Thus, Mp ⊆ M0.

The equality Mp = M0 follows if they have the same cardinality. Since π(Sylp) is a
p-group in Spm−1 , we have that

|π(Sylp)| � |Sylp(Spm−1)| =
|Sylp|

pr
(by (2.2)).
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By transitivity and the fact that |Mp| � |M0|, we also have that

|π(Sylp)| =
|Sylp|
|Mp|

�
|Sylp|

pr
;

hence, all these items are equal and, in particular, |Mp| = |M0| = pr. Thus, Mp = M0

for every p-Sylow in Spm that contains σ0.
The preceding calculation also shows that |π(Sylp)| = |Sylp(Spm−1)|, so the image

group S̃ = π(Sylp) is a p-Sylow in Spm−1 . We obtain the exact sequence

e → M0 → Sylp
π−→ S̃ ∼= Sylp(Spm−1) → e.

The image σ̄0 = π(σ0) is easily seen to be the long cycle (1, 2, . . . , pm−1) under our
identification X ≈ [1, pm−1]. By the induction hypothesis, S̃ is the unique p-Sylow con-
taining σ̄0, regardless of which p-Sylow containing σ0 we started with. It follows that a
unique Sylp ⊆ Spm is determined, and the first part of Theorem 1.2 is proved.

The second part is now easy. Let σ ∈ Cn be any n-cycle and let Sylp be the unique
p-Sylow containing it. For x ∈ Sn,

xσx−1 ∈ Sylp =⇒ x is in the normalizer NSn(Sylp),

because xσx−1 lies in two Sylow subgroups Sylp and Syl′p = xSylpx−1; hence, Syl′p = Sylp
and x normalizes Sylp. It follows immediately that

Cn ∩ Sylp = Sn · σ ∩ Sylp = NSn
(Sylp) · σ,

and that completes the proof. �

We now address the claims made in (1.4) and (2.1).

Proposition 2.6. For n � 3, let σ0 be the n-cycle (1, 2, . . . , n) in the maximal con-
jugacy class Cn, and assume that n = pm. If S = Sylp(Sn) is the Sylow p-subgroup
containing σ0, and 1 is the trivial character on it, the value at Cn of the induced trace
character ISn

Sylp(Sn)(1) is a non-zero integer relatively prime to p.
If H0 is the cyclic group 〈σ0〉 ∼= (Zn, +) and χ is the canonical character

χ(σj
0) = e2πij/p,

the value of ISn

H0
(χ) at Cn is a power of p. Therefore, some Z-linear combination ψ(0) ∈

R[Sn] of ISn

Sylp
(1) and ISn

H0
(χ) has ψ(0)(Cn) = 1.

Note. We can actually compute the exact value ISn

H0
(χ) = (−1)pm−1, but we will not

need it here.

Proof. First consider the representation induced from the trivial representation 1 on
the unique p-Sylow subgroup Sylp(Sn) that contains the long cycle σ0. By the usual
induced character formula,

ISn

Sylp(Sn)(1)(Cn) =
∣∣∣∣ Sn

Sylp(Sn)

∣∣∣∣ · 1
|Cn|

∑
Cn∩Sylp(Sn)

1 = n ·
|Cn ∩ Sylp(Sn)|

|Sylp(Sn)|
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since |Cn| = (n − 1)!. It follows from Theorem 1.2 that

Cn ∩ Sylp(Sn) = Sn · σ0 ∩ Sylp(Sn) is the conjugation orbit NSn
(Sylp(Sn)) · σ0

and, hence, that |Sylp| divides |NSn(Sylp(Sn))|, which divides |Sn| = n!. The stabilizer of
σ0 in Sn is H0, and H0 ⊆ Sylp since σ0 ∈ Sylp, so the stabilizer of σ0 in N = NSn

(Sylp)
is also H0. Therefore, the orbit O = N · σ0 has

|O| = |N |/|H0| = |N |/pm,

and since Cn ∩ Sylp = N · σ0 = O we get that

n

|Sylp|
· |Cn ∩ Sylp| =

pm

|Sylp|
· |N |

pm
=

|N |
|Sylp|

.

This quotient is obviously relatively prime to p.
In the other case, we consider representations induced from H0 = 〈σ0〉 ∼= (Zn, +). The

canonical surjective homomorphism of rings

φp : [x]n = x + nZ → [x]p = x + pZ ∈ Zp
∼= Zpm/pZpm (x ∈ Z, n = pm)

yields a natural unitary character on (Zn, +) having values in the group of pth roots of
unity Ωp ⊆ C if we take

χp([x]n) = e2πix/p (x ∈ Z, n = pm).

The value of the induced character on any class Cg ⊆ Sn is

ISn

H0
(χp)(Cg) =

⎧⎪⎨
⎪⎩

∣∣∣∣ Sn

H0

∣∣∣∣ · 1
|Cg|

∑
h∈H0∩Cg

χp(h) if H0 ∩ Cg is non-trivial,

0 if H0 ∩ Cg = ∅.

When Cg = Cn the multiplier in front of the sum is equal to 1, since |Cn| = |Sn/H0| =
(n−1)!. The fact that the remaining sum is a power of p follows from a general observation
about p-groups.

Lemma 2.7. Let |G| = pm. If H = 〈σ〉 for some element σ, and G · σ is its conjugacy
class, then |G · σ ∩ H| is a power of p.

Proof. For x ∈ G, we have that

xσx−1 ∈ H ⇐⇒ x is in the normalizer NG(σ),

so G · σ ∩ H is the orbit NG(σ) · σ in G. Hence,

|G · σ ∩ H| = |NG(H)|/|ZG(H)| is a power of p.

�
This proves Proposition 2.6. �
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We now take up construction of ψ(0) in the case where n is a product n = MN with
relatively prime factors M, N < n.

Proposition 2.8. If n = MN with relatively prime factors, there exists a subgroup
S ⊆ Sn algebraically isomorphic to SM × SN such that S contains an n-cycle σ0 and the
induced character ISn

S (1S) is equal to 1 on the maximal class Cn.

Proof. Obviously, S will contain H0 = 〈σ0〉. We construct S so it has the property

xσ0x
−1 ∈ S =⇒ x ∈ S for all x ∈ Sn,

from which we get that ISn

S (1S)(Cn) = 1 by the following lemma.

Lemma 2.9. Let H0 = 〈σ0〉 be the subgroup generated by an n-cycle σ0 in Cn, and
suppose that M ⊆ Sn is a subgroup containing H0 that has the property

xσ0x
−1 ∈ M =⇒ x ∈ M for all x ∈ Sn. (2.3)

The trace character ψ(0) = ISn

M (1M ) induced from the trivial character on M is then
equal to 1 on Cn.

Proof. Conjugation by a suitable y ∈ Sn yields yσ0y
−1 = σ′

0 = (1, 2, . . . , n). Since
(2.3) holds for M ′ = yMy−1 and σ′

0, and since IndSn

M ′(1M ′) ∼= IndSn

M (1M ), we may
hereafter assume that σ0 = (1, 2, . . . , n).

Next, consider an arbitrary subgroup of H ⊆ Sn containing σ0. The value of ISn

H (1H)
at Cn is given by the standard formula (1.2):

ISn

H (1H)(Cn) =
∣∣∣∣Sn

H

∣∣∣∣ · 1
|Cn|

∑
x∈H∩Cn

1 =
∣∣∣∣Sn

H

∣∣∣∣ · |H ∩ Cn|
(n − 1)!

= n · |H ∩ Cn|
|H| .

When Sn acts on itself by conjugations, we have shown that StabSn(σ0) = ZSn(σ0)
is equal to H0 (see Lemma 2.4), so |StabSn(σ0)| = n. Since H ⊇ H0, we get that
StabH(σ0) = H ∩ H0 = H0. Hence,

|StabH(σ0)| = |StabSn(σ0)| = n (2.4)

for any H containing σ0.
Now assume that H = M , a subgroup having the property (2.3). In this case, we have

M ∩ (Sn · σ0) = M ∩ (M · σ0) = M · σ0, so M ∩ Cn = M · σ0 and

|M ∩ Cn| = |M · σ0| =
|M |

|StabM (σ0)|
=

|M |
|StabSn

(σ0)|
=

|M |
n

. (2.5)

Therefore,

ISn

M (1)(Cn) = n · |M ∩ Cn|
|M | =

n

|M | · |M |
n

= 1,

as claimed. �
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To construct S we encode [1, n] as the Cartesian product space IM ×IN = [1, M ]×[1, N ]
via any bijection φ : [1, n] → IM × IN . This bijection of underlying spaces induces an
isomorphism φ∗(σ) = φσφ−1 from Sn to SIM ×IN

that sends k-cycles to k-cycles.
We may transfer the problem in our proposition over to SIM ×IN

, where we seek

(i) a subgroup S ∼= SM × SN = SIM
× SIN

in SIM ×IN
,

(ii) an n-cycle σ ∈ S such that

xσx−1 ∈ S =⇒ x ∈ S (∀x ∈ SIM ×IN
).

For S ∼= SM × SN we take the subgroup

S = {τ × µ : τ ∈ SIM
, µ ∈ SIN

} in SIM ×IN
, (2.6)

where τ × µ(i, j) = (τ(i), µ(j)). This subgroup includes the long cycle

σ̃0 = ((11), (22), . . . , (nn)) in SIM ×IN
.

Notation. In what follows, the intervals [1, M ] and [1, N ] should be regarded as cyclic-
ordered lists, whose entries are reckoned mod M and modN , respectively. Thus (i, j) =
([i]

M
, [j]

N
) for i, j ∈ Z, where [i]

M
, [j]

N
are congruence classes in ZM , ZN , respectively. By

the Chinese remainder theorem, the pairs (11), (22), . . . , (nn) run through all of IM × IN

before the first repeat.
Our discussion employs the particular encoding map

φ(k) = (kk), i.e. φ([k]n) = ([k]
M

, [k]
N

) for k ∈ Z. (2.7)

This is an n-cycle by the Chinese remainder theorem, and has the great advantage that
φ∗ maps the ‘standard’ n-cycle σ0 = (1, 2, . . . , n) in Sn to σ̃0 ∈ S in SIM ×IN

.
We now observe the following.

Lemma 2.10. Every n-cycle σ ∈ SM × SN is conjugate within SM × SN to the
standard n-cycle σ̃0.

Proof. Let σ = τ × µ. If τ is not an M -cycle, there exists a proper τ -invariant subset
A in IM ; then, A × IN is a proper subset invariant under τ × µ, which is impossible for
an n-cycle. Thus, τ , µ are long cycles in SM , SN , respectively.

There exist x ∈ SM , y ∈ SN such that xτx−1 = (1, 2, . . . , M) and yµy−1 =
(1, 2, . . . , N), so if z = (x, y) in SM × SN = SIM

× SIN
, we get that

zσz−1 = (1, 2, . . . , M) × (1, 2, . . . , N) = σ̃0.

�
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As for (ii), if σ is any n-cycle in S = SM × SN and x ∈ Sn is an element such that
xσx−1 ∈ S, we must show that x ∈ S. By the preceding lemma there exist a, b ∈ S such
that

aσ̃0a
−1 = σ and (bxa)σ̃0(bxa)−1 = σ̃0,

so bxa is in the centralizer ZSIM ×IN
(σ̃0). The particular isomorphism φ∗ : Sn → SIM ×IN

we have chosen sends σ0 to σ̃0, so the centralizer ZSn(σ0) maps to the centralizer of σ̃0

in SIM ×IN
. By Lemma 2.4 we have that ZSn(σ0) = H0 = 〈σ0〉, so the corresponding

centralizer of σ̃0 is H̃0 = 〈σ̃0〉. Therefore, bxa is a power σ̃r
0, which lies in H̃0 ⊆ SM ×SN .

Then,
x = b−1σ̃r

0a
−1 = b−1a−1 · aσ̃r

0a
−1.

The first factor is in SM × SN , and so is a; thus, the conjugate yσ̃r
0y

−1 is in SM × SN ,
and so is x. This completes the proof of Proposition 2.8. �

We have now verified the claim of (1.4) when the extra character ψ(0) is defined as in
Proposition 2.8 and Lemma 2.9.

Corollary 2.11. If we define the extra character ψ(0) as in Proposition 2.8 and
Lemma 2.9, the characters

{ψ(0)} ∪ {ψ(λ) : λ �= λ∗ in Λn}

are a Z-basis for the representation ring R[Sn].

3. Sn has the weak Brauer property (B∗)

Here, we show that all symmetric groups have the weak Brauer property (B∗): R[Sn] =
ISn
∗ (N (Sn)).

Proposition 3.1. For any n, we have that R[Sn] = ISn
∗ (N (Sn)), where N (Sn) is the

class of all nilpotent subgroups, proper or not.

Proof. We argue by induction on n, the result being trivial for n = 1, 2. By Corol-
lary 2.11, if π ∈ S∧

n , its trace character can be written as

χπ = m0ψ
(0) +

∑
λ�=λ∗

mλISn

Sλ
(1Sλ

)

= m0ψ
(0) +

∑
λ�=λ∗

mλψ(λ) (m0, mλ ∈ Z),

where, as in (1.4), the extra character is one of the following.

(i) When n = pm, ψ(0) is a Z-linear combination of characters ISn

N (π) induced from
irreducible representations of nilpotent subgroups.

(ii) When n is not a prime power the extra character is equal to ISn

S (1S), where S ⊆ Sn

is a subgroup algebraically isomorphic to SM × SN , with n = MN and M , N

relatively prime.
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Our task is to show that the induced characters ψ(λ) fall within ISn
∗ (N (Sn)). The same

sort of argument will apply to ψ(0) in the second case above, while in the first case we
already have ψ(0) ∈ ISn

∗ (N (Sn)).
We observe that 1Sλ

is a Kronecker product 1Sλ1
× · · · × 1Sλn

on the subgroup Sλ =
Sλ1 × · · · × Sλn

in Sn. By the induction hypothesis (since λk < n for all k if λ �= λ∗), we
have that

1Sλk
∈ Z -span{I

Sλk

N (π) : N ∈ N (Sλk
), π ∈ N∧}.

Thus, 1Sλ
is a Z-linear combination of functions on Sλ1 × · · · × Sλn

having the following
form. For σk ∈ Sλk

,

f(σ1, . . . , σn) = I
Sλ1
N1

(π1)(σ1) · · · · · ISλn

Nn
(πn)(σn)

= (ISλ1×···×Sλn

N1×···×Nn
(π1 × · · · × πn))(σ1,...,σn)

= ISλ

N1×···×Nn
(π1 × · · · × πn)σ,

where σ = σ1 ·· · ··σn in Sλ. Each Nk ⊆ Sλk
is nilpotent and πk ∈ N∧

k , so π = π1×· · ·×πn

is an irreducible representation of the nilpotent direct product N = N1 × · · · × Nn.
(Note that this is where you would get in trouble working with characters induced from
elementary subgroups; the class E is not closed under direct products, but class N is.)

We have shown that, for every λ �= λ∗,

1Sλ
∈ Z -span{ISλ

N (π) : N ∈ N (Sλ) ⊆ N (Sn), π ∈ N∧}.

By induction in stages, ψ(λ) = ISn

Sλ
(1Sλ

) is a Z-linear combination of terms

ISn

Sλ
(ISλ

N (π)) = ISn

N (π), where N ∈ N (Sn) and π ∈ N∧,

proving the proposition. �

We now observe that symmetric groups are of (strong) Brauer type if we can prove
that all finite nilpotent groups are of Brauer type.

Lemma 3.2. If all finite nilpotent groups are of Brauer type, so are all symmetric
groups Sn.

Proof. In Proposition 3.1 we showed that every irreducible character χπ is a sum
of induced characters ISn

N (µ), where N ∈ N (Sn) and µ ∈ N∧. If nilpotent groups are
type B, each χµ(µ ∈ N∧) is a sum of characters IN

H (φ) with H ∈ E(N) ⊆ E(Sn) and φ

one dimensional. By induction in stages, Sn is of Brauer type. �

4. Nilpotent groups are Brauer type

In this section we show that the Brauer property holds for nilpotent groups if it can be
established for abelian groups of the form Z2

pq
∼= Z2

p × Z2
q.

Proposition 4.1. If the Brauer property holds for abelian groups of the form Z2
pq

(with p, q distinct primes), then all finite nilpotent groups are of Brauer type; hence, so
are all symmetric groups Sn.
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We start with a lemma.

Lemma 4.2. Let ζ : G → Ḡ be a surjective homomorphism between finite groups, let
P̄ be the proper subgroups in Ḡ, and let ζ−1(P̄) be their pullbacks to G. Then,

IG
∗ (ζ−1(P̄)) = Z -span{IG

H(π) : H ∈ ζ−1(P̄), π ∈ H∧}

is an ideal in R[G]. If 1Ḡ ∈ IḠ
∗ (P̄), then

1G = 1Ḡ ◦ ζ ∈ IG
∗ (ζ−1(P̄))

and IG
∗ (ζ−1(P̄)) = R[G].

Proof. If H is the pullback of a proper subgroup H̄ in Ḡ, and if π ∈ H∧, then for
any representation µ of G we have that [8]

µ ⊗ IndG
H(π) ∼= IndG

H((µ | H) ⊗ π).

Hence, the trace character of this representation is∑
β

IG
H(θβ) ∈ IG

∗ (P)

when we decompose (µ | H) ⊗ π as a direct sum of irreducible representations θβ ∈ H∧.
Pullbacks π = π̄ ◦ ζ of irreducibles on a proper subgroup H̄ ⊆ Ḡ are irreducible on

H = ζ−1(H). Furthermore, we have that IG
H(π̄ ◦ ζ) = IḠ

H̄
(π̄) ◦ ζ. Thus,

IG
∗ (ζ−1(P̄)) ⊇ IḠ

∗ (P̄) ◦ ζ.

If 1Ḡ ∈ IḠ
∗ (P̄), then 1G = 1Ḡ ◦ ζ lies in IG

∗ (ζ−1(P̄)), and this ideal is equal to R[G]. �

Corollary 4.3. If every irreducible character ρ̄ on Ḡ is a Z-linear combination of
characters IḠ

H̄
(π̄) induced from irreducible characters on proper subgroups H̄, then

R[G] = Z -span{IG
H(θ) : H = ζ−1(H̄), H̄ a proper subgroup and θ ∈ H∧}.

Clearly, Z2
pq

∼= Zpq × Zpq is not elementary, but its proper subgroups can only have
cardinalities p2q, pq, pq2, p, q, 1 and are all elementary. Thus, the Brauer property for
G = Z2

pq is equivalent to the statement

R[Z2
pq] = Z -span{IG

Hi
(φi) : Hi a proper subgroup of G, φi ∈ H∧

i }. (4.1)

Assuming that Z2
pq has the Brauer property, we prove Proposition 4.1 for a nilpotent

group N by induction on n = |N |.
If N has Z2

pq as a homomorphic image, then by Corollary 4.3 we have that R[N ] =
IN
∗ (ζ−1(P̄)), where P̄ are the proper subgroups in Z2

pq and ζ : N → Z2
pq is the quotient

map. Proper subgroups in N are nilpotent, and of Brauer type by the induction hypoth-
esis, so by induction in stages all elements in R[N ] are sums of characters induced from
one-dimensional characters on subgroups in E(N).

The only remaining possibility is that N has no surjective homomorphism onto Z2
pq.
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Lemma 4.4. A finite nilpotent group N has either a surjective homomorphism to Z2
pq,

or else N is already an elementary group.

Proof. N is a direct product N =
∏

pNp of its Sylow subgroups (all normal) with
[N, N ] =

∏
p[Np, Np]. Then,

∏
pNp/[Np, Np] =

∏
pN̄p is the Sylow decomposition of

the abelian group N̄ = N/[N, N ]. If subgroups N̄p and N̄q both require at least two
generators, for distinct primes p �= q, we will show that N̄p × N̄q has Z2

pq as a quotient,
yielding a natural surjective homomorphism N → Np × Nq → N̄p × N̄q → Z2

pq.
In the remaining case, there exists at most one prime p0 such that N̄p fails to be cyclic.

By the following lemma, Np is itself cyclic for all p �= p0 (so
∏

p�=p0
Np is cyclic), while

Np0 is a p-group. Thus, N is itself an elementary group in this case.

Lemma 4.5. If N is a finite nilpotent group and H a subgroup such that
H[N, N ] = N , then H = N .

Proof. Let Z0 = (e) ⊂ Z1 = Z(N) ⊂ · · · ⊂ Zr = N be the ascending central series,
and inductively define H0 = H and Hi+1 = Zi+1Hi. Then, Hi is normal in Hi+1 and,
if H �= N , there exists a first index such that Hi �= N but Hi+1 = N . Then, N/Hi

is non-trivial abelian (∼= a subgroup of Zi+1/Zi) and, therefore, Hi ⊇ [N, N ]. But then
H[N, N ] ⊆ Hi[N, N ] = Hi �= N , contrary to the hypothesis. �

Corollary 4.6. For any finite nilpotent group, the minimal number of generators is
the same for both N and N̄ = N/[N, N ]. In particular, if N̄ is cyclic, N is also cyclic
(and, in particular, abelian).

Proof. If {x̄1, . . . , x̄r} is a minimal set of generators for N̄ , let xi be any preimage
of x̄i and let H = 〈x1, . . . , xr〉. Then, H[N, N ] = G because, if y ∈ N , we have that

ȳ = φ(y) = ū1 · · · ūs, where ūk ∈ {x̄±1
1 , . . . , x̄±1

r }.

There then exists a γ ∈ [N, N ] such that y = u1 · · ·us · γ ∈ H[N, N ] and H = G by
Lemma 4.5. �

The last step in proving Lemma 4.4 is to exhibit a surjective homomorphism φ : N̄p ×
N̄q → Z2

pq when N̄p, N̄q are not cyclic. By the fundamental structure theorem for abelian
groups, if |N̄p| = pn, we have that

N̄p =
n⊕

j=1

Hj , where Hj = (Zpj ⊕ · · · ⊕ Zpj ) (nj factors; nj � 0), (4.2)

with
∑n

j=1jnj = n. Since N̄p requires at least two generators, there exist at least two
distinct factors in this direct sum, so there exists a subgroup of the form Zpi ×Zpj (i = j

allowed if ni > 1). In each of these factors there exists a subgroup Ci, Cj of index p, so
if we kill all other direct summands and factor Ci, Cj out of Zpi , Zpj , we get Zp × Zp as
a quotient of N̄p. Likewise for N̄q, yielding a surjective homomorphism from N̄p × N̄q to
Z2

p × Z2
q

∼= Z2
pq. �
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5. Abelian groups Z2
pq are of Brauer type

We prove this using a finite Fourier transform. Together with the preceding results, this
establishes our fundamental result: that all Sn are of Brauer type. From this it follows
easily (see § 6) that all finite groups are of Brauer type, by regarding them as subgroups
of Sn and applying the Mackey subgroup theorem (see [6], [7, pp. 138–142] and [8]).

Theorem 5.1. If p and q are distinct primes, the abelian group G = Z2
pq is of Brauer

type. It follows that all nilpotent groups and all symmetric groups Sn are of Brauer type.

Proof. Proper subgroups of G can only have orders 1, p, q, pq, p2q, pq2; all are
elementary. We parametrize elements of G as (a, b, c, d) ∈ Zp × Zp × Zq × Zq.

The dual G∧ for any finite abelian group consists of the multiplicative characters
on G, and R[G] is just the ring of integer coefficient trigonometric polynomial functions
f =

∑
χ∈G∧aχχ (aχ ∈ Z) with the usual pointwise (+) and (·) operations. When G = Z2

pq,
we show that the identity element 1G ∈ R[G] is in the ideal

IG
∗ [P] = Z -span{IG

H(χ) : H a proper subgroup of G, χ ∈ H∧},

where P is the family of all proper subgroups; as previously noted, proper subgroups of
G are elementary, so G is of Brauer type.

The Fourier transform on a finite abelian group is

f̂(χ) =
1

|G|
∑
g∈G

f(g)χ(g) for all χ ∈ G∧.

By Fourier inversion,

f(g) =
∑

χ∈G∧

f̂(χ)χ(g) for all g ∈ G and all f,

so the Fourier transform f̂(χ) provides the integer weights needed to write f as a sum
of characters χ ∈ G∧. For instance, the identity element 1G is

∑
χaχχ, with aχ = 1 for

χ = 1G, and aχ = 0 otherwise, so (1G)∧ is the Dirac delta δχ0 at the trivial character
χ0 = 1G ∈ G∧. The annihilator of a subgroup H ⊆ G is H0 = {χ ∈ G∧ : χ | H = 1} in
G∧, which has the property

(1H)∧ = |H|/|G| · 1H0 (Poisson summation formula).

In fact, if f = 1H and χ ∈ G∧, we have that

f̂(χ) =
1

|G|
∑
g∈G

1H(g)χ(g)

=
∣∣∣∣HG

∣∣∣∣ · 1
|H|

∑
h∈H

χ(h)

=
∣∣∣∣HG

∣∣∣∣ ·
{

1 if χ ∈ H0,

0 if χ /∈ H0,

by the orthogonality relations on H.
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The induced character corresponding to a multiplicative character χρ on a subgroup H

is

IG
H(χρ)(g) =

⎧⎪⎨
⎪⎩

∣∣∣∣ G

H

∣∣∣∣ · χρ(g) if g ∈ H,

0 if g /∈ H.

For the trivial representation on H, the class function f = IG
H(1H) = |G|/|H| · 1H is

identified as an element of R[G] by taking the Fourier transform:

f̂ =
∣∣∣∣HG

∣∣∣∣ ·
∣∣∣∣ G

H

∣∣∣∣ · 1H0 = 1H0 on G∧, (5.1)

so f = IG
H(1H) =

∑
χ∈H0 χ.

When G = Zm
p , its multiplicative characters are conveniently labelled by ‘dual vectors’

ȧ ∈ Żn
p , m-tuples such that

χȧ(x) = e2πi(ȧ1x1+···+ȧmxm)/p, ȧ ∈ Żm
p , x ∈ Zm

p ,

so we identify G∧ = (Żn
p , +). The same sort of labelling is also convenient for the products

G = A × B, with A = Z2
p and B = Z2

q. Non-trivial elements x ∈ A generate cyclic
groups Hx of order p, which are essentially disjoint: Hx ∩ Hy = (e) if Hx �= Hy. There
are p + 1 = (p2 − 1)/(p − 1) such subgroups. If E = (e) is the trivial subgroup and we
sum over representatives for the distinct Hx, the function

f =
( ∑

x

IA
Hx

(1Hx
)
)

− IA
E (1E)

has Fourier transform

f̂ =
( ∑

x

1H0
x

)
− 1Ȧ on A∧ ∼= Ȧ = Ż2

p.

The annihilators H0
x are precisely the distinct proper cyclic subgroups in Ż2

p, and their
union picks up each element in Ż2

p once, except for the trivial character (0̇, 0̇), which
occurs p + 1 times. Thus,

f̂(ȧ) =

{
0 if ȧ �= (0̇, 0̇),

(p + 1) − 1 = p at ȧ = (0̇, 0̇).

Likewise for B upon replacing p by q.
In G = A × B = Z2

p × Z2
q we have subgroups and annihilators as follows (letting E be

the trivial subgroup in A and Ė the trivial subgroup in Ḃ = B∧):

Mx = Hx × B, M0
x = H0

x × B0 = H0
x × (0̇, 0̇),

E × B, (E × B)0 = Ȧ × (0̇, 0̇).
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Now consider

f =
( ∑

x

IG
Hx×B(1Hx×B)

)
− IG

E×B(1E×B).

Writing χ0 = (0̇, 0̇, 0̇, 0̇) for the trivial character in G∧ = Żp × · · · × Żq, the Fourier
transform of f is

f̂(ȧ, ḃ) =
( ∑

x

1(Hx×B)0(ȧ, ḃ)
)

− 1Ȧ×(0̇,0̇)(ȧ, ḃ)

=
[( ∑

x

1H0
x
(ȧ)

)
− 1Ȧ(ȧ)

]
· 1Ė(ḃ)

=

{
0 if (ȧ, ḃ) �= (0̇, 0̇, 0̇, 0̇)

p if (ȧ, ḃ) = (0̇, 0̇, 0̇, 0̇)

= pδχ0 .

Reversing the roles of A and B and labelling the cyclic subgroups in B as Hy, we get a
Z-linear combination of indicator functions on annihilator subgroups in G∧ such that

ĥ(ȧ, ḃ) =
( ∑

y

1(A×Hy)0(ȧ, ḃ)
)

− 1(0̇,0̇)×Ḃ(ȧ, ḃ)

=

{
0 if (ȧ, ḃ) �= (0̇, 0̇, 0̇, 0̇),

q if (ȧ, ḃ) = (0̇, 0̇, 0̇, 0̇)
= qδχ0 .

Since p �= q there exist integers r, s such that rp + sq = 1; hence,

rf̂ + sĥ = δχ0 on G∧

and 1A×B ∈ R[A × B], as required. �

6. Transition from Sn to arbitrary groups

With all this in hand we are ready to prove the main result. If N (G) is the class of nilpo-
tent subgroups, proper or not, we have shown that ISn

∗ (N (Sn)) = R[Sn]. An arbitrary G

is of Brauer type if R[G] = IG
∗ (N (G)). In fact, if N ∈ N (G) and π ∈ N∧, then, by

Proposition 4.1 and Theorem 5.1, IG
N (π) is a Z-linear combination of characters

IG
N (IN

H (φ)) = IG
H(φ),

where H ∈ E(N) and φ is a multiplicative character on H.

Theorem 6.1. Every subgroup of Sn is of Brauer type.

Proof. If π ∈ S∧
n , then χπ ∈ ISn

∗ (N (Sn)), so χπ =
∑

iaiI
Sn

Ni
(πi), with πi ∈ N∧

i . The
restriction π | G has trace character

χπ | G =
∑

i

ai · (ISn

Ni
(πi) | G).
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By Mackey’s subgroup theorem (see [7] and [8, pp. 138–142]), we have that

ResG
Sn

(IndSn

Ni
(πi)) ∼=

⊕
x∈G\Sn/Ni

IndG
G∩x·Ni

(x · πi | G ∩ x · Ni),

where x · πi(g) = πi(x−1gx) on x · N = xNix
−1, so the trace characters satisfy

(ISn

Ni
(πi) | G) =

∑
x∈G\Sn/Ni

IG
G∩x·Ni

(x · πi | G ∩ x · Ni)

on the group G. Replacing x · πi | G ∩ x · Ni with its irreducible decomposition, we see
that this is contained in IG

∗ (N (G)), so R[Sn] | G ⊆ IG
∗ (N (G)), and the latter is an ideal

in R[G], by Lemma 1.5.
Since 1Sn

∈ ISn
∗ (N (Sn)), we get that 1G = 1Sn

| G ∈ IG
∗ (N (G)), which implies that

IG
∗ (N (G)) = R[G]. Since nilpotent groups are of Brauer type, so is G. �

7. Further comments on R[Sn]

The class of elementary groups, or even the class of p-groups, is quite large and would be
hard to characterize. The preceding discussion suggests that the groups and multiplicative
characters needed to produce a set of additive generators for R[Sn] can be narrowed to
a class whose members can be described explicitly. Essentially, R[Sn] is generated by
induced characters ISn

M (φ), where M = M1 × · · · × Mr ⊆ Sn, φ = φ1 × · · · × φr is a
multiplicative character, and the factors (Mi, φi) are described by one of the following
cases.

(15) (i) Mi
∼= Sylp(Sm), a Sylow subgroup in some symmetric group (p a prime divisor

of m!) and φ = 1H , the trivial representation.

(ii) Mi
∼= (Zp� , +), with φ the canonical multiplicative character φ([s]p�) = e2πis/p.

The structure of p-Sylow subgroups in Sm for prime divisors of m! is described explicitly
in [5, pp. 81–83], and is particularly simple when m is a prime power pk. (Then, it is
a semi-direct wreath product of Zp acting on a product of copies of p-Sylow subgroups
in Spk−1 .)

A slight modification to previous notation helps to frame the next results. If G is a
group, let Γ (G) be the set of pairs (M, φ) = (M1 ×· · ·×Mr, φ1 ×· · ·×φr), where each φi

is one dimensional and M ⊆ G is a direct product such that each factor (Mi, φi) is of
one of the types listed in (15). We then define

IG
∗ [Γ (G)] = Z -span{IG

M (φ) : (M, φ) ∈ Γ (G)}.

The groups G of interest are subgroups of Sn for a given n; clearly G ⊆ Sn implies that
Γ (G) ⊆ Γ (Sn) and ISn

∗ [Γ (G)] ⊆ ISn
∗ [Γ (Sn)].

In our discussion of R[Sn] we defined a trace character ψ(λ) = ISn

Sλ
(1Sλ

) for each
non-trivial partition λ = (λ1 � · · · � λn � 0) of n and the corresponding subgroups
Sλ = Sλ1 × · · · × Sλr ⊆ Sn, where λr > λr+1 = 0. These provide a Z-basis for R[Sn]
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when we adjoin an ‘extra character’ ψ(0), whose value is ±1 on the maximal conjugacy
class Cn of long cycles. The next result exhibits additive generators (not necessarily a
Z-basis) obtained by induction from one-dimensional representations on direct products
of groups of the types in (15).

Proposition 7.1. For any n � 2, we have that

R[Sn] = ISn
∗ [Γ (Sn)] = Z -span{ISn

M (φ) : (M, φ) ∈ Γ (Sn)}.

Proof. Arguing by induction on n, we first demonstrate that ψ(λ) = ISn

Sλ
(1Sλ

) is in
ISn
∗ [Γ (Sn)] for λ �= λ∗. Since λi < n for each i, we have that 1Sλi

∈ I
S(λi)
∗ [Γ (Sλi

)]. The
trivial character on Sλ is a Kronecker product 1Sλ

= 1Sλ1
× · · · × 1Sλn

, and since

IG1×G2
M1×M2

(π1 × π2) ∼= IG1
M1

(π1) × IG2
M2

(π2),

1Sλ
is a sum of functions f(σ) = f(σ1, . . . , σn), with σi ∈ Sλi

:

f(σ) = I
Sλ1
M1

(φ1)(σ1) × · · · × I
Sλn

Mn
(φn)(σn)

= I
Sλ1×···×Sλn

M1×···×Mn
(φ1 × · · · × φn)(σ)

= ISλ

M (φ)(σ),

where each (Mi, φi) ∈ Γ (Sλi
). Each factor H

(i)
j in

M = M1 × · · · × Mn = (H(1)
1 × · · · × H

(1)
r(1)) × · · · × (H(n)

1 × · · · × H
(n)
r(n))

has one of the two isomorphism types in (15), and, by the definition of Γ (Sλi), comes
equipped with a character φi | H

(i)
j of the appropriate type. Then, since M ⊆ Sλ ⊆ Sn,

we have (M, φ) ∈ Γ (Sn). By induction in stages, we get that ISn

M (φ) = ISn

Sλ
(ISλ

M (φ)), so

ISn

M (φ) ∈ ISn
∗ [Γ (Sn)].

Combining these last remarks, we see that ψ(λ) = ISn

Sλ
(1Sλ

) is in ISn
∗ [Γ (Sn)] for λ �= λ∗.

To complete the proof we show that the extra character ψ(0) is in ISn
∗ [Γ (Sn)]. In our

previous construction of ψ(0) there were just two possibilities.

Case 1 (n = pm). In this case we showed that ψ(0) = r · ISn

M1
(φ1)+s · ISn

M2
(φ2), where

M1 ∼= Sylp(Sn) and φ1 = 1M1 , M2 ∼= Zpm , with φ2 the canonical character, and r, s ∈ Z

is chosen such that ψ(0) = 1 on the maximal class Cn ⊆ Sn.

Case 2 (n is composite, with n = n1n2 and gcd(n1, n2) = 1). There exists a
non-standard embedding of Sn1 ×Sn2 as a subgroup M = M1×M2 ⊆ Sn, with M1 ∼= Sn1 ,
M2 ∼= Sn2 . In Proposition 2.8 we showed that M can be chosen such that ISn

M (1M ) is
equal to 1 on Cn. Induction applies since n1, n2 < n; hence, 1M1 ∈ IM1

∗ [Γ (M1)] and
1M2 ∈ IM2

∗ [Γ (M2)]. Applying previous arguments, we conclude that 1M is a Z-linear
combination of functions having the form

f(σ) = f(σ1, σ2) = IM1
H1

(1H1)(σ1) · IM2
H2

(1H2)(σ2)

= IM
H1×H2

(1H1×H2)(σ).
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Each factor Hi is a product of groups H
(i)
j as in (15), so (H1 × H2, φ1 × φ2) is in Γ (Sn).

By induction in stages, ISn

H1×H2
(1H1×H2) is in ISn

∗ [Γ (Sn)]. �
Although characters induced from direct products of subgroups of the form in (15)

provide additive generators for R[Sn], it is no longer clear how to pick out a set of free
generators (Z-basis) of the sort described in Corollary 2.11.

A variant of Proposition 7.1 exhibits a different class of subgroups whose trivial char-
acters induce additive generators for R[Sn]. Define P(Sn) to be the class of subgroups

M = M1 × · · · × Mr ⊆ Sn such that Mi
∼= Sp

mi
i

, (7.1)

where the pi are primes and pmi
i � n. This result, to a large extent, reduces the study

of R[Sn] to the study of symmetric groups such that n is a prime power, to which one
can apply Proposition 2.6.

We first observe that the arguments in Proposition 2.8 easily generalize to show that,
if n =

∏r
i=1p

mi
i , we can produce a subgroup M = M1 × · · · × Mr ⊆ Sn such that

(i) M contains the long cycle σ0 = (1, 2, . . . , n),

(ii) xσ0x
−1 ⊆ M ⇒ x ∈ M for all x ∈ Sn,

(iii) Mi
∼= Sp

mi
i

for each i.

It follows by Lemma 2.9 that ISn

M (1M )(σ0) = 1, so this induced character serves as the
extra character ψ(0), but now all prime divisors of n play equal roles in determining M .

Fix an integer n � 2. For any finite sequence α = (α1, . . . , αr) of integers such that
2 � αi � n, we write Mα for any subgroup of the form

Mα = Mα1 × · · · × Mαr ⊆ Sn such that Mαi
∼= Sαi for each i,

and let M(Sn) be the class of all such subgroups. The subfamily P(Sn) consists of all
subgroups M ∈ M(Sn) such that αi = pki

i (pi prime, pki
i � n) for all i. For any partition

λ1 � · · · � λn � 0 of n, the subgroups Sλ = Sλ1 × · · · × Sλn defined earlier all lie
in M(Sn), but M also includes the products Mα with non-standard embeddings (as in
Proposition 2.8). Obviously, αi � n if Sα ⊇ Sαi

is to fit inside Sn, but we might not
have

∑
i αi = n for such embeddings, as we did for the subgroups Sλ associated with

partitions of n.

Proposition 7.2. For any n � 2, we have that

R[Sn] = ISn
∗ [P(Sn)] = Z -span{ISn

M (1M ) : M ∈ P(Sn)}.

Proof. We know that {ψ(0)} ∪ {ψ(λ) : λ �= λ∗} is a Z-basis for R[Sn]. If n = pk,
then, trivially, 1Sn

∈ ISn
∗ [P(Sn)]; otherwise, n =

∏
ip

ki
i and there exists a product

Sα = Sα1 × · · · × Sαr embedded in Sn such that αi = pki
i and ISn

Sα
(1Sα) = 1 on Cn, so

we may take this as the extra character ψ(0). In either case, there exists an M ∈ P(Sn)
such that ISn

M (1M ) = 1 on Cn and

R[Sn] = Z -span{ISn

M (1M ) and ISn

Sλ
(1Sλ

), λ �= λ∗}.
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We now argue by induction on n. For each Sλ = Sλ1 × · · · × Sλr
corresponding to a

partition λ �= λ∗, we have that

R[Sλi ] = I
Sλi∗ [P(Sλi)] = Z -span{I

Sλi

Mi
(1Mi) : Mi ∈ P(Sλi) ⊆ P(Sn)},

so, if σ = (σ1, . . . , σr) ∈ Sλ, the trivial character 1Sλ
is a sum of products

I
Sλ1
M1

(1M1)(σ1) × · · · × I
Sλr

Mr
(1Mr )(σr) = ISλ

M (1M )(σ),

where M = M1 × · · · × Mr. Each Mi is a direct product M
(i)
1 × · · · × M

(i)
n(i) ⊆ Sλi

, with
M

(i)
j

∼= Sm for some prime power m. Then,

M1 × · · · × Mr = (M (1)
1 × · · · × M

(1)
n(1)) × · · · × (M (r)

1 × · · · × M
(r)
n(r)) ⊆ Sn

is also in P(Sn). By induction in stages, ISn

Sλ
(1Sλ

) is a sum of terms of the form

ISn

Sλ
(I§λ

M (1M )) = ISn

M (1M ),

with M ∈ P(Sn).
The extra character ψ(0), defined above, and the characters ψ(λ), λ �= λ∗, are all

in ISn
∗ [P(Sn)] and, since these are a Z-basis, we get that R[Sn] = ISn

∗ [P(Sn)]. �
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