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NOTES ON PROJECTIVE STRUCTURES

ON COMPLEX MANIFOLDS

BJϋRN GUSTAFSSON AND JAAK PEETRE

Introduction

Consider a Riemann surface X equipped with a projective structure,
that is, a covering of X with coordinate neighborhoods U and corre-
sponding (holomorphic) local coordinates {t} such that in the intersection
U Π U/ of any two such coordinate neighborhoods U and Uf change of
local coordinates is mediated by a fractional linear transformation

f = ^L±A (ad - be - 1).
ct + d

Because of the presence of this structure it is possible to define for each
integer μ > 0 in an invariant manner a differential operator Lμ which to
( - (μ - l)/2)-forms ("integrals") assigns ((μ + l)/2)-forms ("differentials"):
If / = f(t)(dt)-^~1)/2 then Lμf = f^(t)(dt)^12} The existence of the oper-
ator Lμ is basic for "Eichler cohomology" [E] (see also e.g. [K]) but goes
back to BoΓs paper [B] (cited by Eichler), so it is perhaps appropriate to
speak of the "Bol operator".2 Lt is independent of the projective structure:
If z is a local coordinate, defined in some coordinate neighborhood V,
and / = f(z) then LJ = df = ff(z)dz. And so is Lo = id. Not so for μ > 1.
For instance, if / = f(z)(dzYι/2 then L2f = (f"(z) + q{z)f(z)) (dz)3/2, for a
suitable q (depending on V). Conversely, by the knowledge of the func-
tions {q(z)} for a covering with coordinate neighborhoods {V} with corre-
sponding coordinate functions {z} the projective structure is uniquely
determined. In these notes we address ourselves, among other things, to

Received December 23, 1987.
1 To be able to define half integer forms additional information is needed, essentially

the choice of a square root of the canonical sheaf K on X. More generally, if λ is a
sheaf on X such that λ2 differs from K only by a flat sheaf, one can canonically define
sheaf homomorphisms Lμ: λ1-? -> λ1^ (g) K?.

2 We have a short exact sequence of sheaves 0 -* Uμ-i-* ^~μ -* *1~μ ® κ(t -* 0, so the
Eichler cohomology group is defined as H\X, Π^-i)
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64 BJORN GUSTAFSSON AND JAAK PEETRE

the problem of expressing Lμf in terms of arbitrary local coordinates z.
We show in Section 2 that if / - f(z)(dz)-iμ-1)/2 then

where at = aμ (i > 2) are certain universal polynomials in q(z), q\z),
q{ί~2)(z). We also write abusively, suppressing z (and cte),

For instance,

+ 2q'f,

= // Γ + lOqf " + lOg'f + (9<f + 3?")/

and so forth. In Section 3 we consider briefly the special case when X
is a complex torus.

For completeness we begin however in Section 1 by reviewing several
proof's of BoΓs lemma. Section 4 is devoted to the case of several vari-
ables of this result. As an application we obtain (Section 5) a new inter-
esting metric for holomorphic function in the unit ball of Cn. In Section 6
we consider the transformation theory of second order total p.d.e. In
particular, we suggest a definition on an n-dίmensional analogue of the
Schwarzian.

The remainder of the paper is devoted to somewhat different, but
related issues.

Section 7 begins by recalling a certain bilinear covariant due to
Gordan [Go], known as the transvectant As a byproduct we recover then
the Laguerre-Forsythe invariants connected with a general μth order
linear differential operator. We obtain also (Section 8) a certain form Φ
of bidegree (0, (μ — l)/2) associated with any Hermitean metric on the
Riemann surface X With the aid of Φ we can prove a certain integral
formula involving the Bol operator—it is a kind of "Green's formula" for
Lμ—which will do us great service in subsequent work [GB] devoted to
Hankel forms on multiply connected plane domains. In Section 9 we
indicate a canonical factorization of the Bol operator in the presence of
a (not necessarily holomorphic) affine connectoin. Finally, Section 10
contains some simple observations about Hermitean metrics of constant
curvature.
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§1. BoΓs lemma

By this we intend the following result.

LEMMA. // / is an arbitrary (holomorphic) function and if we set

( 1 ) g(t) = f(φ(t))(E(t)γ-\

where

ct + b

(where ad — be = 1) is a fractional linear transformation and

E(t) = ct + d,

then

( 2 ) g«Kt) = f

It is clear that this secures, in particular, the existence of the BoL

operator on a Riemann surface equipped with a projective structure.

Below we review several proofs of this result.

In a way BoΓs lemma is just a reflexion of the well known fact that

the set of all polynomials of degree < μ is invariant under the group

(SL(2, O) action

( 3 ) f(t)t >f(φ(t))(E(t)Y~\

More precisely a proof can be based on Taylor's theorem. Write for-

mally f = T + R where T is the Taylor polynomial of / at the point t0

and R the Taylor remainder, R(t) = O((t — to)
μ). By the previous obser-

vation this formula is invariant under the action (3) so that in particular

R(φ(t))(E(t)y-1 must be the remainder of f(φ(t))(E(t)Y~ι at the point φ~\Q.

This readily gives the desired conclusion.

The simplest proof goes perhaps as follows. It suffices to take

fit) =
u — t

Then

g(t) = L
v — t

if u = φ(v), as
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V — t V — t
(V) - φ{t) -

(ct + d)(cv + d) E(i)E(v)

Also

E(i) - E(v) + c(t - v).

That is,

g(t) = LJ^ll— + polynomial of degree < a,
v — t

On the other hand

fwtt\ ^ Ά

Then (2) follows.

Alternative proof. Use more directly Cauchy's formula

— t
#

One can also connect BoΓs theorem with the invariance properties

of Newton's divided differences. Let us put

(F(t)=f(t),)

* \ _ F(tu t2) — F(tl9

h) h

It is well-known and easy to prove (see e.g. [N]) that

Fit U ... t ) - μl ί fi^ du
2πl J (u - tx) (u - tμ+1)

integrating over a suitable cycle. This shows in particular that

As before we show that if g is given by (1) and G corresponds to g (in

the same way as F corresponds to /) then
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( 4 ) G(tl9 , tμ+ί) =

In the limit we obtain (2).

BoΓs theorem can also be obtained as a special case (k = μ) of the

following more general result (see e.g. [M], [T]):

LEMMA. We have

(5) g^(t) = Σ

where

( 6 ) oή - P V ~ kXμ - k + ΐ ) . . . ( μ - k + j - ΐ ) .

First proof. By induction we realize that there must exist a recursion

formula of the type (5) with coefficients a) given by

a*+1 = a« + (μ-l-2k + j

and initial condition.

Another induction shows that these are precisely given by (6). #

Second proof. Write

g(t + s)= f(φ(t + s))(E(t + s))"-1

and consider the Taylor development of both sides taking into account

that

φ(t + s) = φ{t)
E(t)E(t + s)

and

E(t + s) = #(*) + cs .

Indeed, the coefficient of sk to the left is

1
k\

and to the right
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Equating these two expressions the desired expression for a) readily fol-

lows. #

A third proof would imitate the proof of BoΓs lemma we originally

gave but this becomes somewhat cumbersome. Instead we reverse the

procedure and use the lemma to derive a combinatorial ίndentity.

Take again

fit) = x

u — t

so that

g(t) = E<
vv — t

if u = φ{v). Then

and

(v - ty

so that the right hand side of (5) is

fc fc^. (k-j)\

As

μ-k
k =• (E(v) + c(t - v)

we may write this as

or, again setting j + h — I,

μ cι(E(c))μ~ί+1 ι (β — k

i=0 (U — t) j

On the other hand, writing
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g(t) = EWE(f>y = E(v)(E(υ) + c(t - v)Y
V — t V — t

— t ι=o

= t (- i)1 fμ, W - tγ-\E(v)y-^,
(=0 \ I J

we find

( 8 ) g{k)(t) =

Comparison of (7) and (8) gives

(kl for I = 0

= | θ for 0 < Z

These equations for 0 < I < k determine also the a) uniquely. #

§2. The Bol operator in general coordinates

Let now z = φ(t) be an arbitrary invertible function (change of vari-

able). It is convenient to put

If we put

( 0 ) g(t)

then a differential operator Lμ is defined via the formula

Our concern is to find an explicit formula for Lμ. To this end we

introduce the quantities

r = E-DE and q = E*-D2E (D = d/dt),

which are regarded as functions of z. Let us notice that

https://doi.org/10.1017/S0027763000001690 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001690


70 BJORN GUSTAFSSON AND JAAK PEETRE

^L = Dr = (DEY + EDΈ = E-\{E-ΌEJ + E3D2E) = E~\r* + q),
at

that is, we have the Riccati equation

dr , ,== r2 + q .

dz

Take now two times derivatives in (0)!

(1) g' = f'E"-3 + f(μ - Ϊ)E"-*DE

= (f + (μ- ΐ)EDEf)E»-3

= [f + (μ- lyβE"-*,

( 2) g" = [ ]Έ""5 + [ ](μ- S)E--iDE

= [f" + (μ - l)rf +(μ- l)r'/+ (μ - 3)rf' +

= If" + 2(μ - 2)rf + ((μ - l)(μ - 2)r2 + (μ
Putting μ = 0, 1, 2 in (0), (1), (2) we find

Remark. This shows that the Bol operator on a Riemann surface
corresponding to a projective structure on that surface is independent of
the latter if μ = 0, 1 and determines it if μ = 2. (Given a second order
operator locally of the form Lf = f" + qf then there exist new local co-
ordinates such that it in these coordinates takes the form Lf = f". See
further the discussion in Section 9.)

Continue the derivation!

(3) £"' = [ ]Έ»-' + [ ](μ-S)E»-'DE

= If" + 2(μ - 2)rf" + 2(μ - 2)r'f' + ((μ - l)(μ - 2)r2 + (μ - l)q)f

+ ((μ - D(μ - 2)2rrf + (μ - l)q')f+ (μ - B)rf"

+ 2(μ - 2)(μ - 5)rψ + (μ~ ΐ)(μ - 2)(μ ~ 5)r3/

+ (μ - ΐ)(μ - 5)qrf]E^

= [/'" + 3θ£ - 3)r/^ + (30* - 2)(μ - 3)r2 +

+((/ι - l)0ι - 2)0ι - 3)r3 + 3(^ - ΐ)(μ -

Putting μ = 3 gives

In the same way we find, for instance,
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LJ = / " + lOqf" + lOq'f + (9q2 + 3q")f.

In the general case it is easy to see that

where the coefficients A) (j > 1) are polynomials in μ9 r, q, q\ q", , qu'2)

determined by the recursion

AJ+1 = ΛJ + [Z) + θ £ - l - 2A)r]AJ.1 (D = d/dz)

(and the initial condition Al ~ 1). BoΓs lemma (Section 1) suggests that
\ί k — μ then all terms vanish except those which do not contain any
power of r. In other words:

THEOREM. We have

Lμf = f<» + aζf <"-*>+ ••• + α ; ,

where a) (j > 2) is α polynomial in q, q\ , gα~2):

Moreover, in aμj there appear only terms qnQ(cι')nχ(q")n2 with Σ* (ί + 2)^έ

= 7.

Proof. For the proof consider an arbitrary Mδbius transformation

as + b
t = ζ(s) =

cs + d

(with ad — be = 1) and consider the composed change of local coordinates
z = ψ(s) = φ(ζ(s)). Denote by f, g the quantities corresponding to r, g but
formed with ψ instead of 0. It is clear that

q = q

and a simple calculation reveals that

c 1
f = r +

cs + d ψ\s)

In particular f φ r as soon as c ^ 0. It is also clear that

Ai(q, q',-', g(fc"2), r) = Aϊ(g, ?',.••, g( fc'2ί, r ) .

Upon varying ζ we thus see that Aμ

k is independent of r.
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Remark, q is nothing but the Schwarz derivative in disguise. More

precisely, one has in more conventional notation (see e.g. [Gul, 2])

{z,t}1=-2r-f7 ,at

[z, t) = {z, t}2 = — 2q (—^) (Schwarz derivative) .
\ dt J

One has (see again [Gul, 2])

(*) {*, t}k(dty = {z, s}k(dsy + {s, tudty (k = 1,2)

where now t = ζ(s) need not be Mobius. In particular

{z, t}k(dtY = - {ί, 2:}fc(d2:)fc (fe = 1, 2)

so that, alternatively, we may define

It is likewise convenient to put

{2,<}0 = l o g - ^ .
at

Then (*) is valid also for k = 0.

Here are some alternative expressions for these brackets if k = 1, 2:

§3. An example

Let X be a compact Riemann surface of genus 1, in other words,

an elliptic curve, presented as a complex torus C\A. The operator L2

corresponding to a projective structure on X must be of the form L2 =

d2jdz2 + q where now q is a constant (a complex number). A basis for

solutions to the corresponding homogeneous linear partial differential

equation is given by the functions e^*, e-^K Thus the corresponding

"geometric realization" (in the sense of [Gul, 2]) is given by t = e2^*.

The space of the kernel of the operator L = dμ\dtμ is spanned by
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that is, by

It follows that

AO \dz

= (A
\dz J
A Y + CίgfA)" + C4^

2(A)" + . .. (only -even" terms).
\dz) \dz)

This again entails that also in the general case the "leading" term in
the polynomial a) = aμj(q, , qu~2)) is

,V/2 if j even ,
θ if j odd .

Remark. Here one could also have used the general form of the
coefficients in αj (see the last sentence of the theorem in Section 2).

Returning to the present case (X a complex torus) we write down
the operator Lμ in the first few cases (q constant, D — djdz)

L2 = φ - J=q)(D + V ^ ) = ΰ 2 + q ,
L3 -
L4 -

9 g 2 ,

For a generalization of the above factorizations see Section 9.

§4. Several variables

Consider a fractional linear transformation

E(t)

in Cn with points t = (ίl5 , tn); E(t) and F(i) are thus "inhomogeneous"
linear functions, the former scalar and the latter vector (Cn) valued.3 We
notice that

8 Let ( „ ) denote the corresponding linear transformation in Cn+1. Then E, F

can be nomalized by the requirement detf^j —1.
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E(t + s) = E(f) + E'(t; s)

and similarly for F (in an obvious notation for first order derivatives).
This gives

φ(t + s) = 0(ί) + L ( ί ; s)

E(t)E(t + s)

with L(t; s) ΞΞ F\t; s)E(t) - F(t)E'(t; s), a linear function in s. In par-

ticular, the derivative of φ is given by

Remark. Notice the formula

; v (E(t))m+ι

for the mth order derivative of 0.

If / is given (holomorphic) function, we define the function g(t) as

before by

g(t) =

Then the formula for the £th derivative ((5), (6) in Section 1) generalizes

as follows

g^(t; s) = Σ «?/cίί-Λ(ίδ(ί); L(ί; S))(E(ί))"-I-2i:+ί(£;/(ί; s)y

= Σ cήr«-»(φ(t); φ'{t; s))(E(t)y-^(Eχt; s)Y .

In particular (k = /i) this gives a generalization of BoΓs lemma:

gw(t; s) = /^(jKO; £(*; s)XE(t)y»-* = /(^(^(ί); ^(ί; s)χE(t)y-\.

Projectίve formulation. Introduce homogeneous coordinates Z =

(Zo, , Zn) with zt = 2,/Zo (i = 1, , ή). Putting

we get a homogeneous function of degree μ — 1 on Cn + 1. Its μth deriva-

tive at the point Z is a ^-linear form Piμ)(Z, •) on Cn + 1. Then our gen-

eralization of BoΓs lemma entails that P{μ)(Z, •) descends to a μ-linear

form on the tangent space to Pn at the image point z of Z under the
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canonical map Cn+1\{0} -> Pn. (One has essentially to repeat the pre-

vious reasoning with Zo playing the role of E and {Zu , Zn} the role

of F.)

Explicitly:

= zr Σ dμftz*lz<>''m>z>>lz*)d(zjzQ) d(zjz0)
dzai - - dzaa

As

z0 / z0

this gives (for Zo = 1, Zt = £*) in obvious multi-index notation:

dZidZϊχ azr& « = ^ur ^ α i dzaμ

EXAMPLE. Consider, for instance, the case μ = 2 so that

P(Z) = Zo/(Z1/Zo, . . . ,Z n /Z 0 ) .

Then, explicitly,

dzt 9Z0 * Zo dzk

Zo *

df y, Z* 9/I y ^ ^fc ty/ I

Θ Z Q * Z Q 9^ fc * Z\ dzk k,ι Z% dzkdzι

_ _ /̂ t —— —— / 1 (Cfl /C^

In other words:

Global consequence. Let X be an n-dimensional complex manifold

equipped with a projective structure and λ a sheaf on X such that λn+1 =

det/ί ( = A:, the canonical bundle of X) or, more generally, such that λn+1

differs from det A by a flat sheaf; J is the cotangent sheaf of X. Then

we have an invariantly defined operator Lμ: λ1"1* ->lι~μ ® Aμ. This again

gives an exact sequence:
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0 > Uμ-l > I''' > I1'" ^ Λ" .

Does there exists a natural continuation to a complex of sheaves?

§5. Invariant metrics

We can use the previous considerations (Section 4) to write down

some new (?) interesting (??) metrics. Let B be the (complex) unit ball

in Cn, i.e. B is the image of the Hermitean cone

(1) II Z\f = ZX - ZXZX ZnZn>0

under the canonical projection Cn+1\{0} -> P\ If P is a homogeneous

function of degree μ — 1 in Cn + 1 over B we set

= f (\\Z\\-\\P<>\Z, )WdI{Z),
JB

where | |P< / 0 | | is measured in the Hermitean metric induced by the metric

in (1) and I is the SΪ7(1, n) invariant (Poincare) measure on B (dl(z) =

dE(z)l(l - ||z|f)M+I). Explicitly (in terms of /) :

ιι/ιr=f
JB

d"f(zu

y

dE(z)

(l - Hzipy1

EXAMPLES 1. μ = 1, n general.

= ί (l-\\z\f)(£
JB \i-l

df dE(z)
(1 - \\z\ff '

that is, the SU(1, ri) invariant Dirichlet integral corresponding to the

Bergman metric on B (see e.g. [R]).

2. μ general, n — 1, B = Δ = unit disk in C.

2 dE(z)

dzμ

this case appears e.g. in [P].

§6. A p.d e. approach to uniformization

It is a fact that uniformization in the classical case of one complex

variable is intimately connected with the second order linear differential
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equation f" + af + bf = 0. This suggests to try, in the case of several
variables, with total second order partial differential equations:

(1) -ft- + Al^ + Bklf=0 (k, ί = 1, . . . , * ) .
OZjtόZi θZr

(Here and in the sequel we use, whenever convenient, the Einstein sum-
mation convention.) This may be viewed as a pedestrian version of more
sophisticated approaches (cf. e.g. [Gu3]).

Let z — φ(t) be a locally invertible map (change of local coordinates)
and m a nonvanishing function (multiplier). Put

g(t) = f(φ(t))m(t).

The first and the second derivatives undergo the following transformation:

( 2 ) M i = w<)> w* m(t) + am
dtt 3z

m ( t )

dzkdzt dU dtj

d2m
m + Sφ^dm dφκ_dm\ f( (t))

du dt dt dt)
+ ( m +

dzk \ dttdtj du dt3

If we want the first derivatives to drop out in the expression for the
transformed differential equation, we are led to impose the requirement

(4) ^ΞLIΦJL. + dJUlΦ^ . ay* m = o
dtj dtt dtt dtj dttdtj

or in more compact notation

md2φ + dm ® dφ + dφ ® dm = 0 .

We claim that this entails

( 5 ) τn = const-J- 1 / ( w + 1 >,

where

Proof. Notice first that
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So multiplying (3) with (φ')co and summing (over j , k) we obtain

dm τ , dm τ , dJ π

dU dU dtt

which obviously yields (5).

So if the desideratum Ar

u = 0 can be realized we can, as in the

one dimensional case, henceforth restrict ourselves to the case m =

const-J"1 / ( w + 1 ).

Return to the case of general A, B. From (2) and (3) follows that

i * + BtJg
dtk

m

m + ( m +
dzkdzt dtt dtj dzk \dttdtj dtt

m + dφk dm\

dt( dt3 \dzkdzt dzr

where thus

\r _ Xk dφr I dφr i dφr 1 3 M , dφr 1 dm

dt dtdt dh m dt dt dtdtj dtk dtidtj dh m dtj dtj m dt

dφi D __ 5 , Λr 1 dm . 1
3 dtdU dt3

 3 m dtr m

or in more compact notation

φ*A = A dφ + d2φ + dφ® m-'dm + m~xdm ® dφ ,

φ*B = JB + Am-'dm + m~'d2m.

Comparison with the corresponding formulae in the one dimensional

case suggest now that we as a generalization of the Schwarzian take the

differential form

n*

where as before

J = det f J&
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The main object of the present section has been precisely to arrive at

this definition. In particular, we find, given A = 0, the conditions for

reduction to the case B = 0 in the form of a total p.d.e. involving that

form.

§ 7. Bilinear covariants

We return to the case of one variable. We require the following

classical result due to Gordan [Go].

LEMMA. Let fk (k = 1, 2) transform according to the rule

m y—* UtfMPit))-** (k = 1, 2)

where vk e Z (k = 1, 2) and

φ(t) = ut + b ^wίth ad__bc=zι)^ Eφ = ct+ d.
ct + d

Let s > 0 be any integer such that vk Φ 0, — 1, , — (s — 1) (k = 1, 2).

Then

transforms according to the rule

where v = ^ + v2 + 2s and, generally speaking, (x)t = x(x + 1) (x + i — 1)

stands for the Pochammer symbol.

The bilinear covariant Js is classically known as the transvectant

(German: "Uberschiebung"); it was, nearly one hundred years after the

appearance of Gordan's book, "rediscovered" in [JP].

On a Riemann surface X with a projective structure it gives rise to

a bilinear map

where K as before stands for the canonical sheaf.

Proof. For the proof take first vλ > 0, v2 > 0. Then we can imitate

the first proof of BoΓs lemma (Section 1), taking

1 (k = 1,2)
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Everything then blows down to the identity

^t — lίj^ VΛ — u2) ΐ=o \ j / \ί' — w-i

see [JP],

To carry over the result to the case when vx, v2 have arbitrary sign

we argue as follows. Writing gk = (f1coφ)E~Vk (k = 1, 2) we see (e.g. from

the unnamed lemma in Section 1) that the expression

s / S

( i ) ΣC-D5-' .
ί=o \ l

a priori comes as a polynomial in c and E (and E~ι), whose coefficients

in turn are rational functions in vx and v%. More exactly, only terms Ekcj

with k = j — v appear. By the previous proof we know that they must

vanish for vx > 0, v2 > 0, hence identically, except for j = 0. But this

means that (1) must agree with (Jsoφ)E~\ #

Remark If we instead of group actions consider the corresponding

infinitesimal actions of the Lie algebra si(2, C), we get an analogous

result with vu v2 arbitrary complex numbers (see e.g. [M]).

As an application consider the case

v, = - (μ - 1) , v2 = 2(μ ~ s) (=φ v = μ + 1) ,

where 0 < s <μ — 1. Writing k — μ — s we get for each form Θ of de-

gree k a linear map

EXAMPLE. Here are some of the operators of lowest degree (and up

to a constant factor):

= θf" + θ'f
— o)

Thus if our Riemann surface X comes equipped with a projective

structure we can, given forms θ l 5 Θ2, , θμ of degree 1, 2, , μ respec-

tively, form the μth order linear differential opera tor L: κ~(μ~ί)/2 -^ κ(μ + ί)/2

given by
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( 2 )

Conversely, an arbitrary μth order linear differential operator, globally

defined over X, can be viewed as a map from a suitable sheaf ξ into the

tensor product κμ ® ξ and gives in a canonical way rise to a projective

structure on X and another such differential operator corresponding to

ξ = ΛΓ("-1)/2®f0, f0 a flat sheaf (so that κμ ® ξ = ^ + 1 ) / 2 ® f0), i.e. of the

form (2) but with θj = θ 2 = 0.

In this way we happen to recapture the classical Laguerre-Forsyth

invariants of μth order linear ordinary differential equations (see e.g. [W]

or, for a contemporary study, [T]). A different approach to such invari-

ants, directly based on "BoPs lemma" (Section 1), can be found in [B],

§8. An integral formula

We apply the previous lemma (Section 7) in the case vx = v2 —

— (μ — 1), s = μ — 1. Then v = 0 and we have thus an "invariant", not

a "covariant". In particular, writing /i = F, a form of degree — (μ — l)/2,

and taking f2 = ωμ~\ where ω transforms with degree — 1/2, we have the

invariant expression

( l ) Φ = Σ JL

We can now get a step further and let ω be of bidegree (— 1/2, — 1/2).

Thus we do not assume anymore that we are dealing with holomorphic

quantities. Then Φ has bidegree (0, (1 — μ)/2). If in addition ω is positive

(and globally defined on our Riemann surface X), then we can associate

with ω a Hermitean metric ds = \dz\/ω.

If z is a projective coordinate, it is clear that

( 2 ) <®- = ω* * ^
d

Let ^ be a holomorphic differential form of degree (μ + l)/2, defined in

some open subset Ω of X. We now multiply the identity (2) with the

conjugate g. As Φg is then a (0, l)-form or, rather, the coefficient of

such an object (that is, Φgdz has an invariant meaning over Ω), we can

write the result as

( 3) d(Φgdz) - LμFgωμ~ιdzdz + ( - iy-ψgLμω'-ιdzdz .

Integrating this yields
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(4) f LμFgω^ιdzdz + ( - I)""1 f FgLμω^dzdz = f Φgdz .
J Ω J Ω J dΩ

Until now ω has been quite general. It is now natural to put condi-
tions on ω (and the metric), connecting it with the protective structure
and the Bol operator(s) L : Indeed, we shall from now on assume that

1. Lμω
μ~ι = 0

2. ω = 0

for all μ,

on dΩ .

Clearly 2. implies that the metric is complete in some sense. On the
other hand 1. is equivalent to L2ω = 0 (μ = 2). (Indeed, this condition
implies that ω(z) = α2£j + bz + bz + c, a, b, c being constants (α, c real
and b complex), in terms of a (any) projective coordinate z, and then
Lμω

μ~λ = 0 for all μ.) Thus 1. implies that the curvature is constant and
also that

_ _ d2ωldz2

q — 9

0)

where q is the coefficient connected with the projective structure (i.e.
L2 = d2/dz2 + q); here z is any local coordinate, not necessarily one sub-
ordinated to the projective structure. See Sections 9, 10 for further dis-
cussion.

If 1. is fulfilled (3) becomes

LμFgωμ'^dzdz = d(Φgdz).

Thus the left hand side is an exact (1, l)-form and the integral can be
expressed as a pure boundary integral.

If 2. is fulfilled then on the boundary dΩ holds

dzk
-1) = 0, 0 < & < μ - 2 ,

dzμ~

<~\(μ-l)/2. dω

3z

μ-l

Thus (4) in this case becomes

(5) f LμFgω^dzdz + (- I)'"1 f FgL^dzdz
J Ω J Ω

Fg do) μ-i
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If both 1. and 2. are fulfilled then \dω/dz\ = const on dQ (if ω = azz +

bz + bz + c then \dω/dz\ = V\b\2 — ac on {ω = 0}) so that (5) reduces to

( 6) f LJFgω^dzdz = const ί Fg{dzY'^\dzY^)n.

For a different proof of this formula, and an application, see [GP].

§ 9. Factorization of the Bol operator

Let X be an arbitrary Riemann surface. A set of functions {q(z)} (one

q for each coordinate variable z) is called a protective connection on X if

they, under change of coordinates, transform according to

Similarly, a set of functions {r(z)} is called an affine connection on X if

they tranform according to

(The factors 1/2 above are not standard and are introduced here just to

conform with our previous notation). Observe that we do not require the

functions q(z) or r(z) to be holomorphic in general.

As is implicit in the foregoing, there is a one-to-one correspondence

between holomorphic projective connections on X and projective struc-

tures on X: if {q(z)} is given, the projective coordinates on {t} are ob-

tained as solutions of

(1) \{t,zU = q(z),

and, conversely, given {t} the family {q(z)} defined by (1) is a projective

connection. In particular, a coordinate z is projective iff in that coor-

dinate q(z) = 0. The corresponding statements with the word "projective"

replaced by "affine" are likewise true. (See e.g. [Gu2], [HS1, 2] for more

details. See also [B]).

The following facts are easily seen to be true.

( i ) If / is a (not necessarily holomorphic) 1-form or, more generally

a form of bidegree (1, *), then
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is an affine connection (off the zeros of /). In particular, if ds = \dz\jω(z)

is a Hermitean metric on X then

— log ω
dz

is an affine connection.

(ii) If r is an affine connection then q = dr/dz — r2 is a protective

connection.

(iii) In the presence of an affine connection r one can define a covari-

ant derivative V = Va mapping α-forms into (a + l)-forms given by

?af= — -2<xrf.
dz

We have now the following generalization of the factorization of the Bol

operator Lμ indicated in Section 3 in a special case. It gives, in particu-

lar, an alternative way of computing Lμ (cf. Section 2).

THEOREM. Let the Riemann surface X be provided with a projective

structure, let q denote the corresponding (holomorphic) projective connection

and let μ> 0 be an integer. Assuming that q comes from a not necessarily

holomorphic, affine connection r as in (ii) above we have, writing μ =

21 + 1,

In other

( 2 )

with D -

words:

= dldz.

= (D

(£> - (μ ~

- 2lr)(D

• 1 -

- 2(1

! ••• F

2Λ)r)

- l ) r ) (!> + 2lr),

Proof. By the covariance it is enough to prove (2) in projective co-

ordinates. In a projective coordinate system (2) becomes

( 3) Du+ί = (D - 2lr)(D - 2(1 - ί)r) . . . (D + 2lr).

(Here I > 0 is an integer or a half integer.) Moreover q = 0, i.e.

( 4 ) Dr = r*.

Thus it is enough to prove (3) under the assumption (4). This will be

done by induction.
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It is straightforward to check (3) for I = 0 and I = 1/2. Assume that

(3) has been proved for I — 1, i.e. that

D«-> = (D- 2(1 - l)r) • (D + 2(1 - l ) r ) .

Then we get, for I itself

(D - 2lr)(D - 2(1 - l)r) • • • (D + 2lr)f = (D - 2lr)Dϊι-\D + 2lr)f

= Du+1f+ 2lDϊι(rf) - 2lrDuf-Al2rDn'\rf).

We have to prove that this equals Du+if, i.e. that

( 5 ) Da(rf) = rΏnf + 2lrDn'\rf) .

By (4) Z)κr = n!r" + I . Thus

= rDuf + f; 2Z(2Z - 1) (21 - k + ι)r^Du-hf

= rDuf + 2lr j

= ri52 Z/+ 2lrD2l-\rf),

proving (5). #

If X is compact of genus one, as in Section 3, then every protective

connection comes from an affine connection, as in (ϊί) above. Hence it

is seen that the factorization of Lμ in Section 3 is a special case of the

above theorem. However, it is not clear whether, in general, a holomor-

phic projective connection always comes from an affine connection (not

required to be holomorphic). Of course, given the family {q(z)} one can

always solve q = drjdz — r2 locally for r(z) (even with r(z) holomorphic)

but in general these r = r(z) will not transform as an affine connection.

On the other hand (2) may be of interest also locally (i.e. without each

factor in (2) having a globally covariant meaning). E.g. if t is a fixed

local variable defined on an open subset V of X then the projective con-

nection {q(z)} on V given by q(z) = (l/2){ί, z}2 (in terms of arbitrary local

variables {z}) comes from the affine connection r(z) = (l/2){£, z}x. Thus we

have

L- = Or - '"• •>•)(£ - ( ί - 1)(ί *'•) • ( i + '('•
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for the Bol operator Lμ belonging to {q(z)}, i.e. to the projective structure

on V for which t is a projective coordinate.

Next, assume that a metric ds = \dz\lω(z) is given on X. By (i) and

(ii) we then get afϊine and projective connections on X by

dz dz ω

The curvature of ds is given by

K = W d2 l θ g ω = - 4ω2-^- .
dzdz dz

and derivation of this gives

dz ~~ 3f '

Thus we see that r(<ε) is holomorphic iff the curvature is identically zero

and that q(z) is holomorphic iff the curvature is constant.

It is well-known that on any Riemann surface there is, up to a con-

stant factor, exactly one metric ds which is both complete and constant

curvature. This is the metric which, via the uniformization theorem, cor-

responds to one of the metrics with ω(i) = 1 + \t\\ 1 or §ί on C =

C U{co}, C or {t e C: %t > 0} respectively.

If X is a compact, any metric is automatically complete. Thus we

conclude that if X is compact then a holomorphic connection on X comes

from a metric only in the above "canonical" case (i.e. with the Poincare

metric in most cases). The corresponding projective structure then of

course is the one given by the uniformization theorem.

§10. Remarks on "non-Euclidean geometry"

In this section, which is largely independent of the rest of the paper

but inspired of it, we makfe some simple observations about Hermitean

metrics with constant curvature on a Riemann surface.

Let X be a Riemann surface equipped with a projective structure.

Then we can define the operator (L2 =)L = D2 + q (where D = d\dz is

derivation with respect to local coordinate z) which sends (— 1/2, *)-

forms into (3/2, *)-forms. The conjugate operator L = Dι + q (where

analogously D = d/dz) sends (*, - l/2)-forms into (*, - 3/2)-forms. We
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can now define a non-Euclidean geometry as an Hermitean metric ds =

\dz\/ω(z) such that Lω — 0 = Lω. It is now clear that if £ is a project]ve

coordinate (q(t) = 0) then ω(t) = αtt + bt + bt + c (a, c real, b complex).

That is, the "absolute" (that is, the set where the metric degenerates) is

a "circle" (possibly imaginary—elliptic geometry, or degenerate—parabolic

geometry).

We can also fit curvature into this picture. Define the latter as

usual (see Section 9) via

K= 4ω2DD]ogω.

Formula:

dK = 4ω2D (Q) dz + 4ω2D (^) dz .
\ ω / \ ω /

Proof. We may work in a protective coordinate (q = 0). Then

()
ω \ ω / V ω

On the other hand

— DK= ω2DD2 log ω + Dω* DD log ω
4

ω

\ ω ωΔ ωΔ ωά /

. o n / .DDω DωDω\
+ 2ωβωl )

\ ω ω2 /
= ω

2(DD2ω - D ω D 2 ω )
ω \ ω ω2 /

As d = D<i2: + Dcfe this completes the proof.

We see thus that K = const in non-Euclidean geometry.

REFERENCES

[B] G. Bol, Invarianten linearer Diίferentialgleichungen, Abh. Math. Sem. Univ.
Hamburger Univ., 16 (1949), 1-28.

[E] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 (1957),
267-298.

[Go] P. Gordan, Invariantentheorie, Teubner, Leipzig, 1887.

https://doi.org/10.1017/S0027763000001690 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001690


88 BJORN GUSTAFSSON AND JAAK PEETRE

[Gul] R. G. Gunning, Special coordinate coverings of Riemann surfaces, Math. Ann.,
170 (1967), 67-86.

[Gu2] , Lectures on Riemann surfaces, Princeton University Press, Princeton, 1966.
[Gu3] , On uniformization of complex manifolds: the role of connections, Princeton

University Press, Princeton, 1980.
[GP] B. Gustafsson - J. Peetre, Hankel forms on multiply connected plane domains,

Part two, The case of higher connectivity, Complex Variables (to appear).
[HS1] N. S. Hawley - M. Schiffer, Half-order differentials on Riemann surfaces, Acta

Math., 115 (1966), 199-236.
[HS21 , Connections and conformal mappings, Acta Math., 107 (1962), 175-274.
[JP] S. Janson-J. Peetre, A new generalization of Hankel operators (the, case of

higher weights), Math. Nachr., 132 (1987), 313-328.
[K] I. Kra, Automorphic forms and Kleinian groups, Benjamin, Reading, 1972.
[M] H. Morikawa, Some analytic and geometric applications of the invariant theoretic

methods, Nagoya Math. J., 80 (1980), 1-47.
[N] N. Nδrlund, Vorlesungen uber Differenzenrechnung, Springer, Berlin, 1924.
[P] J. Peetre, Invariant function spaces connected with the holomorphic discrete

series, in: P. L. Butzer (ed.), Anniversary volume on approximation and func-
tional analysis, pp. 119-134, Birkhauser, Basel-Boston-Stuttgart, 1984.

[R] W. Rudin, Function theory on the unit ball of Cn, Springer, New York-Heidelberg-
Berlin, 1980.

[T] Y. Teranishi, The variational theory of higher-order linear differential equations,
Nagoya Math. J., 95 (1984), 137-161.

[W] E. J. Wilczynski, Protective differential geometry of curves and ruled surfaces,
Chelsea, New York, 1961.

Bjδrn Gustaf sson
Matematiska institutionen
KTH
S-100 U STOCKHOLM
Sweden

Jaak Peetre
Matematiska institutionen
Stockholms universitet
Box 6701
S-118 85 Stockholm
Sweden

https://doi.org/10.1017/S0027763000001690 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001690



