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ABSTRACT THEORY OF SEMIORDERINGS

THOMAS C. CRAVEN AND TARA L. SMITH

Marshall's abstract theory of spaces of orderings is a powerful tool in the algebraic
theory of quadratic forms. We develop an abstract theory for semiorderings, develop-
ing a notion of a space of semiorderings which is a prespace of orderings. It is shown
how to construct all finitely generated spaces of semiorderings. The morphisms be-
tween such spaces are studied, generalising the extension of valuations for fields into
this context. An important invariant for studying Witt rings is the covering number
of a preordering. Covering numbers are defined for abstract preorderings and related
to other invariants of the Witt ring.

1. INTRODUCTION

Some of the earliest work with formally real fields in quadratic form theory, following
Pfister's revitalisation of this area of research, involved Witt rings of equivalence classes of
nondegenerate quadratic forms and the spaces of orderings which are closely associated
with the prime ideals of the Witt rings. A ring theoretic approach was pioneered by
Knebusch, Rosenberg and Ware in [20]. The spaces of orderings were studied in [6] and
all Boolean spaces were shown to occur. A closer tie to the theory of quadratic forms
was achieved by M. Marshall who developed an abstract theory of spaces of orderings
to help in studying the reduced Witt rings of formally real fields (see [22]). Marshall's
theory was more closely related to what actually happens with Witt rings of fields than
the work in [20] (and this was later put into a ring-theoretic context by Rosenberg and
Kleinstein [18]). Since that time, Marshall's work has been used by numerous authors;
the abstract approach has been shown to provide a common way of proving theorems
for not just fields, but also semilocal rings [17] and *-fields [11]. In spite of all the work
in this area, there are still major open questions, most notably those of realisability of
abstract spaces and realisability of images of Witt rings. The theory of abstract spaces
of orderings has also been generalised in many ways, in particular to (nonreduced) Witt
rings of a field (see [22]) and to real algebraic geometry [23, 1].

In this paper, the authors move the generalisation in another direction. They create
an abstract theory for semiorderings of a field. It is also known to apply to *-semiorderings
on a t-field [10]. The motivation for this is two-fold. First of all, semiorderings are
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important in their own right for fields, where they were studied in the early 1970s by
Prestel (see [25]) with regard to axiom systems in geometry and quadratic form questions.
The initial work characterised the situation in which every semiordering was actually an
ordering. Those results were extended to semilocal rings [17, 19]. More recently, Prestel
and others [16, 26] have made major use of the concept in the rather concrete study
of positive polynomials in polynomial rings. Other uses in field theory can be found
in [4, 3, 14, 21]; in particular, Brocker [4] develops the field version of Theorem 1.6
and relates it to the computation of the stability index of a field. A totally different
occurrence of semiorderings begins with the work of R. Baer [2]. Baer orderings of a
•-field give an example of a noncommutative generalisation of semiordering for which
very little is known concerning the Witt groups that arise (see [11] for a discussion of
various generalisations to *-fields). This more general context will be taken up briefly
in Section 2. For the more restrictive concepts of ^-ordering and *-semiordering, the
work of [10] shows that the hermitian form structure as determined by Witt rings has
exactly the same properties as when * is the identity. One purpose of the present paper
is to unify the semiordering work of these various contexts to a single more abstract
setting. The authors hope to use the present work to further both the commutative and
noncommutative directions in their future work.

The remainder of this section provides the abstract definition and some reasons for
believing that it is the correct one. In addition to a special setting for generalising Baer
orderings, Section 2 introduces three operations for building new spaces of semiorderings
from old ones. Section 3 generalises the lifting theorems of Prestel from the context
of valuations on fields to our abstract setting. We also look at morphisms on spaces
of semiorderings, again motivated by valuation theoretic results for fields. Section 4
carries this abstract theory to preorderings and covering numbers. This was the original
motivation for this paper, stemming from work in [14]. Theorems 4.4 and 4.8 are the main
ones of the section and are aimed at elucidating the connection between semiorderings
and preorderings under group extensions (corresponding to lifting results from the residue
field in the case of valuations). Section 5 and the Appendix take a brief look at certain
invariants based on semiorderings when applied to finite spaces of orderings.

DEFINITION 1.1: ([23, p. 23]) A space of orderings is a pair (X, G) satisfying
axioms AX1, AX2, AX3 below.

AX1. X is a nonempty set, G is a subgroup of {-1,1}* (the set of all functions
X —> {±1} with its natural group structure), G contains the constant function - 1 and
G separates points in X.

Note that we can identify X with a subset of the character group x(G) C {-1,1}G,
consisting of all homomorphisms a: G —> {±1}, via x(g) = g(x) since G separates points
of X. For a,b G G, we define the value set D(a, b) to be the set of all c 6 G such that for
each x € X, either c{x) = a(x) or c(x) = b(x).
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AX2. If x G x{G) satisfies i ( - l ) = - 1 and

a, b G kerx =*• D(a, b) C ker x,

then x is in the image of the natural embedding of X into x(G)-

AX3. For all g\,92,93 G G, if h G D{gx,c) for some c G D(g2,g3), then ft € D(d,g3) for
somedG

The motivation for this definition is the example of a formally real field F with G
equal to F/T,F2, where EF2 denotes the group of sums of nonzero squares in the field
F, and X equal to the space of orderings of F. For a,b G F, the value set is

D(a, b) = {ax2 + by2 G F \ x,y G F}.

Now AX2 essentially gives the definition of the positive cone of an ordering and the
hypothesis of AX3 says that h has the form h — dig2 + a^g\ + 03173, from which we see
that d = a\g2 + a,2g\ works.

D E F I N I T I O N 1.2: Let (X, G) be a space of orderings. We define a space of

semiorderings for (X, G) to be the pair (Y, G) where Y is given by

(l.l) Y = { y G { - l , l } G | 2 / ( l ) = l, y(-g) = -y(g)VgeG,

anda,6Gker?/ = > D(a, b) C kery}.

Note that X C Y since the elements of X are required to satisfy condition (1.1).
The topology on Y is that induced by the product topology on {—1,1}G. This is eas-
ily seen to be the same as the topology with subbasis consisting of sets of the form

= {yeY\g(y) = l}

for any g G G. We shall refer to this subbasis as the Harrison subbasis as is usually
done when Y is replaced by X. Notice that the Harrison subbasis can be viewed as a
group isomorphic to G; indeed, when the sets are restricted to X, we have the symmetric
difference H(-a) + H(—b) = H(—ab). (However, see the example following Definition 2.1
for the situation with Baer orderings of *-fields.) The basis for the topology consists of
finite intersections of the form

t = i

In the case of (X, G), there is a third way of viewing the topology, namely as the Zariski
topology on the space of minimal prime ideals of the Witt ring, defined below. We shall
see in the next section that this third method can also be used for Y; in particular, Y,
like X, is a Boolean space (compact, Hausdorff and totally disconnected).
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PROPOSITION 1 . 3 . Given a space of semiorderings (Y,G) for the space of or-

derings (X, G), the value sets D(a, b) satisfy c e D(a, b) if and only if

PROOF: One direction follows immediately from the fact that Y 5 X. The reverse

direction follows from the definition if a(y) = b(y) = 1 and is trivial if they have opposite

signs. If a{y) = b(y) = - 1 , then y(-a) = y(-b) = 1 and - c G D(-a, - 6 ) , so y{-c) = 1,

giving y(c) = - 1 . D

In the case of fields, the space of orderings and space of semiorderings uniquely
determine one another. This is also easily seen in the abstract setting, as the next
proposition shows.

PROPOSITION 1 . 4 . A space of semiorderings (Y,G) uniquely determines the
space of orderings X CY.

P R O O F : Assume a fixed (Y,G). We claim that the space X of the definition is
actually the unique maximal subset of Y such that G\x — {g\x \ g G G} is a, subgroup
of {±1}X. The uniqueness of the maximal subset follows from the fact that if G\Xl and
G\x2 are groups, so is G\xiux2- The fact that X must be maximal follows from axiom
AX2 which forces elements into X: Since every element of X must satisfy

a, b G kerx = * D(a,b) C kerx,

the set X is uniquely determined as a subset of

We provide a brief description of the Witt ring W(X, G) associated with a space

of orderings. For more details, see [22] [23, Section 2.2]. The ring W{X,G) consists of

equivalence classes of formally defined forms ip = (a i ,a2 , . . . , a m ) , where at € G. The

number m is called the dimension of <p, written m — dim<p. If ip = (ai,a2,..., am) and

ip = (bi, 62, • • •, &n)i addition is defined by

ip®ip= ( a 1 , a 2 , . . . , a m ,6 1 , 6 2 , . . . , 6 n ) .

Multiplication is extended via the distributive law from (o) <£> (b) — (ab) for a, b G G.
m

We can view the form <p as a function from X to Z via ip(x) = Y^, a«(z)- We shall call
the image in Z the signature of (p. Using this, we have ip and ip are equal as elements

of W{X, G) (written <p ~ ip) if and only if ip(z) = ip(x) for all x G X [23, Theorem

2.3.1]. We also use the concept of isometry, writing ip = tp if (p and ip have the same

dimension and signature [23, Theorem 2.2.3]. For the purpose of ease in writing proofs,

it is more useful to have the following definition of isometry: for 1-dimensional forms

(a) = (b) means a = b. For 2-dimensional forms, (01,02) = (bi,b2) means the forms

have the same signature. And for dimension n ^ 3, the relation is defined recursively by
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(ai, O2 , . . . , o,,) = {h, 62, • • •, bn) if there exist a, b, c 3 , . . . , c,, G G such that ( o 2 ) . . . , 0

To see that the definition we have given for an abstract space of semiorderings is
indeed the correct definition, we check that it has the main property of semiorderings
for fields and semilocal rings: If we begin with a space of orderings (X, G) and form the
space of semiorderings (Y, G), then the elements of Y can be naturally identified with
the group homomorphisms of the Witt ring W(X, G) to Z. The details for commutative
rings and fields can be found in the work of Kleinstein and Rosenberg [17] and Knebusch
[19]; for hermitian forms over certain •-fields, this is found in [10]. All of this will be
subsumed under the present abstract approach. The fact that X can be identified with
the ring homomorphisms of W(X, G) to Z is the content of [23, Theorem 2.3.3].

THEOREM 1 . 5 . The set Y can be naturally identified with the set of all group
homomorphisms ofW(X,G) to Z which carry (1) >-* 1.

PROOF: We need to show that any y G Y induces a well-defined mapping from
W(X, G) to Z. From the definition of W(X, G), we see that it suffices to consider forms
ip = ip of dimension two, as dimension one is immediate and higher dimensions follow by
induction. But in dimension two, ip(x) = ip(x) for all x G X by definition. Let <p = (a, b)
and if) = (c, d). We have a(x) + b{x) = c{x) + d(x) for all x G X and D(a, b) = D(c, d).
For any y G Y, if a, b have the same sign, then that sign is shared by c, d since the value
sets are the same. If a, b have opposite signs, then by the same argument, c, d must also
have opposite signs, so a{y) + b(y) = c(y) + d(y) = 0 in this case. It follows that for any
yeY, a{y) + b(y) = c(y) + d(y) as desired.

Let / : W(X, G) -> Z be a group homomorphism taking (1) >-> 1. Elements of G

give rise to units in W{X, G), so map to ± 1 in Z. Define y G { - 1 , 1 } G by y(g) = f((g))

for each g G G. Then j / ( - l ) = - 1 . If h G D(gU92) and y{gi) = y{g2) - 1, then
y(/i) = f(h) =z l . By (1.1), we obtain y G Y. Since W(X,G) is generated as an additive
group by one-dimensional forms and f((g)) — y(g) for all g G G, we see that / coincides
with the group homomorphism <p •-> <p(y) determined by y G Y. D

A space of orderings (X, G) is said to satisfy the strong approximation property

(SAP) if every clopen subset of X can be written as H{g) for some g G G. For a

formally real field F, we know that there is always a space of semiorderings, and it is

strictly larger than X if and only if F does not satisfy SAP [25, Theorem 9.1]. This is

generalised to semilocal rings by Kleinstein and Rosenberg in [17, Section 3]. However,

[17, Section 1] actually goes further, with results which apply directly to the abstract

spaces of orderings of Marshall and to our work here. Indeed, they work in slightly more

generality than we have here. They say that W(X,G) satisfies the Hasse-Minkowski

principle (HMP) if for every form <p in W(X, G), there exists an element x G X with

tp(x) = min{dimV' | ip ~ ¥>}• From [17, pp. 881-882] we obtain

THEOREM 1 . 6 . Let (X, G) be a space of orderings. The following are equivalent:
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(1) W(X, G) satisfies HMP.

(2) (X,G) satisfies SAP.

(3) Every semiordering y defined by condition (1.1) of Definition 1.2 actually

lies in X.

2. APPLICATION TO •-FIELDS: SEMIORDERINGS WITHOUT ORDERINGS

Let D be a skew field with an involution *; let S{D) = {d € D \ d* = d) be the
set of symmetric elements. Write E(D) for the set of all sums of products of norms and
elements of the commutator group [DX,S(D)X]. This replaces sums of squares in the
field case with identity involution and is a multiplicative group if 0 ^ £(£>)- The work in
this paper (which assumes, as in the definitions of Section 1, that there exists a space of
orderings inside the space Y) applies to all *-fields in which 0 ̂  *£>(D). When 0 £ £(D),
there can be no *-orderings, but there may still be a more general subset called a Baer
ordering, which is just a semiordering if * is the identity.

DEFINITION 2.1: A Baer ordering on (£>,*) is a subset Q C S(D)* satisfying

Q + QCQ, dQd* C Q for all d € D*, 1 e Q, and Q U -Q = S(D)*.

The set of equivalence classes of anisotropic hermitian forms, W(D, *), now loses

its multiplicative structure and is only an additive group. However, the set Y of Baer

orderings can still be topologised as before and is still in bijective correspondence with

group homomorphisms as in Theorem 1.5.

As an example, consider D = R((z))((y)) where xy = -yx and the involution is

induced by x* = x, y* = y (see [9, Example 5.3] for more details). Then (xy)* = y*x*

— yx = —xy is a skew element. Since - 1 = xyx'y* G £(£>), there are no *-orderings,

but there are four Baer orderings determined by the signs of x and y. Also, the fact that

the skew element xy cannot be in any Baer ordering means that the Harrison subbasic

sets consist only of

Y = H(l), 0 = H(-l), H(x), H(-x), H(y), H(-y),

but this is not a group under symmetric difference as is normally the case, suggesting

that there is no group in this situation to take the place of G in the space of semiorderings

(Y, G). A solution to this is proposed in [13]. An analog to the Witt ring is defined by us-

ing the ring WS(D, *) in £{YQ, Z) generated by the image of the Witt group W(D, *). In

abstract terms, this means using the group generated by the Harrison subbasic elements.

The content of [13, Theorem 2.4, Proposition 2.5] is that there are natural bijective

correspondences between the Baer orderings, the ring homomorphisms WS(D, *) —> Z,

and the group homomorphisms W(D, *) —> Z carrying hermitian forms (a) into {±1} for

nonzero symmetric elements a, with (1) >-* 1.
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[7] Abstract theory of semiorderings 231

This allows us to view an abstract space of semiorderings as a prespace of orderings
[1], with the group being the group of units in WS{D, *). This gives rise to the most
general class of rings considered in [17]; in particular, this provides a general structure
theory for these rings. With regard to Section 1, we have that Y is the space of minimal
prime ideals of WS(F), in the case where D is a field F with identity involution. Unfor-
tunately, nothing is known about whether any additional structure applies beyond this
extremely general setting for WS(D, • ) . If valuations happen to behave nicely, there is
some additional structure that occurs. This will be used in the main theorem below. The
core idea is that we can compute exactly what happens to the spaces of semiorderings
when one does a group extension of the space of orderings as in Theorem 3.2 below.
Furthermore, this construction does not depend on the existence of a space of orderings
inside the space of semiorderings. This is shown in [13, Theorem 2.8]. Instead of a group
extension, one obtains a tensor product of the ring WS(DV, *) for the residue field with
itself several times before doing a group extension. We give the details here in abstract
form because they provide an alternate way of looking at the extension of semiorderings
from Y to Y which occurs in Theorem 3.2.

Let G be a group of exponent 2 and let G = Hom(G, {±1}) be the topological dual
group of G for the discrete topology on G. Let - 1 / 1 be a distinguished element of
G and let Y be a subset of G. The pair (Y, G) is called a prespace of orderings if the
following conditions hold:

01 Y is closed in G.

0 2 CT(-1) = - 1 for all a € Y.

0 3 The element g = 1 in G is the unique element of G such that a{g) = +1
for all aeY.

There are two fundamental constructions needed in dealing with spaces of orderings
as well as a third one for the spaces of semiorderings mentioned above. We shall need
all three and will describe them now. The first two can be found in [22] for spaces
of orderings and in [1, Chapter IV, Section 2] for prespaces of orderings. The third
construction, product, was introduced in [13]. The first two, particularly group extension,
will be essential to the work of later sections.

DEFINITION 2.2: A prespace of orderings (Y, G) is said to be a group extension of a

prespace of orderings (Y, G), by a group H of exponent 2, if (Y, G) = (Y x x(H), Gx H)

with distinguished element (—1,1) G G and action

{V, o)(g, h) = y(g)a(h) for a l l (y, a) &Y x X(H) a n d {g,h)eGxH .

Equivalently, we say that (Y, G) is the residue space of (Y, G) with respect to H.

Thus Y is a quotient space of Y. We can recognise group extensions in abstract

spaces of orderings or prespaces of orderings. For any prespace of orderings (Y,G), we
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define the translation group

Write
G = {g e G | t{g) = 1 Vt e Tr(Y,G) }.

It can be shown that Tr(Y, G) consists of all characters on G which are trivial on G.
Let Y be the image of Y under the canonical restriction mapping Y —» x(G) —• x[G)-
Choose any subgroup H of G such that G = G x H. Then (Y, G) is a group extension
of (Y,G) by if = G/G. More generally, if K is any closed subgroup of Tr( Y,G), let
G = Kx C.G and let Y be the image of Y in x(G~) under restriction. Then (F, G) is the
residue space of (Y, G) with respect to K.

DEFINITION 2.3: The sum of two prespaces of orderings (Yi, d) and (Y2, G2) is the
prespace of orderings (Y, G) = {YX\JY2, Gi xG2) with distinguished element (—1, —1) € G.
The action is defined by 0{{g\, g2) — Oi{di) for all at € Xiti = 1,2, and (gi, g2) 6 Gi x G2.

DEFINITION 2.4: The product of two prespaces of orderings (Yi, Gi) and (Y2, G2)
is defined to be the prespace of orderings (Y, G) — (Yi x Y2, G\ 4- G2), where G\ + G2 is
the coproduct in the category of elementary 2-groups with distinguished subgroup {±1}
preserved by all homomorphisms; equivalently,

{±1} • Gi

1
G2 > G\ -j- G2

is a pushout diagram for homomorphisms preserving the distinguished element — 1. Con-
structively, Gi -j- G2 is just (Gi x G2)/{(1,1), ( - 1 , -1)} so that (1, -1) = (-1,1) is the
distinguished element in G\ +G2 and the action is given by {o\, <r2)(gi, g2) — ai(gi)a2(g2),
for Oi € Yi and gi € Gu i = 1,2.

We shall say that a prespace of orderings (Y, G) is Baer realisable if there exists a *-
field (D, *) (possibly with * the identity so that D is commutative) such that (Y, G) is the
space of Baer orderings (semiorderings in the * = identity case), where G is interpreted
as above if D is not commutative.

THEOREM 2 . 5 . Let (Y,G) be a Baer realisable prespace oforderings. Then the
prespace of orderings (Yr, G') is also Baer realisable, where (Y1, G') is obtained by taking
the product of(Y, G) with itself, followed by a group extension by a group of order 2.

PROOF: Let (D, *) be the *-field realising (Y, G). Let F be the field of central
symmetric elements in D (which equals D if * is the identity). Extend F by forming the
field of formal Laurent series F((t)) and let D' = £>® F((t)}, which is again a skew field
[5, Section 2.3]. Extend * so that the central symmetric elements of D' become F{{t])
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(that is, by setting t* = t). Let v be the t-adic valuation on D'. Since t is symmetric,
it is clear that v(d) — v(d*) for every d G D'; and since t is central, it is clear that
the smooth condition for a valuation (see [13, p. 93]) is satisfied. The value group F is
infinite cyclic, generated by v(t), so F/2F = Z2. Finally, we need to know that every
Baer ordering of D' is compatible with v in the sense that 0 < a ^ b implies v(a) ^ v(b),
for a, b symmetric elements of D'. One way to see this is to note that any element of Y
can extend to D' in at most two ways, determined by the sign of t, and all of these do
occur and are compatible with v by [9, Theorem 3.4]. An application of [13, Theorem
2.8] now completes the proof. D

For detailed skew field examples of the preceding theorem, see [13, Section 4]. At
this point very little is known about which prespaces of orderings are Baer realisable.
The example from [9] which begins this section is a space of Baer orderings, so of course
is Baer realisable. But it is not a space of semiorderings as in Section 1 since it is a
four point space which is not SAP. Indeed, the smallest space of orderings which is not
SAP has four elements and it generates an 8 point space of semiorderings (as will be
seen in the next section in Theorem 3.2). The example is in fact, a space of orderings
in the abstract sense. There is no known example of a space of Baer orderings which
is not either a space of orderings or a space of semiorderings associated with a space of
orderings.

3. G R O U P EXTENSIONS AND MORPHISMS FOR SPACES OF ORDERINGS

In this section we look at theorems which are motivated by theorems for real val-
uations on fields. The role of the value group will be taken by certain subgroups of G,
and so is actually analogous to the value group modulo 2 for fields (and a slightly more
complicated group for *-fields [10, 11]). Our first result shows how to construct new
spaces of semiorderings from old ones. The second result is analogous to the very general
theorem that any valuation on a field can be lifted to any extension field.

We first show that Prestel's lifting theorems for semiorderings compatible with real
valuations [25, Chapter 7] can be generalised to this setting. We replace valuations with
group extensions of spaces of orderings, so we begin by describing the work of Marshall
on these constructions.

Following [23, p. 62], we point out the connection between value sets for group
extensions:

LEMMA 3 . 1 . Given (X, G) a group extension of (X,G), let s be an embedding
ofG/G into G splitting the projection G -*• G/G, with H = s{G/G). We then view
G = GH and write elements of G as g = gh or gt = ^ / i j , as needed. For any anisotropic
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form (gi,g2),

where the value set D(gl,g2) is contained in G.

PROOF: The initial statement is a special case of [23, p. 62, Claim 2]. To obtain
the final part, we claim that D{gi,g2) Q G when hi = h2 = 1 and (J7i,ff2) *s anisotropic.
This can be seen as follows: As a set of characters on G, we have X = X x x{H) [23,
p. 61]. Let g = gh G D(gi,g2). Since hi = h2 = 1, the elements 51 and g2 are constant
on fibres over each element of X. Since (5i,£r2) *s anisotropic, there exists some x 6 X
at which they have the same sign; without loss of generality, assume gl(x) = g~2(x) = 1.
Then g must be 1 on the fibre over x. That is, for any element (x, %) G X, we have
1 = g(x)h(x)- It follows that h is constant when viewed as a function on x{H), hence
h = 1 and g = 5 € G. D

THEOREM 3 . 2 . Let (X, G) be a group extension of (X, G), andY the space of
semiorderings for (X, G). Write G = GH as in the lemma. The space of semiorderings
for (X, G) satisfies

(3.1) Y^{a:H^{±l} | a(l) = 1 } x {<£: H ^Y},

where the correspondence is given as follows: Given mappings a, *$ as above, define y

by

(1)

Given a semiordering y, define o~y and ^Jy via

(2) ay(h) = y(h) and ¥y{h)[g) = y(gh)av(h), VgeG, heH.

PROOF: We first show that (1) defines an element of (Y, G): Note that y € {-1,1}G

and y(-g) = —y(g), the latter from the fact that it holds for the semiordering $(/i). To
show that y G Y, we use condition (1.1) of Definition 1.2. Let y(gi) = y(g2) = 1 and
#3 € D{gi,g2). To show y(gz) = 1, we follow the two cases of the previous lemma. First
assume that hi ^ h2- Then without loss of generality, we may assume that g3 = gi}

from which the claim follows. Now assume that hi = h2 = h. By Lemma 3.1, we obtain
h3 = h and g3 € D(gltg2)h so that g3o{h) £ D{gxo{h),g2o{h)). Since y[g{) = y{g2) = 1,
we have ^3(/i) is 1 at both g~xo-(h) and ~g~2o-{h). It follows that y{g3) = ^3(/I)[<73]CT(/I) = 1.

Secondly, let y = %iy(h). We show that y e Y. Note that y € {±1}G and that y ( - l )
= -y{h)ay{h) = - 1 . Let gt,g2 e G such that y{g{) = y(g2) = 1; let g3 G D(gug2).
If we can show that y(g3) = 1, we shall obtain y € Y by (1.1). Multiplying by h,
we obtain g3h G D{g~ih,g~2h). Now y(~g3) = y(g~3h)ay(h), which must agree with either
y(9\h)°y(h) = V(9i) ° r y(92h)ay(h) = ^ 2 ) . b<>th of which equal 1.
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Finally we must show that (1) and (2) give a bijective correspondence. For this, we
look at the two compositions of the mappings. Given y &Y, form ^Jy and ay by (2), and
use them to define yo by (1). Then

yo(9) = Vy(h){g} • ay{h) = y{gh)ay{h) • ay{h) = y(gh) = y(g).

On the other hand, if we begin with a pair (a, <P), form y by (1) and then compute ay

and yiy, we obtain

ay(h) = y{h) = y(h)[l]a(h) = a{h) and

= y(9h)ay(h) = ¥(h)[g}a(h)ay(h) = y(h)[g},

for all g = gheG. D

This theorem, together with direct sum gives all the finitely generated spaces of
semiorderings, when viewed as extensions of spaces of orderings. The product construc-
tion for prespaces of orderings presented in Section 2 is not explicitly needed as it is
obtained from this theorem. The fact that all finitely generated spaces of orderings can
be obtained beginning with a one point space and using group extension and direct sum
was first proved for fields in [7] and then put in an abstract context by Marshall (see
[22]). It is very useful to know when the elements of Y are actually orderings, and this
is the content of the next theorem. Again, this is based on Prestel's work for valuations
[25, Theorem 7.9].

THEOREM 3 . 3 . With the notation of Theorem 3.2, an element y € Y actually
lies in X if and only iftyy:H-*Y is a constant mapping onto an element of X and
ay: H -4 {±1} is a ciaracter.

P R O O F : Assume first that y € X. Then

ay(hih2) = y(/ii/i2) = (/ii/i2)(y) = hx{y)h2{y) = y(/ii)y(/i2) = oy{hi)oy{h2),

so ay is a character. Also,

= y{9h)ay{h) = y(g)(y(h)ay(h)) = y(g),

and thus ^3j, is a constant mapping. Furthermore, since ^Py(l)[ff] = y(~g) for all g e G
and y G X, it follows that *Py(l) lies in X.

Conversely, assume that ay is a character and y$y is a constant mapping onto an
element of X. We must show that y preserves products, so that it is an element of the
character group of G. Writing g{ = h^, 2 = 1,2, we have

= %{hlh2)tg1}¥y(hlh2)[g2]o-y(h1)(xy{h2)
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as desired. D

Next we look at morphisms between spaces of orderings and how semiorderings and
group extension constructions extend. In view of the preceding theorems, this gives an
analog of the theorems for extending valuations on a field Fx to an extension field F2.

Recall that a morphism a: (X2,G2) -» (Xi,G\) between two spaces of orderings is
a mapping a: X2 —• Xi such that for each g £ Gi, the composite function g o a: X2
—• {—1,1} is an element of G2. In particular, a induces a group homomorphism g >-* goa
from G\ to G2 which we shall also denote by a. Since a~l(H(g)) = H(g o a) for
each j 6 Gi, such a mapping a is automatically continuous. There is a contravariant
equivalence of categories between spaces of orderings and reduced Witt rings, where it
is the mapping G\ —> G2 that is the starting point, giving a Witt ring homomorphism
WiXud) -> W(X2,G2) [22, p. 140].

As we saw in Section 2, using duality for the Z/2Z-vector space x(G), we have a one-
to-one correspondence between closed groups G with G C G C G and closed subgroups
K of TrpsT, G) given by

K —+ GH = { 9 e G I t{g) = 1 V< e K) and

G —> KG = {t e Tr(X,G) | t(g) = 1 V«? € G}.

This gives us all the ways of viewing (X, G) as a group extension, the smallest space of
orderings "under" {X,G) being (X,G).

REMARK 3.4. While the construction giving the largest group extension always works
in abstract spaces of orderings, it is not always reflected in valuations for fields. For
example, if F — <Q(-\/2)((:r)) ({y)), the finest real valuation comes from the place of F
into K with residue field Q(\/2) and the value group modulo 2 has 4 elements. But the
space of orderings is a fan with 8 orderings, so in the abstract one has a group H of
order 8. The general situation is obtained by working with a subgroup of the translation
group, and for this field example, that would be the elements of Tr(-X", G) which fix the
class of y/2 modulo sums of squares.

LEMMA 3 . 5 . Assume that the space of orderings (Xi,G\) is a group extension
of (X~i, Gi) and that a: [X2,G2) —> (Xi,G\) is any morphism of spaces of orderings.

(1) The induced homomorphism a*: x(Ga) -»• x(Gi) carries the subgroup
Tr(X2,G2) into the image ofTrfapfaJ.GiU*,)) C x{Gi\a(x2))

 J'« x{Gi).
In particular, if X2 —> Xi is surjective, then composing with a carries

(2) Assume a: X2 —* X\ is surjective. Then (X2,G2) is a group extension of
a space (X2, G2) and a induces a morphism from (Xi, Gi) to (X2, G2).

PROOF: (1) Let t2 £ Tr(X2,G2) be arbitrary. Let t\ = t2 o a 6 x(Gri). Since
t2Xi = X2, we obtain t\Xi = X\ as follows. Given Xi G X\, lift it to x2 6 X2\ since
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t2x2 £ X2, the image t\Xx lies in X\. Therefore, composing with a carries Ti(X2,G2) to

(2) Let K\ be the subgroup of Ti(Xi,G\) corresponding to d as above. Using (1),

we obtain a subgroup K2 C Tr(X2, G2) as the inverse image of K\. Let

and

X2 = im(X2 <-> x(G2) -> x(G2))-

Then (X2,G2) is a space of orderings and {X2,G2) is a group extension of it by a
slight generalisation of [23, Theorem 4.1.3]. We need to define a morphism a: (X2, G2)
—¥ (XX,GX), naturally induced by a. We have a homomorphism a: G\ •—¥ G\ ^¥ G2.

We claim that the image lies in G2. Indeed, let t2 G K2, and g2 £ im(a) with preimage
gx € G\. Let tx be the image of t2 in Kx. Then t2(g2) = tx(gi) = 1, so g2 € G2. Thus we
have a homomorphism a: Gx -> G2. To obtain the corresponding mapping X2 -t Xx,

note that we have a mapping X2 •-¥ x(G2) ^-¥ x(Gi). From the commutative diagram

x2 • X , -

I
we see that X2 maps into Xx as desired. D

THEOREM 3 . 6 . Let a: (X2,G2) —¥ (X\,GX) be any morphism ofspaces oforder-

ings, and assume that the subspace (X[,G[) of(Xx,Gi) is a group extension of(Xx,Gi).

Let X2 = a~1(X[) and form the subspace (X2,G'2) of(X2,G2) by setting G'2 = G2\X'2-

Then (X2, G2) is a group extension of a space (X2, G2) and a induces a morphism from

[Xi,G\) to {X2,G2).

P R O O F : This is immediate from Lemma 3.5(2). 0

We next look at an abstract version of the old Artin-Schreier result on lifting an

ordering from a field to an extension field.

THEOREM 3 . 7 . Let (V2,G2) A {Yi,Gi) be a morphism of spaces of semiorder-

ings. Then y\ G Yx is in the image of a if and only if — 1 £ D2(a{g\),..., a(gn)) for any

gi G G\ such that t/i(<7i) = 1 for all i = 1 , . . . , n.

P R O O F : This requires the usual Zorn's lemma argument to construct y2 G Y2

extending y\. By Zorn's lemma, there exists a maximal subset A C G2 such that

{a(gi),.. .,a(gn)} C A and - 1 £ D{ax,.. . , a r ) for all r > 0,a< G A. First note that

A U -A = G2; otherwise, for b G G2, not in A U —A, we have - 1 G D(b,ai,... , a r )

n D(-b, o i , . . . ar) for some a< G A, which is a contradiction since b and —b cannot both
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be negative. Define y2: G2 -+ {±1} by

(+1, iigeA

For any a,b€ A and c G D(a,b), - 1 6 Z?(-c,a,6) [23, Theorem 2.2.6], so - c £ 4, then
ce A. It follows that y2 G >2 by Definition 1.2. D

4. ABSTRACT PREORDERINGS AND COVERING NUMBERS

An abstract preordering is defined in [23, p. 33] as a proper subgroup T of G such
that a,b eT = > D(a,b) C T. The set T is the kernel of G -> G|s for some subspace
5 C A" and conversely any subspace gives a preordering. This set 5 will be denoted by

xT = {iex|t(i) = i, vter}.

Any subset B C G generates a preordering, namely

{geG\g = lon (~)H(b)}.
beB

A special type of preordering is a fan, which can be defined by requiring that if x is
any character of G satisfying x{—1) = - 1 and x(t) = 1 for all t G T, then x € X [23,
Theorem 3.1.2]. This is equivalent to the associated Witt ring, W(XT, G/T), being an
integral group ring. A few small examples are included in the chart in the appendix.

DEFINITION 4.1: For S CY, the set

T = {geG\g-keTyCkery, Vye5}

is the preordering covered by S. To see that it is indeed a preordering, observe that if
a,b € T, c £ D{a,b), then for any h 6 kerj/, we have ch e D(ah,bh) so ch G kexy.
Conversely, given any preordering T, a cover of T is a subset S C Y for which T is the
preordering covered by S. A cover of T always exists, since the space of semiorderings
for the subspace (XT, T) of (X, G), given by

{yeY |T-kery Ckery},

where T • kery = {gh \ g € T, h G kerj/}, is always a cover of T. There are typically a
large number of different covers of T. For a given preordering T, the minimal cardinality
for a cover S is called the covering number of T. Covering numbers were introduced in
[15] and studied further in [14].
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For fields, if the covering number equals 1, then there exists a nontrivial valuation
fully compatible with the preordering. More generally, the covering number can be related
to other invariants of a reduced Witt ring. Roughly speaking, it varies directly with the
chain length and inversely with the stability index. A definition of chain length can be
given in terms of the Harrison subbasis for an abstract space of orderings (X, G) [23,
Section 4.2]: cl(T) is the supremum of all integers A; for which there exists a chain

H(a0) C H(Ql) C • • • C H(ak) ak 6 G.

The stability index is defined as the maximum integer n such that there exists a fan
T C.G with \XT\ = 2" (or oo if no finite maximum exists) [23, p. 47]. The next theorem
makes the connection between the invariants more precise. We shall return to the issue
of invariants in Section 5

THEOREM 4 . 2 . Let XT be a space of orderings of cardinality n. Let r < log2 n
be tie stability index.

{n, ifr = 1

n - 2 r + l, i f r /1(2) cn(T) <

(3) T i e minimum values of covering number are

cn(T) =

1, ifn = 1

2, ifn = 2s - 2 for some s > 2

1, ifn is even, not of the previous form

3, ifn - 2s - 1 for some s ^ 2

2, ifn is odd, not of the previous form

All bounds in this theorem are best possible.

P R O O F : We prove the theorem using recursion for reduced Witt rings of finite chain
length. (1) and (2) are clear if r = 0 (\XT\ = l) or r - 1 (XT is SAP). In particular,
the inequalities hold when \XT\ ^ 3. For a sum of spaces X, X' with stability indexes
r,r', the covering numbers add by [14, Proposition 3.5], the chain length adds, and the
stability index for the resulting space of orderings is max(r, r')\ thus (1) and (2) hold for
the sum. If the formulas hold for (X,G) and (X, G) is an extension of {X,G) by Z2,
then the chain length is unchanged, the stability index increases by 1 and the covering
number c is halved if c is even, and becomes fc/2] in general. Hence (2) is obvious and,
assuming that c ^ n — 2r + 1, we obtain

- 2r+1
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The fact that these bounds are best possible comes from the fact that for SAP spaces,
covering number equals \X\ equals chain length, and for fans, both sides of (1) are equal
to 1 since n — 2T.

(3) is clear for n = 1 and n = 2. Take a space of cardinality n ̂  2 and assume the
formula holds for all smaller spaces. If n is odd, the space must have the form of a sum
of a one point space with a space of cardinality n — 1, so we are done by the induction
hypothesis in this case. Now assume that n is even. Since covering numbers increase
with sum and decrease with group extension, the minimum value must be achieved by
taking a group extension of a space of cardinality n/2, for which the covering number is
minimal. The formula fc/2] for the resulting covering number, along with the induction
hypothesis, now gives the claimed numbers for the minimum. D

Note that this proof gives a construction for spaces with minimal covering number.
Of particular interest are the numbers of the form 2s — 2, 2* — 1, s = 2,3,4, . . . for which
the minimum covering numbers are the largest. As seen in the proof, the spaces are
created by alternately adding a point and forming a group extension.

We shall write T[g] for the preordering generated by TU {<?}; that is, the set

{h£G | h= Ion XTC\H(g)}.

There is a preordering associated with any semiordering, namely the preordering
covered by it. For a fixed semiordering y G Y, we write

This preordering, of course, has covering number one and such preorderings have a special

role in quadratic form theory, as shown in [14].

We wish to see how to compute Ty, particularly in terms of Theorem 3.2. We assume

that (Y, G) is a space of semiorderings for (X, G).

PROPOSITION 4 . 3 . Let y e Y be a proper semiordering.

(2) Assume there exist 51,32 G G with y(gx) = y(g2) = -2/(5152) = 1. Then
there exist four orderings z* 6 X, i = 1,2,3,4, with

T,cr={jeG|i i(s) = l, 1 = 1,2,3,4}

and such that the four orderings are distinguished by the signs of gx,g2-

Furthermore T is a fan.

(3) An ordering x lies in X?v if and only if for any g\ with —x(gi) = y(gi) = 1,

there exists 52 6 kery with 2/(5152) = —1-

PROOF: (1) Since 51, —51 ̂  Ty: the set Ty[gi) is again a preordering. Furthermore,

the conditions on y imply that 52, —52 £ ^y[5i]) so that ^[51,52] is also a preordering.
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By Zorn's lemma, there is an ordering xi positive on all elements of Ty [01,52]- Now apply

Zorn's lemma again to obtain a maximal preordering T such that Ty C T C ker x\ and

T does not contain any of ±^ ,±32 , ±<?i<72- Then %\ and the other three orderings in XT

clearly fulfill the conditions of the theorem.

(2) (=>) Since x{gi) = - 1 implies that 31 $ Ty, we know that gi kery g kery. That

is, there exists gi € kery such that gxg2 4- kery.

(<=) Given 31 € Ty, if y{gi) = 1 we are done. If not, then by hypothesis, there

exists g2 € kery such that y{g\g2) = —1, contradicting the fact that gi € Ty. Q

Using this proposition, we can now give a computation of the orderings containing
Ty in terms of the representation of semiorderings found in Theorem 3.2. We require one
further piece of terminology. Given a subset X' of X, the saturation of X' is defined to
be

6 X | x(g) = 1 for all g € f] kerx'}.
'x1

If X' is equal to its saturation, we say X' is saturated [17, Definition 1.7]. The need for
this in the next theorem comes from the fact that if three orderings in X' are in XT for
some fan T with \XT\ = 4, then the fourth ordering is in the saturation of X'. Indeed,
if X' is clopen, all additional elements of the saturation occur in this way [23, Theorem
4.3.4 and Note 4, p. 126].

THEOREM 4 . 4 . Lety € Y correspond to the pair (<r,<P) in Theorem 3.2. The or-

derings in XTy are precisely those orderings given by pairs (a0, P̂o) satisfying the following

condition:

Ify{g~h) — 1 and ^Po(̂ )[ff] = —0o(h),tneD fciere exist

g1 EG andti eH, such that ytfti) = 1 and y^hh') = - 1 .

Furthermore, we have

(4.2) TynG=

and y$o js a constant mapping onto some ordering in the saturation of the set \J

Moreover, given any such ordering x in X, if we define ?Po to be the constant map onto
x, then there exists a character a0: H -> {±1} such that the ordering (ao,^3o) lies in

PROOF: The main part of the theorem is just a restatement of Proposition 4.3(2).

To prove equation (4.2), first assume that g € Ty n G. Let h e H, ^ ( / i ) ^ ] = 1. We

must show that ^3(/i)[35*] = 1- From Theorem 3.2 we have
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And by definition of Ty, we have

y(fh) = yfflh) = V{h)\&]<r(h),

from which we obtain ^P(/i)[<75/] = 1, hence ~g € TqjC")- Conversely, assume that
g€f] Tv{h). Let g'h' e kery. Then

heH

yfflh') = fV(h')[gg'Mh') = W)tf)<j{h') = y{sfh') = 1.
Since this works for all elements of ker y, we have 7} €Ty.

Now consider any ordering x G Ty, corresponding to the pair (cro>̂ Po)- Let x denote
the constant value of ^Jo- Since x is positive on Ty, condition (4.1) implies that x contains
the preordering f] Tq3(/l). This implies the conclusion by the definition of saturation.

Finally, given any x in this saturation, with ^30: H -* X defined as the constant
mapping onto x, we need to define a corresponding a0 satisfying ao{h) = P̂o(M[s]> when
~gh 6 Ty\ for H' equal to a complementary subgroup of H to { h € H \ (3g € G)~gh € Ty},
choose a Z/Z2-basis of H', define a0 arbitrarily on this basis and extend it by linearity.
If a0 is well-defined (that is, independent of the choice of ~g), we shall be done by (4.1).
Assume that gh, g'h € Ty. Then the product

ghg'h ^gg1 eTyDG= f] Tvw.
h£H

By the choice of % , we have <$o(h)[gg'] = 1; but since x = tyo{h) is an ordering, this
equals Vo(h)[g]Vo(h)[g'], so that yo(h)[g] = Vo(h)[g'}, thus aa is well-defined. D

Condition (4.1) is little more than a complicated restatement of the fact that an
ordering in XT contains T. But it does provide an interesting perspective. It could
also be written as saying that if (cro,^o) € XTV, then for g = ~gh € Ty, we must have
ao(h) = ?Po(h)[~g]. By the general lifting result, Theorem 3.2, this condition on a0 is not
needed if XTV — X, as all choices of the character a0 work. But this is not true in general
as the next example shows. As in the previous proof, we see that <JQ can be arbitrarily
defined on basis elements for the subgroup of H not involved in Ty (that is, hi below, but
not ta)- The example also shows the effect of the extension group not having a canonical
embedding in G.

EXAMPLE 4.5. We work with the example from the appendix with \X\ = 12 and \Y\
= 648. This can be viewed as a group extension by a group H = {I,hi,h2,hih2} of a
three point space X = Y = {yvy2,y~3}, with group G - {±l,±'g1,±g2,±glg2}, where
we may choose (?i to be positive on yt (i — 1,2) and negative on the other two orderings.
In this space (X, GH), we let T be the fan {1, —g~ih2, —gig2, g2h2}. One can easily check
that T is covered by the semiordering y where

kery = {1, glt -g2, -5i^2> î> -J7i^i> 52̂ i> ~9i92^i'
, hxh2, -gxhih2, g~2hih2, -~g{g2hih2}.
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This semiordering is expressed in terms of Theorem 3.2 as

¥: 1 >-)• yu hi y-> y2, h2 •-> yu hih? •-> y2

a: 1 i -» 1, /ii H-> 1, / i 2 i-> - 1 , / i i / i 2 >->• 1 .

The four orderings associated with T are given by

<P = j / i ; a: hi f-> 1, /i2 •-> - 1

<P = j ^ ; < T : / I I H - 1 , /i2 H-> - 1

qj = y2; CT: /ii >-> 1, /i2t->- 1

q3 = y2; CT: hi »->• - 1 , /i2 •-> 1,

where cr is a character determined by its values on hi,h2, as required for an ordering.

There are always many different semiorderings that could be used to cover a preorder-

ing; in this case, there are four choices for y. A different choice (where Tjj < 0, g~2 > 0)

will make a = 1. But there are fans where this choice of a cannot be obtained. The

choice of H is not canonical. If H is replaced by {1, (ft/ii, -<7i/i2, ~hih2}, then T can be

written as (T D G) x (T n # ) .

EXAMPLE 4.6. For a preordering with covering number 1, it would be nice to be able
to find all of the semiorderings which cover it. In principle, Theorem 4.4 can be used
for this, though it can be quite complicated for large spaces. There are cases where it is
quite feasible, however, and we use the space of Example 4.5 to demonstrate this. We
want to describe an arbitrary semiordering (a, ty) covering the space. By (3.1), we view
the space Y as

{a: # - > { ± l } |<r(l) = l } x { « P : H -> Y}

which has cardinality 23 • 34 = 648 since H = Z2 x Z2. In this case, ~X = Y is SAP, so all
subsets are saturated and there are no proper semiorderings. It follows that the image
of ^3 must be all of X since each y{ S X has liftings in XTV = X. There are 36 ways to
map H onto X. In our case, there is no restriction on a and all 8 choices work; this is
because there is no proper subspace with covering number 1 having a residue space with
3 elements. It follows that there are 8 • 36 = 288 semiorderings which cover the space,
and we know exactly how to construct them.

For a fan, there is an easy way to write down a specific semiordering which covers

it [21, Proposition 14.12]. We are able to extend that result to any preordering with

covering number one.

LEMMA 4 . 7 . Let (Y, G) be a space of semiorderings associated with (X, G). Let

yi,V2 € Y. If there exists g E G such that gkeryi = kery2, then Tyi = Ty2.

PROOF: Assume that gkeryi = kery2. This means that gkeiy2 = <72keryx =

also. Let t €Tyi, so that ikerj/i = kerj/i. For any h e kerj/i, we have

- g(th) Egkeiyi = kerj/2 .
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Since gh represents an arbitrary element of kery2, we obtain t € kery2, so that

Let T be a preordering with covering number one and \XT\ > 1. Then (XT,GT)

must be a group extension of a space of orderings (X, G) by the group H = Tr(AV, GT)
with \H\ ^ cnX by [14, Proposition 3.5]. We shall distinguish two cases, depending
oncnX. If cnX = 1, then actually \X\ — 1, since otherwise (X,G) would be a proper
group extension and H would not actually equal TT(XT,GT)- The case where \X\ = 1 is
the known fan case mentioned above.

THEOREM 4 . 8 . Let T be a preordering with covering number one and \XT\ > 1.
Let H and (X, G) be as above. Let C = {ylt y2,2/3,... } be a minimal covering for X.

(1) If cnX = 1, letxeX and define y: G-> {±1} by

(4.3)

(2) If en X > 1, for each h G H, h ^ 1, assign an element y/, / yi in C so
that all elements of C are used, including ?/i assigned to I £ H. Define

by

(4.4) kery = kerj/!U [J -

Then y is a semiordering covering T.

PROOF: (1) For our abstract setting, T = {1} and X — x(H)- Thus one choice for
an ordering in X is defined by

kerx= {(l,/i) \h£H}C {±1} x H.

With this notation, our expression in (4.3) is just a translation of [21, Proposition 14.12].
(2) We first check that y is a semiordering. Notice first that the sets in the union

defining y are all disjoint since they lie in different cosets of GT/G. Thus the only part
of condition (1.1) of the definition that is not obvious is closure under addition, and this
follows from Lemma 3.1 and the fact that each j/ / , is a semiordering.

A Zorn's lemma argument shows that the intersection of all kernels of semiorderings
in YT is precisely equal to T (see, for example [25, Corollary 1.14]). From the definition
of group extension, these elements must all lie in G, and so we actually have

(4-5) T = f l Tyh .

Clearly T • kery C kery. Finally, assume that gkery C kery. In particular, g £ kery, so
lies in one of the subsets of the union. Assume first that g € ker y\. Certainly, we must
have g kery 1 C keryi, so g 6 Tyi. For any h ^ 1, h 6 H, we must have

g(-hkeryh) = -h(gkeryh) C -/ikeryA,
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which implies that gkery/, C kerj/hj that is g € TVh. By (4.5), we obtain g € T. It
remains to consider the case where g = —hgh for some <?/, 6 keryft. Then g • keryi
= —h • (<7hkeryi) C kery implies that ^ker j / j = kery>,. But this contradicts Lemma
3.10, as our choice of the semiorderings was such that they form a minimal covering of
X, and thus must have different associated preorderings. D

5. COMPUTATIONS FOR SMALL SPACES OF ORDERINGS

Group extension together with direct sum gives all the finitely generated spaces
of orderings, and hence of semiorderings using the construction of Definition 1.2. This
allows one to do the combinatorial sort of work found in [8] and Merzel [24] for spaces of
orderings. The tree structure described in [8] defines the finite spaces of semiorderings
as well as spaces of orderings. In this section we take a brief look at the power of some
of the new invariants obtained from semiorderings in characterising reduced Witt rings
(or equivalently, spaces of orderings). The pair of invariants \X\ and \Y\ are surprisingly
powerful for just two numbers in determining finitely generated rings W(X,G).

PROPOSITION 5 . 1 . For \X\ < 12, tie space of orderings (X,G) is completely
determined by the two numbers \X\ and \Y\. For \X\ — 12, of the 16 different rings,
there are two with \Y\ = 24 and two with \Y\ = 36.

PROOF: This is simply a matter of computation. The rings with (\X\, \Y\)
= (12,24) are Zz\w] x Z[x] x Z[y] x Z[z] and (Z[x,y])3 and the rings with (\X\, \Y\)
= (12,36) are {l?[x]f and Z[v] x Z[w\ x (z[x] x Z[y])[z). D

At 18 orderings, one first finds two Witt rings with the same |X|, \Y\, \G\ and sta-
bility index but different covering number and chain length. The four examples of the
Proposition are distinguished by covering numbers, which are 8, 3, 4 and 6, respectively.
For |.Y| < 24, the set of invariants \X\, \Y\, \G\, covering number, chain length, stability
index and number of components completely determine the space of orderings. The power
of |y | is seen with |X| = 24, where there are seven spaces of orderings with \G\ — 13,
covering number 5, chain length 10, stability index 3, and having exactly 2 components.
These are distinguished by |Kj = 256,260,272,292,320,356 and 400. There also exist two
spaces with 24 orderings for which all seven invariants are identical: \X\ = 24, \Y\ = 108,
\G\ — 215, en = 7, cl = 12, stability index is 2 and having 3 components. These are the
spaces with Witt rings

(5.1) (Z5[x])2 x Z2[y] and (Z3[x])2 x Z6[y]

It is easy to make up artificial invariants to distinguish particular spaces of orderings, but
there is little one can do in general. Notice that all of the standard invariants mentioned
above, with the exceptions of stability index and \G\, have the property that for sums
of spaces of orderings, they add the corresponding invariants. This limits their ability to
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distinguish spaces of orderings. Furthermore, stability index is a very weak invariant and
\G\ can be replaced by log2 \G\ which is additive.

THEOREM 5 . 2 . No finite collection of rational invariants which are additive over
sums of spaces of orderings can distinguish all spaces of orderings.

PROOF: Assume there are n invariants. Without loss of generality, we may assume
that they are not all zero on the one point space. For the purposes of this proof, let
Fj denote a fan with 2J orderings. Let Ati be the value of the ith invariant on the fan
Fj, j = 1,2, We construct two spaces with all n invariants identical. As our first
approximation to the construction, consider a space which is a sum of Fn+i and some (to
be determined) number of copies of F\. For the other space, we take sums of copies of
Fj, j — 2 , . . . n. We will have our examples if we can solve the system of linear equations

If the given matrix is nonsingular, that is, if the invariants are linearly independent for
fans of stability index at most n, we obtain rational solutions. If the common denominator
m of those solutions is not one, we use m copies of the fan Fn+i and all of our solutions
become integers. If any happen to be negative, the corresponding fans are moved to the
other space of orderings. Now, if the invariants are dependent for fans of stability index
up to and including n + 1 , we can just eliminate the dependent ones and use the argument
above on the reduced list of invariants. We are left with the situation in which the n
invariants become independent only when we include A^n+i, k = 1,... ,n. But then the
matrix

has rank n and one of the first n — 1 columns can be eliminated to make the resulting
square matrix nonsingular. In this case, our starting point for the two spaces of orderings
will be the sum of the fan Fn+2 with xn two point spaces Fi and the sum of the remaining
fans determined by the remaining first n — 1 columns in the resulting nxn matrix. Then
modify the spaces as above for rational or negative solutions. D

It may happen that one can construct integral invariants recursively that do distin-
guish all finite spaces of orderings. For example, they might be based on using products
instead of sums for combining the invariants of the components. But these are not prac-
tical in that they tend to grow very rapidly. Something of a compromise is found in an
invariant introduced in [12, Section 5]. For a formally real pythagorean field F, one can
show that the space of orderings is determined by $(3f), the Frattini subgroup of an
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involution subgroup (see [12, Section 2]) of a certain Galois extension of F. Using Galois
cohomology, one can compute the number

where TO = log2 \F/F2\ [12, Theorem 5.5]. This is shown to be an invariant of the space
of orderings, not depending on which field F gives that space. We write <p(X, G) for the
value of log2|

<3?(3F)|1 where X = XF and G = F/F2. For our purposes here, all we need
to know about the invariant is how to compute it recursively, and this follows from [12,
Proposition 5.3].

PROPOSITION 5.3.

(1) If X is the one point space, then <p(X, {±1}) = 0.

(2) If(X,G) is the sum of two spaces of orderings (Xi,G\) and (X2, G2), then

<p{X,G) = <p(Xl,Gl)+<p(X2,G2) + (log2 I d

(3) If (X, G) is a group extension of (X, G) by 1^, then

Even though this invariant is independent of the other invariants above, it has the
problem that it does not do well at distinguishing spaces of low stability index. Indeed,
it has the value 96 for both of the rings in (5.1).

6. A P P E N D I X

We give a list of all spaces of orderings, with accompanying information, for spaces
with \X\ ^ 12. These have been computer generated and are available up to \X\ = 24;
the total number of distinct (X, G) for each \X\ is computed in [8], where it is also
pointed out that it suffices to list the even numbers. The construction is done in [7],
where it is proved that each space (X, G) for \X\ odd occurs by taking a space with one
less point, adding a single point to the space and another square class to G; the associated
Y increases by one point, the covering number increases by 1 and the ring W(X,G) is
obtained as a product with a copy of Z; the product here is in the category of Witt rings
and an explicit construction is given in [7].
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1*1
1

2

4

4

6

6

6

8

8

8

8

8

8

10

10

10

10

10

10

10

10

10

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

log2 \G\

1

2

4

3

6

5

4

8

7

6

6

5

4

10

9

8

8

7

7

6

6

5

12

11

10

10

9

9

9

8

8

8

7

8

7

7

6

5

1*1
1

2

4

8

6

10

18

8

12

16

20

32

128

10

14

18

22

26

34

50

130

162

12

16

20

24

24

28

36

36

40

52

72

132

136

164

200

648

W(X,G)
'V

z2

z4

Z[x,y)

z6

Z[x, y] x Z2

Z3[x]

z8

Z[x, y] x Z4

(z[*,y})2

T$\<r\ V T 2
£i [Xj X iL

Z4[x]

Z[x, y, z]

z 1 0

Z[x, y] x Z6

{Z[x,y]fxl?
Z3[x] x Z4

Z3[x]xZ[y,z]
Z4[x] x Z2

Z5[x]

Z[x, y, z] x Z2

{ZxZ[x,y])[z}

z 1 2

Z[x, y] x Z8

(Z[xl2/])
2xZ4

J3\r] x J6

(z[x,y])3

Z3 x Z[y, z] x Z2

Z4[x] x Z4

(Z3[x])2

Z4[x]xZ[y,z]
7bW\ v 72

[ 1
Z6[x]

Z[x, y, z] x Z4

Z[x,y,z] xZ[u,w]
(Z[x,j,]xZ)[z]xZ2

(Z[x,y]xZ2)[z]
Z3[x,y]

covering no.
1

2

4

1

6

3

2

8

5

2

4

2

1

10

7

4

6

3

4

3

3

1

12

9

6

8

3

5

6

4

3

5

3

5
2

3

2
1

Comment
SAP, Fan
SAP, Fan

SAP
Fan

SAP

SAP

Fan

SAP

SAP
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