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Summary

A computer model is developed that simulates Marker Assisted Selection (MAS) in a population
produced by a cross between two inbred lines. Selection is based on an index that incorporates
both phenotypic and molecular information. Molecular markers contributing to the index and
their relative weights are determined by multiple regression of individual phenotype on the
markers. The model is applied to investigate the efficiency of MAS as affected by several factors
including total number of markers in the genome, number of markers contributing to the index,
population size and heritability of the character. It is demonstrated that selection based on genetic
markers can effectively utilize the linkage disequilibrium between genetic markers and QTLs
created by crossing inbred lines. Selection is more efficient if markers contributing to the index are
re-evaluated each generation than if they are evaluated only once. Increasing the total number of
markers in the genome as well as the number of markers contributing to the index does not
necessarily result in a higher efficiency of selection. Moreover, too many markers may result in a
weaker response to selection. Population size is shown to be the most important factor affecting
the efficiency of MAS.

1. Introduction

Any method of selection that makes use of genetic
markers requires finding markers that are associated
with quantitative trait loci (QTLs) as well as estimating
the contribution to the genotypic value of the trait by
the QTLs associated with a marker (marker effect).
Numerous works have been published recently on the
genetic mapping of QTLs (e.g. Lander & Botstein,
1988; Paterson et al. 1988; Paterson et al. 1990). One
of the stated goals of QTL mapping is to identify
genetic markers that are closely linked to QTLs and,
hence, can be used in selection for the trait. As stated
by Zhang & Smith (1992), 'Eventually with very close
linkage each QTL allele can be uniquely identified in
selection, and selection will then be equivalent to
selection on the QTLs themselves.'

Lande & Thompson (1990; also Lande, 1992)
proposed a method of Marker Assisted Selection
(MAS) which rather than actually mapping QTLs
employs multiple regression of the phenotype on
markers to identify a set of markers associated with
QTLs as well as to estimate the marker effects. They
recommend crossing two inbred lines to create linkage
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disequilibrium between genetic markers and QTLs
that can be utilized by selection. They also suggest
that a large number of markers should be included in
the multiple regression in the generation immediately
following the hybridization cross, but only those
markers that yield the 'largest apparent additive
effects' should be used in selection in this and in the
subsequent generations. The main conclusion from
the deterministic analysis in Lande & Thompson
(1990) paper is that MAS based on an index
incorporating marker effects together with phenotype
can yield a greater response than selection based
strictly on phenotype, provided there are sufficiently
many markers and the population size is very large.

Zhang & Smith (1992) conducted computer simula-
tions of selection in a population of 500 individuals of
each sex. Three modes of selection were considered:
based exclusively on the BLUP estimate (Kennedy &
Sorensen, 1988) of the individual's genotypic value,
based on an index incorporating the BLUP estimate
as well as effects of genetic markers, and based
exclusively on the marker effects. The highest response
was by selection based on the combined index and the
lowest by selection based exclusively on genetic
markers.

In this paper we report results of computer
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simulations aimed at investigating the effect of
different factors (e.g. the number of available genetic
markers, population size, heritability, etc.) on the
effectiveness of MAS proposed by Lande & Thomp-
son (1990) as compared to conventional mass selection
based on phenotype.

2. Methods

The majority of simulations were conducted using the
genetic map shown in Fig. 1. There were 25 diallelic
quantitative trait loci (QTL) randomly distributed
among 10 chromosomes of 100 cM each. Besides
QTLs, each chromosome also had marker loci evenly
spaced along the chromosome. The number of markers
was the same (11 in Fig. 1) for all chromosomes, and
a marker was always located at each end of a
chromosome. The effects of the QTL alleles (shown in
Fig. 1 under the corresponding loci) constitute the
'geometric series of variance contributions' as de-
scribed by Lande & Thompson (1990). The actual 25
QTLs correspond to 10 'effective loci' (Lande, 1981).
Simulations were also conducted using alternative
maps: a map with 25 QTLs of the same effects as in
Fig. 1 but distributed differently among the chromo-
somes, a map with 13 geometric series QTLs corre-
sponding to 5 effective loci, and a map with 10
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QTLs of equal effects. Some of the chromosomes in
the last two maps had only marker loci on them, but
no QTLs.

Recombination was simulated in the following
manner. No more than two crossovers were allowed
to occur between a pair of chromosomes of any
length. The physical length of a chromosome was
assumed to be n units such that one but no more than
one chiasma can form within a unit. If the length of
the chromosome in morgans is L, the distribution
C(i), of the probabilities for i chiasmata (i = 0, 1, 2) to
be formed by a pair of such chromosomes can be
written as

C(0) = (l-</)»,

C{\) = nd{\-d)n-

C(2) = l -

0-548

Fig. 1. Genetic map with 25 'geometric series' QTLs
randomly distributed among 10 chromosomes and with
11 evenly spaced genetic markers per chromosome
(numbers under QTLs indicate their additive effects on
the character).

(1)

(2)

(3)

where d = 2L/n (2 accounts for the two pairs of
chromatids). Consequently, the distribution r(i) of the
probabilities for / crossovers between the chromo-
somes can be obtained as

(4)

(5)

(6)

Given a crossover has occurred, its position along the
chromosome was assumed random. The mapping
function corresponding to this recombination process
is practically indistinguishable from Haldane's map-
ping function (provided n is sufficiently large).

The initial population for each computer run was
generated to represent an Fl cross between two inbred
lines, i.e. all individuals were genetically identical and
heterozygous for all loci. Two main types of Fl
crosses with respect to the gametic phase of the QTLs
were generated:' total coupling' and ' total repulsion'.
In total coupling phase, the effects of all alleles in the
QTLs on a chromosome were in the same direction,
e.g. (+ + +) on one chromosome and ( ) on its
homologue. In total repulsion phase, the effects of
adjacent QTL alleles on a chromosome were in
opposite directions, e.g. (H h) and (—|—). The
marker loci in Fl crosses were always in total coupling
phase for all runs.

The genotypic value, g, of an individual was
assumed to be the sum of the allelic effects by all of the
QTLs in the diploid genotype:

(7)

where A't and A" are the purely additive effects of
maternal and paternal alleles at the rth QTL. The
individual's phenotype, Z, was obtained as

Z = g+e, (8)

where e is the environmental component normally
distributed with zero mean and variance ve. The value
of the environmental variance was computed at the
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beginning of each run such as to yield a desired
value of the heritability, h2 = vg/(vg+ve), in generation
F2, i.e.

ve = vg(l-h
2)/h\ (9)

where vg is the expected genotypic variance in F2
which was estimated by the genotypic variance among
10000 offspring generated from the initial population.
The value of the environmental variance computed at
the beginning of a run remained unchanged for the
total duration of the run (20 generations). The allelic
effects of QTLs were scaled so as to yield the maximum
and minimum of the genotypic value (by the two
extreme homozygotes) equal to 10 and —10 units,
respectively. Hence, the mean phenotypic value
attainable under any selection could not exceed 10.

The offspring population in each generation was
produced in the following manner. A male and a
female chosen randomly from the parental pool of
selected individuals were mated to produce one
offspring. After that, they were returned to the parental
pool. This was repeated until a specified total number
of offspring had been obtained. Thus, the family size
was variable.

Selection was based on the index proposed by
Lande & Thompson (1990). A fixed proportion of
individuals with the highest value of the index was
selected for reproduction in each generation. The
index of an individual with phenotype Z and molecular
score M is

I=bzZ + bMM. (10)

Since only relative values of the coefficients in the
index are relevant, the phenotypic coefficient, bz, was
set to 1 in all our simulations, i.e. the index was
computed as

I=Z + bMM. (11)

The individual's molecular score, M, is defined as

M='Zcjm}, (12)

where m} is the number of alleles (0, 1 or 2) in theyth
marker locus of the individual, and ci is the additive
effect associated with the marker, i.e. the coefficient of
the multiple linear regression of the phenotype on the
number of alleles at the marker locus. The summation
is over all markers in the regression.

The computer program used in this study to simulate
MAS was written to allow an investigation of different
quantitative traits, including sex-dependent traits.
Consequently, the regression of individual phenotype
on markers was computed separately for the two
sexes, even though traits considered in this report
were sex-independent (with no sexual dimorphism).
Therefore, individual males and females might have
different molecular scores even if they were genetically
identical.

Molecular scores of individuals in the first gener-
ation of any run were computed based on the

regression utilizing all markers from all chromosomes
in the genome. If the number of markers in the
genome exceeds the number of individuals in the
sample it is not possible to include all of the markers
in a single regression. We therefore employed a two-
stage procedure. In the first stage, a separate regression
was fitted for each chromosome. The 'forward
selection' procedure (Draper & Smith 1981) was
employed to select from all of the markers on a
chromosome only those five that made the highest
contribution to the R2 value of the regression. In the
second stage, all previously selected 50 markers were
thrown together and a regression was fitted utilizing
all of them. The forward selection procedure was
employed again to select a fixed number of markers
with the highest contribution to the R2 value. Such
two-stage regressions were fitted in the first generation
of all computer runs. As for the subsequent genera-
tions, in some runs the two-stage regression utilizing
all markers in the genome was fitted in each generation,
i.e. markers contributing to the molecular score
differed between generations. Besides such runs ' with
marker re-evaluation', runs were also conducted
'without marker re-evaluation'. Regressions in the
subsequent generations of the latter runs utilized not
all markers in the genome but only those selected in
the first generation. A regression on all of these
markers was fitted in one stage. Hence, markers
contributing to the molecular score of a run without
marker re-evaluation remained the same in each
generation. The regression coefficients (additive
effects) of the markers did change, however, since a
new regression was fitted in each generation.

The molecular score coefficient, bM, in the index
(11) was computed as

= (\/h*-\)/{\-pM), (13)

where h2 is the heritability and pM is the proportion of
the genetic variance accounted for by the markers in
the regression. The latter can be expressed as

PM = PM/h\ (14)

where PM is the proportion of the total phenotypic
variance accounted for by the markers.

Since markers in the two-stage regression are not
selected randomly, the standard squared correlation
of the regression, R2, overestimates PM. The following
method was employed to correct for the bias.
Populations of individuals with phenotypes controlled
exclusively by the environment (i.e. only with the
markers but without QTLs in the genome) were
generated for a given configuration of markers in the
population. The two-stage regression of the phenotype
on markers was fitted for each population. The
average of the R2 value over 40 such populations was
used as the estimate of the bias in the R2 for a
regression with the same set of parameters but with
the phenotype controlled by QTLs as well as en-
vironment. It turned out, however, that the correction
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Table 1. Parameters used in simulations

Markers on chromo-
some

Markers in selection
index

Base

11

6

Individuals of each sex 500
Initial heritability
Selection strength

0 1
2 5 %

Alternative

3 6

3 9

100 200
0-2 0-4

10%

21

12

1000

51

15

3000

101

20

had practically no effect on the outcome of the
simulations for population sizes greater than 100
individuals of each sex.

Parameters used in simulations are shown in Table
1. Most runs were conducted with parameter sets
differing from the BASE set by only one alternative
parameter at a time. However, some sets with two or
more alternative parameters substituted in the BASE
set were also investigated.

42

in the Methods section. It is seen that selection
is more efficient if markers are re-evaluated each
generation than if they are evaluated only once.
Starting from the initial population in total coupling
phase, MAS with marker re-evaluation is effective
(yields a higher response than purely phenotypic
selection) at least until generation 20, whereas without
re-evaluation it becomes ineffective after generation 9.
MAS without re-evaluation started from a population
in total repulsion phase becomes ineffective after
generation 4, yet it continues to be effective until
generation 9 if markers are re-evaluated. Similar
findings were obtained in simulations with parameter
sets other than BASE. Because of this, the remaining
results in the paper are reported only for runs with
markers re-evaluated each generation. It should be
kept in mind, however, that MAS with re-evaluation
requires more markers scored each generation than
MAS without re-evaluation. Because of the costs
associated with scoring genetic markers, it may be
more economic not to re-evaluate markers each

3. Results and discussion

The majority of the results reported here concern the
efficiency of Marker Assisted Selection. Following
Lande & Thompson (1990), the efficiency was calcu-
lated as a ratio of the response in the mean phenotype
under MAS to the response under conventional
phenotypic selection with the same set of parameters.
A result for a given parameter set represents an
average over replicated runs. The number of replicated
runs depends on the population size: 40 runs for 100
and 200 individuals of each sex, 30 runs for 500
individuals of each sex and 20 runs for 1000 and 3000
individuals of each sex.

Runs with a given parameter set were conducted
starting from initial populations in total coupling as
well as in total repulsion gametic phase. Results for a
cross between two real inbred lines should fall between
these extremes, and this was confirmed by simulations
started from initial populations in a random gametic
phase, i.e. with the signs of the alleles in QTLs on a
chromosome assigned randomly (all individuals re-
mained, however, heterozygous for all marker loci
and QTLs).

Figure 2 shows the dynamics of the phenotypic
mean in 30 replicated runs with the BASE parameter
set. The response to MAS is much stronger if the
initial population is in total coupling than in total
repulsion phase. The same, however, is also true for
purely phenotypic selection (Fig. 4).

Figure 3 presents the efficiency in generations of
MAS for the BASE parameter set. Generation 0
corresponds to the initial Fl cross, whereas generation
1 corresponds to the F2 cross (the first generation of
selection). Points on the graph designated as 're-
evaluation' and 'no re-evaluation' refer to simulations
with and without marker re-evaluation, as explained

0 2 4 6 8 10 12 14 16 18 20
Generation

Fig. 2. Response in the phenotypic mean of one sex to
MAS in 30 replicated runs with BASE parameter set.

6 8 10 12
Generation

14 16 18 20

Fig. 3. Efficiency of MAS relative to purely phenotypic
selection, with and without marker re-evaluation, (a)
Coupling, (b) repulsion. # , No re-evaluation; O> re-
evaluation.
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Table 2. Efficiency of MAS

43

Gen.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Base

2-34
208
1-92
1-74
1 61
1-52
1-45
1-38
1-32
1-28
1-23
1 21
118
116
114

2-23
1 91
1-65
1-47
1-33
1-24
116
109
105
100
0-97
0-94
0-92
0-90
0-88

Markers in
selection index

3

200 ;
1-83 :
1-72
1-60
1-49 1
1-41 1
1-34
1-27
1-22
119
116
114
112
110
108

2-14 :
1-79
1-53
1-34
1-24
115
108
103
0-98
0-93
0-90
0-87
0-85 (
0-83 (
0-82 (

12

2-30
'.05
•92
•77
•65
•56
•48
•41
•34

•30
•26

1-24
•21

1-19
17

>16
1-92
1-68
1-51
•38

1-29
1-23

16
1-12
1-07
1-04
I-01
)-98
)-96
)-95

20

Total
2-14
1-98
1-85
1-74
1-64
1-56
1-49
1-42
1-36
1-32
1-28
1-25
1-23
1-20
118

Total
200
1-82
1-70
1-51
1-41
1-34
1-27
1-21
116
112
109
106
103
101
0-99

Markers per
chromosome

3 6

coupling
1-95
1-68
1-52
1-39
1-29
1-22
116
111
107
104
102
100
0-98
0-97
0-95

2-34
205
1-87
1 71
1-58
1-48
1-39
1-32
1-26
1-22
118
116
113
112
110

Repulsion
1-82
1-51
1-32
116
106
100
0-94
0-89
0-87
0-84
0-81
0-79
0-78
0-77
0-76

216
1-86
1-62
1 41
1-28
119
111
104
0-99
0-95
0-90
0-87
0-84
0-82
0-81

]
i

51

219
1-99
1-84 1
1-68 1
1-57 1
1-48 1
1-41 1
1-34 1
1-28 1
1-24 1
1-21
119 1
117 1
115
113

209 1
1-84
1-64
1-43
1-32
1-24
117 (
112 (
107 (
104 (
101 (
0-99 (
0-97 (
0-96 (
0-95 (

dumber of
ndividuals

100

1-44
•47
•35
•23
•20
•16
14

•12

09
•09
•07

106
•06
•04
03

1-18
1-12
1-07
1-05
103
101
)-98
)-95
)-94
)-94
)-91
)-91
)-89
)-89
)-88

200

1-82
1-62
1-56
1-47
1 39
1-34
1 29
1 25
1-20
118
115
113
112
110
108

1-70
1-48
1-34
1-20
112
106
102
0-98
0-97
0-95
0-93
0-91
0-89
0-88
0-87

3000

2-87
2-52
2-26
2-08
1-89
1-75
1-62
1-53
1-46
1-40
1-34
1-30
1-27
1-24
1-21

2-77
2-31
1-96
1-73
1-55
1-43
1-34
1-26
1-20
115
111
107
104
102
0-99

generation, even at the expense of reducing the
efficiency of selection.

Table 2 and Table 3 summarize the main results of
our investigation of the effects of different parameters
on the efficiency of MAS. The first column in each
table indicates the generation. Even though simu-
lations were actually run for 20 generations, not much
interesting information was revealed after generation
15. Therefore, only 15 generations are presented in
order to save space. The second column in both tables
shows the efficiency of MAS for the BASE parameter
set. The numbers correspond to the points in Fig. 3 for
the runs with marker re-evaluation. More parameter
sets than those appearing in Tables 2 and 3 were
actually investigated (see Table 1).

The results indicate that MAS can effectively utilize
the linkage disequilibrium between QTLs and genetic
markers created by a cross between inbred lines. For
example, the response in the first generation of MAS
in a population with BASE parameters is between 2-23
and 2-34 times (depending on the initial gametic
phase) stronger than the response to purely phenotypic
selection. The efficiency is generally higher if the initial

population is in coupling gametic phase than if it is in
repulsion phase. The explanation for this is that in
coupling phase the contributions to the variance in the
character by blocks of QTLs in linkage disequilibrium
with each other are large so that genetic markers can
easily detect a whole block. In the repulsion phase,
however, the same blocks of QTLs contribute rela-
tively little to the variance in the character and,
consequently, they cannot be as easily detected by
markers. By the time recombination separates these
QTLs so they might be detected by the markers, the
linkage disequilibrium between markers and QTLs
may become too weak because of recombination
between the markers and QTLs.

The efficiency of MAS is clearly determined not just
by the number of markers included in the regression
and, hence, contributing to the selection index, but,
more importantly, by the significance of the effects of
the markers. The more markers are in the regression,
the lower is the significance of their effects. As Zhang
& Smith (1992) pointed out, the inclusion of too
many markers would ' add (in estimation) more noise
than information to the system'. This is confirmed by
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Table 3. Efficiency of MAS

44

Gen.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
1

BASE (

2-34
208
1-92
1-74
1-61
1-52
1-45
1-38
1-32
1-28
1-23
1-21
1-18
116
114

2-23
1-91
1-65
1-47
1-33
1-24
116
109 (
1-05 (
100 (
0-97 (
0-94 (
0-92 (
0-90 (
0-88 (

nitial
leritability

)-2

1-83
1-65
1-53
1-43
1-36
1-28
1-23
118
1-15
1-12
110
109
t-07
106
106

1-75
1-52
1-35
1-23
1-14
L-08
102
)-98
)-94
)-91
)-88
)-87
)-85
>85
)-84

0-4

1-40
1-32
1-27
1-21
116
113
110
107
106
105
104
103
1-02
102
102

1-37
1-24
115
109
104
100
0-97
0-96
0-94
0-94
0-95
0-95
0-96
0-97
0-97

Random mating
generations

5 10 20

Total coupling
1-90
1-79
1-63
1-55
1-45
1-37
1-32
1-26
1-22
117
114
1-12
110
109
107

1-77
1 55
1-46
1-38
1-31
1-26
1-20
115
112
109
1-06
104
1-02
101
0-99

1-22
114
114
110
108
106
1-04
102
0-99
0-96
0-94
0-93
0-92
0-92
0-92

Total repulsion
1-80
1 51
1 31
119
112
107
101
0-96
0-93
0-91
0-88
0-85
0-83
0-82
0-81

1-45
1-28
1-17
108
100
0-96
0-92
0-90
0-87
0-85
0-84
0-83
0-82
0-82
0-82

1-35
1-13
106
0-98
0-93
0-90
0-87
0-86
0-85
0-84
0-83
0-83
0-83
0-83
0-84

Selection <
strength -
1 0 % <

2-41 :
200 :
1-77
1-60
1-48
1-37
1-30 1
1-24
1-20
117
114 1
112
110
109 1
108

205 ;
1-54
1-36
1-21
1-12
104
0-99
0-95
0-92
0-90
0-88 (
0-87 (
0-85 (
0-84 (
0-84 (

jenetic map

325

>-47
>-07
1-84
1-71
1-60
L-51
1-44
1-38
1-33
L-30
1-26
1-23
1-21
•20

[-17

M4
1-78
1-55
1-38
1-25
118
[•13
[•07
103
100
)-99
)-97
)-95
)-95
)-94

G13 1

2-37 :
2-i2 ;
1-90
1-75
1-61
1-50
1-40
1-33
1-27
1-22
119
116
113
111
1-10

2-27 ;
1-99
1-77
1-59
1-44
1-33
1-24
119
114
110
108
105
104
1-02
101

210

>-41
»03
•91

[-77
•62
•53
•43

[•36
•30
•25
•22
18
15
12

[•10

M7
[•82
•66
•53
•45

1-38
[•32
•28
•25

1-21
117
•13

110
108
I 06

(Alternative genetic m a p s : G 2 5 : 25 QTLs with geometric series effects; G 1 3 : 13
Q T L s with geometric series effects; E10 : 10 Q T L s with equal effects.)

columns 3-5 in Table 2 showing the effect of the
number of markers included in the selection index
(out of the total of 110 markers in the genome) on the
efficiency of MAS. As compared to the BASE case of
6 markers in the selection index, the efficiency drops in
earlier generations if the index includes 20 markers.
The efficiency drops also if only 3 markers are in the
selection index, although it is still surprisingly high
given so few markers contribute to the index.

Having more genetic markers on a chromosome
would seem to provide more opportunities for
selecting markers with effects of higher significance,
and, hence, to raise the efficiency of MAS. This,
however, is not necessarily true, as demonstrated by
columns 6-8 in Table 2. Even though the efficiency is,
indeed, higher in the BASE case of 11 markers than in
the case of only 3 markers per chromosome, the
efficiency is not different from the BASE case if each
chromosome carries only 6 markers. Moreover, with
51 markers per chromosome, the efficiency is lower
than in the BASE case of 11 markers. Thus, increasing
the number of markers on a chromosome does not

necessarily make MAS more efficient, and may even
reduce its efficiency. How many markers on a
chromosome are needed in order to achieve the
highest efficiency depends, of course, on the relative
position of QTLs and on the population size.

Provided a population is sufficiently large, the
response to purely phenotypic selection is practically
not affected by its actual size, as demonstrated by the
solid lines in Fig. 4 showing the response to such
selection by populations of 100, 200, 500, 1000 and
3000 individuals of each sex. On the other hand,
effects of the markers contributing to the molecular
score become more significant with increasing popu-
lation size. Consequently, MAS is expected to be more
efficient in larger populations. Columns 9-11 in Table
2 as well as points plotted in Fig 4 confirm this: MAS
efficiencies increase substantially in larger populations.
These results as well as results for other parameter sets
not reported here single out population size as the
most important factor affecting the efficiency of MAS.

The efficiency of MAS declines noticeably with
increasing heritability, as demonstrated by columns
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10 12 14 16 18 20
Generation

Fig. 4. Dynamics of the mean phenotype under purely
phenotypic selection (solid lines) and MAS (scattered
plots) in populations of different sizes, (a) Coupling, (b)
repulsion. Number of individuals of each sex. • . 3000;
X, 1000; O, 500; A, 200, +, 100.

3-4 in Table 3. This is expected since the phenotype
becomes a better predictor of the individual's geno-
typic value when the heritability is high and, hence,
less information about the genotypic value is gained
by using genetic markers (Lande & Thompson, 1990;
Zhang & Smith, 1992).

Given that MAS is more effective if the heritability
is low and that the heritability is reduced by selection,
one might think that the efficiency of MAS should
increase as selection progresses. Yet, the efficiency
always declines in the course of selection for any set of
parameters. This is because the linkage disequilibrium
between markers and QTLs is gradually destroyed by
recombination. Also, the frequencies of QTLs (or
blocks of linked QTLs) having large effects as well as
of markers associated with them become rapidly
reduced by selection.

It is important to note that crossing inbred lines
creates linkage disequilibrium not only between
markers and QTLs but between different markers as
well. While disequilibrium between markers and QTLs
is utilized by MAS, disequilibrium between markers
impedes the detection of 'good' markers, i.e. those
that are closest to QTLs. Allowing recombination to
reshuffle markers before initiating selection weakens
associations between 'good' markers and QTLs.
Columns 5-7 in Table 3 show this to be true, the
efficiency of MAS was reduced in populations under-
going generations of random mating before selection.
This was also demonstrated by Zhang & Smith (1992).

The optimal number of markers per chromosome
increases with generations of random mating before
selection. For example, after 20 generations of random

mating following hybridization, with QTLs initially
in coupling phase and 6 markers in the index, the
efficiency of MAS in the first generation of selection
using 21 markers per chromosome was 1-69, as
compared to the efficiencies of 1 -22 using 11 markers
per chromosome (Table 3 column 7), 1-64 using 51
markers per chromosome, and 1-48 using 101 markers
per chromosome. Thus, the previous conclusion, that
increasing the number of markers does not necessarily
make MAS more efficient, still holds, even though the
optimal number of markers depends on the degree of
linkage disequilibrium.

Increasing selection strength (selecting 10% of
individuals rather than 25 %) seems to slightly reduce
the efficiency of MAS, particularly if the initial
population is in repulsion gametic phase (column 8 in
Table 3).

Simulations were conducted with maps that differed
from the one in Figure 1 by the location of QTLs in
the genome, their total number and their allelic effects.
The results of these simulations are presented in the
last three columns of Table 3. There does not appear
to be much of an effect for these maps.

The value of the coefficient bM in the index / in
equation (11) turned out to be extremely high in
practically all of our simulations, so that selection was
based almost exclusively on the molecular score. It is
clear that if very many markers are in the regression,
they may account for almost all of the genotypic
variation resulting in a large value of the coefficient
bM. In our simulations, however, this appears to be
true even with only a few markers in the regression.
This can be due to the correlation between different
markers as well as between different QTLs, so that
even a few markers may account for a large proportion
of the genotypic variation. That nearly all of the
weight in the selection index was on the molecular
score evidently results from low heritability of the
character and also from large sample sizes (at least
100 individuals of each sex) so that the proportion of
additive genetic variance explained by the markers,
pM, was near one. This differs from the simulations of
Zhang & Smith (1992) in which selection based strictly
on the molecular score was always less effective than
selection based on the combined index. It should be
kept in mind, however, that their index incorporated
not the phenotype of an individual but rather the
BLUP estimate of the individual's genotypic value
using family data (Kennedy & Sorensen, 1988). The
heritability of the BLUP estimate is higher than the
heritability of the phenotype. Since higher heritability
results in less efficient MAS, selection based exclusively
on the molecular score was less efficient than selection
based on their combined index and even than selection
based exclusively on the BLUP estimates. It should
also be noted that Zhang and Smith evaluated markers
for computing molecular scores only in the first
generation of a computer run. But, as our results
demonstrate, the efficiency of MAS is lower if markers
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Table 4. Markers contributing to the molecular score and their regression
coefficients in 3 generations of 2 replicated runs for one sex with BASE
parameter set {Coupling initial populations)

Gen.

Run 1
1

2

3

Run 2
1

2

3

[Chromosome: marker]
Regression coefficient

[1:2]
1-21

[1:5]
2-35

[1:4]
1-38

[1:4]
1 91

[1:3]
1-28

[2:5]
0-86

[3:11]
114

[1:8]
-2-23

[1:7]
0-82

[2:4]
119

[3:10]
1-42

[6:1]
1-40

[4:3]
1-24

[1:10]
1-48

[6:6]
-0-72

[4:7]
107

[3:5]
- 1 0 6

[7:1]
2-83

[6:11]
1-67

[2:2]
- 1 0 9

[7:1]
0-87

[7:4]
201
[7:3]
216
[8:9]
0-95

[7:1]
- 2 1 9

[6:3]
1-38

[7:7]
0-76

[9:8]
1-48

[8:4]
109

[8:4]
1-58

[7:2]
4-56

[10:8]
1-60

[8:3]
1-29

[10:3]
1-27

[9:3]
0-91

[10:9]
1-76

are not re-evaluated each generation. It is not only
that markers contributing to the molecular score were
not re-evaluated in subsequent generations of their
runs, but the effects (regression coefficients) of these
markers were also not re-evaluated, retaining in each
generation of a run the initially obtained values. This
almost certainly has lowered even further the effective-
ness of MAS in the simulations by Zhang and Smith.

Table 4 shows markers that were selected by two-
stage regressions as the most significant among all 110
markers in the genome of the map in Fig. 1 during
three generations of 2 replicated runs with the BASE
set of parameters started from initial populations in
the coupling phase. It is seen that the composition of
markers selected by the regression, and, hence,
contributing to the molecular score changes between
replicate runs, and even between generations of the
same run. This is why re-evaluating markers each
generation increases the efficiency of MAS. It is also
seen that the significance of a marker is not necessarily
a reflection of its close linkage to a QTL. Indeed,
marker 11 on chromosome 6 which is selected in the
first generation of run 1 is located quite far from a
QTL (Fig. 1). It should also be noticed that since the
initial populations of the two runs are in total coupling
phase, all alleles of QTLs as well as of marker genes
on a chromosome have the same sign. Consequently,
the additive effects of markers located on one
chromosome must be of the same sign. Yet, the
regression coefficients of markers 1 and 2 on chromo-
some 7 selected in the first generation of run 1 have
opposite signs. This may be a result of the high
correlation (colinearity) of adjacent markers in gener-
ation 1, as indicated by the large magnitudes of the
markers with opposite signs on chromosome 7.
However, some other negative signs in Table 4 cannot
be so explained, because the corresponding markers
are unlinked or loosely linked to other markers

included in the selection index. Hence, the regression
coefficient of a marker is not exactly its 'additive
effect' as implied by the notion of Marker-QTL
association. Evidently, even when it is quite efficient,
MAS is not necessarily utilizing stable Marker-QTL
associations.

The regression methodology we employed in simu-
lating MAS is designed to maximize the immediate
response to selection in each generation, based on
estimated additive effects associated with markers.
This makes little use of map information for markers,
other than choosing evenly spaced markers on each
linkage group. Maximum likelihood interval mapping
(Lander & Botstein 1988; Paterson et al. 1988, 1990)
provides a map-based method of estimating additive
effects associated with markers, but essentially the
same information can be recovered from multiple
regression methods (Haley & Knott 1992). Any map-
based method of MAS should allow for our finding
that random genetic drift sometimes causes distantly
linked (or unlinked) markers to be most highly
associated with a particular QTL. Other approaches
to MAS, focused more directly on optimizing long-
term gains, e.g. utilizing dominance and epistatic
effects, might help to increase long-term selection
efficiency. Nevertheless, with large population sizes,
our method does show greatly increased efficiency for
several generations in comparison to purely pheno-
typic selection.

4. Conclusions

The main conclusion of this investigation is that MAS
employing multiple regression of the phenotype on
genetic markers can utilize the linkage disequilibrium
created in a cross of inbred lines. Such selection is
more effective than conventional selection based
exclusively on phenotypes of individuals, at least in
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the first several generations. The efficiency of selection
is substantially higher if genetic markers contributing
to the molecular score are re-evaluated each generation
than if they are evaluated only once. Increasing the
number of markers on a chromosome does not
necessarily result in more efficient selection and too
many markers may actually lower the efficiency. In
our simulations, nearly all of the weight in the
selection index was on the molecular score (practically
pure marker selection) because of the low heritability
of the character and the large population sizes. Of all
the factors investigated here, population size was the
most important in determining the efficiency of MAS.

We wish to thank R. Thompson and W. G. Hill for helpful
discussions. A.G. would like to thank B. Charlesworth for
his help. This work was supported by U.S. Public Health
Service grant GM27120.
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