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We report a systematic experimental study of the mean temperature profile θ(δz)
and temperature variance profile η(δz) across a stable and immiscible liquid–liquid
(water–FC770) interface formed in two-layer turbulent Rayleigh–Bénard convection. The
measured θ(δz) and η(δz) as a function of distance δz away from the interface for different
Rayleigh numbers are found to have the scaling forms θ(δz/λ) and η(δz/λ), respectively,
with varying thermal boundary layer (BL) thickness λ. By a careful comparison with
the simultaneously measured BL profiles near a solid conducting surface, we find that
the measured θ(δz) and η(δz) near the liquid interface can be well described by the
BL equations for a solid wall, so long as a thermal slip length �T is introduced to
account for the convective heat flux passing through the liquid interface. Direct numerical
simulation results further confirm that the turbulent thermal diffusivity κt near a stable
liquid interface has a complete cubic form, κt(ξ)/κ ∼ (ξ + ξ0)

3, where κ is the molecular
thermal diffusivity of the convecting fluid, ξ = δz/λ is the normalized distance away from
the liquid interface and ξ0 is the normalized slip length associated with �T .

Key words: Bénard convection

1. Introduction

The concept of a boundary layer (BL), which was introduced more than 100 years ago
by Prandtl (1904), plays an important role in science and engineering and has made
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a profound impact in fluid physics, aerodynamics and applied mathematics (Anderson
2005). It also has a close connection to many engineering problems ranging from skin
friction drag to mass and heat transfer near a solid surface (Schlichting & Gersten 2000;
Ahlers, Grossmann & Lohse 2009; Chillà & Schumacher 2012). A BL flow is developed
between a flat solid surface and the bulk fluid flow, because the fluid velocity at a stationary
solid wall is zero under the no-slip boundary condition so that the viscous effect (and thus
the velocity gradient) becomes significant in the region. Similarly, a thermal BL forms
when a fluid moves along a heated (or cooled) solid wall. In this case, the molecular
thermal diffusion (and hence the temperature gradient) becomes significant in the BL
region.

The thermal BL in turbulent Rayleigh–Bénard convection (RBC) with Rayleigh number
(dimensionless buoyancy) Ra � 108 is an example in which the BL is not fully turbulent
but there are significant fluctuations resulting from intermittent eruptions of thermal
plumes from the BL (Kadanoff 2001; Shishkina et al. 2015; Wang, He & Tong 2016;
Wang et al. 2018a). In the laboratory, RBC is realized in a confined fluid layer of height H,
which is heated from below and cooled from above with a vertical temperature difference
�T parallel to gravity. When �T (or Ra) is large enough, the bulk fluid becomes turbulent
and heat is transported predominantly by convection. As a wall-bounded flow, RBC has
temperature and velocity BLs adjacent to the conducting plates, and their dynamics are
of great importance, as the thermal BLs determine the global heat transport of the system
(Ahlers et al. 2009; Chillà & Schumacher 2012).

Compared with the large number of investigations of the BL dynamics near solid
surfaces, our understanding of the BL flow near stable liquid interfaces is rather
limited (Keulegan 1944; Lock 1951; Anderson, McFadden & Wheeler 1998; Leal 2007;
Nepomnyashchy, Simanovskii & Legros 2012). This is partially caused by the fact that
unlike inert and rigid solid surfaces, liquid interfaces are soft and dynamic and often
involve complex transport processes and non-equilibrium fluctuations with a large number
of fluid parameters, such as interfacial tension, fluid densities, viscosities and thermal
conductivities. As a result, in many cases of interest, the boundary conditions at the liquid
interface may not be specified a priori but have to be solved self-consistently with the bulk
flow. Because high-resolution experimental characterization of the BL flow near a liquid
interface is challenging and available experiment results are rare (Naumov, Skripkin &
Shtern 2021), our current understanding of the BL dynamics near a liquid interface relies
mainly on the results from molecular dynamic simulations and numerical calculations
(Sahraoui & Kaviany 1994; Padilla, Toxvaerd & Stecki 1995; Stecki & Toxvaerd 1995;
Chen, Jasnow & Viñals 2000; Koplik & Banavar 2006; Hu, Zhang & Wang 2010; Razavi,
Koplik & Kretzschmar 2014; Vatin et al. 2021).

These studies, however, were conducted under highly idealized conditions, such as a
perfectly static liquid interface without any fluctuations, and reported a velocity slip (or
jump) across the liquid interface. Direct measurement of the BL properties near a liquid
interface is, therefore, needed in order to test different ideas. Understanding the BL flow
near liquid interfaces is also relevant to a number of important natural phenomena, such
as coupled ocean–atmosphere flows (Neelin, Latif & Jin 1994) and convection of the
Earth’s upper and lower mantles (Olson, Silver & Carlson 1990; Tackley 2000), and many
industrial applications ranging from the liquid-encapsulated crystal growth technique
(Prakash & Koster 1994) to solvent extraction (Holmberg, Shah & Schwuger 2002).

In this work, we demonstrate that turbulent RBC in two stacking layers of immiscible
fluids, as illustrated in figure 1(a), is an ideal quasi-two-dimensional (2-D) system for the
study of the thermal BL dynamics near the liquid–liquid interface. The convective flow in
each fluid layer is turbulent and possesses the key features of turbulent convection (Xie &
951 A10-2
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Figure 1. (a) Sketch of the experimental set-up for the measurement of local temperature profiles along the
central vertical axis of the two-layer convection cell. The red arrows indicate the velocity components and
spatial coordinates used in the experiment. (b) Sketch of a normalized temperature profile θ(z) near a liquid
interface with a thermal slip length �T .

Xia 2013; Liu et al. 2021, 2022), which have been observed in single-layer convection
(Song, Villermaux & Tong 2011; Wang et al. 2016, 2018a; Wang, He & Tong 2019;
Wang et al. 2022). A well-developed thermal BL is formed on each side of the liquid
interface, which is stable and remains at an (average) position with minimal movement.
Nevertheless, because of the coupling of the large-scale flows between the two immiscible
fluid layers (Xie & Xia 2013; Liu et al. 2021, 2022), the liquid interface undergoes strong
BL fluctuations with a net convective heat flux passing through the interface. A central
finding of this investigation is that the measured BL profiles near the liquid interface can
be well described by the BL equations for a solid wall modified by a thermal slip length
�T , which is directly linked to the convective heat flux passing through the liquid interface.

The remainder of the paper is organized as follows. We first describe the experimental
and numerical methods in § 2. Experimental results are presented in § 3. Further
theoretical analyses are given in § 4. Finally, the work is summarized in § 5.

2. Experimental and numerical methods

2.1. Experiment
As illustrated in figure 1(a), the two-layer convection experiment is conducted in a thin
disk, whose cross-section has a stadium shape with a square of size D = 20 cm sandwiched
by two semicircles on the top and bottom sides. The cell’s central axis is aligned vertically
parallel to gravity, and the cell has an overall height H = 2D, width W = D and thickness
S = 2 cm. The top (and bottom) semicircular sidewall is made of 0.8 cm thick copper
electroplated with a thin layer of nickel, and its temperature is controlled to an accuracy
of 50 mK. Other walls of the cell are made of 1.8 cm thick transparent Plexiglas. The
upper half of the cell is filled with (lighter) distilled water and the lower half of the
cell is filled with a (heavier) fluorinated liquid, FC770 (3M Fluorinert FC770), which
is immiscible with water. The bottom copper plate of the cell is heated using two silicon
rubber film heaters, which are connected in parallel and sandwiched on the back side
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of the curved copper plate. The two film heaters provide a constant and uniform heat
flux to the cell. The top copper plate is cooled by two counter-flowing water channels, in
which cooling water is regulated by a temperature-controlled chiller (NESLAB, RTE740)
with a temperature stability of 10 mK. Fine temperature control is achieved through an
active feedback network using thermistors (model 4006, Omega) for real-time temperature
measurement. The thermistors have an accuracy of 5 mK, and are embedded in each copper
plate 1 mm away from the surface.

Compared with the upright cylindrical cells that are commonly used for the study of
turbulent convection, the quasi-2-D thin-disk cell used in this experiment offers several
unique features for the study of two-layer RBC attempted here. First, with each fluid
occupying half of the cell, the cross-section of the half-cell has an aspect ratio of unity
that accommodates the single-roll structure of the large-scale circulation (LSC) in each
fluid layer. The corner flow is minimized by using two semicircular sidewalls, so that
the LSC across the near-circular cross-section can have a steady rotation along a fixed
orientation. Second, because the flow is confined in a thin disk, no three-dimensional
(3-D) flow modes can be excited in this system. The quasi-2-D flow in the thin-disk cell,
therefore, has a better geometry satisfying the assumption of the BL theory for a 2-D flow
over an infinite horizontal plane. These simplifications allow us to have a stringent test of
the theory.

In cylindrical cells, however, the large-scale flow has several 3-D flow modes, such
as the torsional and sloshing modes (Brown & Ahlers 2008, 2009; Xi et al. 2009; Ji &
Brown 2020), which may cause additional complications to the study of the LSC and BL
dynamics. The strong coupling between the BL dynamics and complex 3-D large-scale
flow in a closed cylinder, which has been studied in recent numerical simulations (van
Reeuwijk, Jonker & Hanjalić 2008; Scheel, Kim & White 2012; Shi, Emran & Schumacher
2012; Stevens et al. 2012; Wagner, Shishkina & Wagner 2012; van der Poel, Stevens
& Lohse 2013; Shishkina, Horn & Wagner 2013; Scheel & Schumacher 2014), makes
a quantitative comparison between experiment and 2-D BL theory difficult. Finally, the
thin-disk cell allows us to conduct precise shadowgraph measurements to visualize the
large-scale flow and plume emission dynamics near the liquid interface (see § 3.4 for
further discussion). Similar thin-disk cells have been used in recent experiments to study
the thermal BL profiles near a conducting plate (Wang et al. 2016, 2018a), the LSC
dynamics (Song et al. 2011, 2014; Wang et al. 2018b) and the statistical properties of
temperature fluctuations across a closed convection cell (Wang et al. 2019, 2022). This is
a ‘simple but not simpler’ convection system, which possesses key features of turbulent
convection and offers a natural platform for the study of the boundary conditions and BL
dynamics at a stable liquid interface.

The two experimental control parameters in the convection experiment, the Rayleigh
number Ra and the Prandtl number Pr, are defined as Rai = χigD3�Ti/(νiκi) and Pri =
νi/κi, respectively, where the subscript i is used to indicate the two different fluid layers
with i = LF for FC770 and i = LW for water, g is the gravitational acceleration and
�Ti is the temperature difference across the ith fluid layer of height D. The values
of the thermal expansion coefficient χi, kinematic viscosity νi and thermal diffusivity
κi of each fluid are given in table 1. In the experiment, we vary the total temperature
difference, �T = �TLF + �TLW , across the cell, so that the resulting RaLF is varied in
the range 3.6 × 1010 � RaLF � 1.8 × 1011 and RaLW is in the range 5.8 × 108 � RaLW �
6.8 × 108. The temperature of the bulk FC770 layer is kept at 30 ◦C, so that PrLF is fixed
at 21.8. Under these experimental conditions, we find the interface between the two fluids
is stable and remains at the (average) position z = 0 with minimal movement. In this
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ρ μ κ k χ γ

Fluid (g cm−3) (mPa s) (mm2 s−1) (W m−1 K−1) (mK−1) (mN m−1)

Water 0.996 0.797 0.148 0.614 0.30 71.20
FC770 1.780 1.310 0.039 0.063 1.48 ∼14.8

Table 1. Two liquid samples used in the experiment and their literature values of density ρ, dynamic viscosity
μ, thermal diffusivity κ , thermal conductivity k, thermal expansion coefficient χ and surface tension with air
γ (all at 30 ◦C). The properties of water and FC770 are obtained, respectively, from Lide (2004) and 3MTM

(2019).

case, the two-layer system can be envisioned as two single-fluid subsystems, each having
its own Rai and Pri, and they are coupled dynamically through a stable liquid interface
of surface tension γ ′ � 44 mN m−1. This value of γ ′ was obtained from a capillary
force measurement using an atomic force microscope with a hanging glass fibre probe
penetrating through an FC770–water interface at ambient temperature ∼25◦C (Guan et al.
2017; Guo et al. 2019). In this work, we focus on the two simultaneously measured thermal
BLs in the FC770 fluid; one is near the upper liquid interface (LF) and the other is near the
lower conducting plate (SF), where the subscripts L and S represent the liquid and solid,
respectively.

To reduce the capillary effect at the liquid interface, two identical waterproof thermistors
(AB6E3-B05KA202R, Thermometrics) with a diameter of 0.17 mm and a time constant
of 10 ms are used to measure the local temperature of the convecting fluid. The two
thermistors are assembled together with one bead pointing upward and the other bead
pointing downward, as shown in figure 1(a). Thermistor 1 is used to measure the local
temperature profile T(z) near the top cooling plate and the BL beneath the liquid interface.
Thermistor 2 is used to measure the temperature profile T(z) near the bottom heating
plate and the BL above the liquid interface. These two thermistors are attached to a thin
stainless steel tube that can move vertically along the central vertical axis of the cell. The
tube is mounted on a translational stage, which is controlled by a stepping motor with
a position resolution of 50 µm. In the experiment, the entire convection cell is placed
inside a thermostat box, whose temperature is maintained at the same temperature as the
mean temperature of the bulk fluid of FC770 (30 ◦C), in order to minimize heat exchange
between the convecting fluid and the surroundings.

When the two thermistors move along the central axis of the cell, they measure the local
temperature T(z, t) at an accuracy of 5 mK. From the measured time series, we obtain the
normalized mean temperature profile:

θ(z) ≡ |〈T(z, t)〉t − TB|
ΔB

, (2.1)

where ΔB ≡ |TB − T0| is the temperature difference across the BL with TB being the
interface temperature and T0 being the bulk fluid (FC770) temperature. In the above, 〈· · · 〉t
denotes an average over time t. Similarly, we obtain the temperature variance profile,

η(z) ≡ 〈[T(z, t) − 〈T(z, t)〉t]2〉t, (2.2)

near the liquid interface.
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2.2. Direct numerical simulation (DNS)
The governing equations of the convective flow are the incompressible Navier–Stokes
equations coupled with the convective heat equation under the Boussinesq approximation.
The dimensionless form of these equations in each layer is given by

∇̂ · û = 0, (2.3)

ût̂ + (û · ∇̂)û = − 1
ρi/ρ0

∇̂p̂ + 1√
Rai/Pri

∇̂2û + αi

α0
T̂eẑ, (2.4)

T̂t̂ + (û · ∇̂)T̂ = 1√
RaiPri

∇̂2T̂, (2.5)

where the subscript i is used to indicate the two different fluid layers with i = 0 for the
lower FC770 layer and i = 1 for the upper water layer. The dimensionless parameters Rai,
Pri and Weber number We to be used below are defined as

Rai = gα0�TD3

νiκi
,

Pri = νi

κi
,

We = ρ0gα0�TD2

γ ′ .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

The length, time, velocity, pressure and temperature are made dimensionless by the
half-height of the cell D, the free-fall time Tf = √

D/(gα0�T), the free-fall velocity
Uf = √

gα0�TD, the free-fall pressure pf = ρ0gα0�TD and the temperature difference
�T across the whole cell, respectively. Note that the definition of Rai, Pri and We in (2.6)
is different from that used in the experiment, as mentioned above.

The dimensionless boundary conditions at the cell wall are given by

û|all solid walls = 0,

n · ∇̂T̂|all non-conducting walls = 0,

T̂|lower conducting wall = 0.5,

T̂|upper conducting wall = −0.5.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)

Here the subscript ‘all solid walls’ refers to all solid boundaries of the convection cell,
‘lower conducting wall’ refers to the bottom heating plate of the cell, ‘upper conducting
wall’ refers to the top cooling plate of the cell and ‘all non-conducting walls’ refers to all
solid boundaries of the cell except the bottom heating plate and top cooling plate.

The governing equations are solved numerically using the open-source code Nek5000
(Fischer 1997), which uses a spectral element method to accurately resolve the gradients in
the velocity field û(r, t) and temperature field T̂(r, t). In the simulation, the time-derivative
terms are discretized by the backward differentiation formula, the nonlinear convective
terms are treated explicitly and the linear diffusive terms are approximated implicitly.
This scheme leads to a Poisson equation for pressure and Helmholtz equations for the
velocity components and temperature. These equations are written in a weak formulation
and discretized by the Galerkin method using the Nth-order Lagrangian interpolation
polynomials as the basis functions on Gauss–Lobatto–Legendre (GLL) collocation points
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ρ ν κ α γ ′
Fluid (g cm−3) (mm2 s−1) (mm2 s−1) (mK−1) (mN m−1)

Water 0.996 0.733 0.151 0.349 44
FC770 1.793 0.630 0.038 1.480

Table 2. Material properties of FC770 and water used in the simulation. The temperature difference �T across
the cell is set at �T = 11.5 K and the half-height of the cell is D = 20 cm. The interfacial tension of the
water–FC770 interface is estimated as γ ′ � 44 mN m−1. The corresponding dimensionless parameters defined
in (2.6) are: Ra0 = (gα0�TD3)/(ν0κ0) � 6.4 × 1010, Pr0 = ν0/κ0 � 18.46, Ra1 = (gα0�TD3)/(ν1κ1) �
1.2 × 1010, Pr1 = ν1/κ1 � 4.86 and We = (ρ0gα0�TD2)/γ ′ � 300.

(Deville, Fischer & Mund 2002). More details about the numerical scheme and mesh
resolution requirements can be found in Fischer (1997), Deville et al. (2002) and Scheel,
Emran & Schumacher (2013). All the gradients in the post-numerical processing are also
calculated on the GLL collocation points with spectral accuracy.

Nek5000 models the liquid interface between two immiscible fluids using the arbitrary
Lagrangian–Eulerian moving mesh approach (Ho 1989). In the simulation, we specified
the material properties in each fluid layer according to (2.5)–(2.6) and table 2. The liquid
interface is tracked by a moving computational mesh. During the simulation, at each
time step, the mesh near the interface moves together with the interface because of the
flow inertia. The deformed (curved) interfacial mesh generates an interfacial tension,
which resists the deformation. This resistive force acts on both sides of the fluid as an
external force via the momentum equations. The velocity across the interface is assumed
continuous. The pressure jump across the interface is balanced by the surface tension and
the jump of the normal viscous stresses. The temperature across the interface is assumed
continuous based on the experimental observations. The dimensionless jump conditions
of the flow variables across the liquid interface are given by

[û] = 0,

[p̂] = − 1
We

K̂ + [τ̂n],

[T̂] = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.8)

where [ · ] denotes the jump of a flow variable across the interface, K̂ is the dimensionless
curvature of the interface and τ̂n is the dimensionless normal viscous stress on the
interface.

Since the local Rai in the lower FC770 layer and upper water layer, as defined
in the experiment, is in the range 108–1010, we design the computational mesh
of the DNS accordingly. The finally realized local dimensionless parameters in
the simulation are: RaLF = gα0�T0D3/(ν0κ0) � 3.2 × 1010, PrLF = ν0/κ0 � 18.46,
RaLW = gα1�T1D3/(ν1κ1) � 1.4 × 109, PrLW � 4.86 and WeLF = ρ0gα0�T2

0/γ ′ �
150. In a recent DNS study of thermal BL dynamics in a single fluid layer (Wang et al.
2018a), the smallest primary mesh size near the solid boundary was set as 3.87 × 10−3D,
which is approximately the thermal BL thickness λ measured in the experiment. The
polynomial order within each mesh element was set to N = 7 so that one has eight grid
points to resolve the thermal BLs with the smallest secondary mesh size of 2.61 × 10−4D.
This mesh size was tested to be sufficient for the Ra range between 109 and 1010 in the
thin-disk convection cell. The obtained thermal BL profiles from the DNS were found
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Figure 2. Primary computational mesh used in the simulation. There are a total of 6300 primary elements on
the vertical cross-section and 6 primary elements across the thickness direction. For each primary element,
there are 8 × 8 × 8 secondary nodes with polynomial order of 7.

to be in good agreement with the experiment (Wang et al. 2018a). With a similar DNS
accuracy, we set the smallest primary mesh size near the solid boundary to 4.1 × 10−3D
in the current study. This mesh size should be sufficient for the current simulation, as
the Prandtl number PrLF in the lower FC770 layer is approximately 3.8 times larger than
that in the upper water layer. In addition, we set the smallest primary mesh size near the
liquid interface to 4.4 × 10−3D in the current study, which is only ∼7 % larger than that
near the solid boundary. As is shown below, the measured mean temperature gradient near
the liquid interface is approximately 2.5 times smaller than that near the solid conducting
plates. Therefore, the primary mesh size used for the liquid interface is sufficient to resolve
the thermal BL variations near the interface. Figure 2 shows the primary computational
mesh used in the simulation. We set the polynomial order to N = 7 so that we have
83 = 512 grid points within each primary element. Based on the GLL collocation, the
smallest secondary mesh size at the liquid interface is 2.83 × 10−4D.

The time step is set at 4 × 10−5Tf such that the motion of the interface can be resolved
well using the moving mesh grid. We run the simulation for 50Tf to reach the steady state,
followed by a continuous running for at least another 100Tf to collect data for statistical
analysis. The instantaneous flow fields with a moving mesh are interpolated to a fixed
mesh with the same configuration as the initial one for further post-numerical processing.
The vertical profile of the local properties is computed along a thin column surrounding
the vertical z axis of the cell with x = y = 0 and is averaged over the cross-section of the
thin column with a small area of 0.01D2.
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Figure 3. (a) Measured mean temperature profile 〈T(z, t)〉t across the liquid interface. The black circles are
obtained with Thermistor 1 (see inset) moving upwards across the interface from below and the red triangles are
obtained with Thermistor 2 moving downwards across the interface from above. The measurements are made
at RaLF = 1.8 × 1011 and RaLW = 6.8 × 108. The coloured solid lines indicate the local slope of 〈T(z, t)〉t near
the liquid interface. The vertical dotted line indicates the (extrapolated) location of the liquid interface. Inset
shows the assembly of the two thermistors, which can move vertically along the central axis of the convection
cell (black double-headed arrow). (b) Replot of the final mean temperature profile 〈T(z, t)〉t across the liquid
interface with black circles on the FC770 side (z < 0) and red triangles on the water side (z > 0). The coloured
solid lines indicate the local slope of 〈T(z, t)〉t near the liquid interface. The resulting thermal BL thickness on
the FC770 side is λLF = 1.07 mm and that on the water side is λLW = 1.35 mm.

3. Experimental results

3.1. Temperature measurements near the liquid interface
Unlike the temperature of the top and bottom plates, which is directly controlled in the
experiment, the temperature at the liquid interface is a dynamic response of the convection
system. While the vertical position of the liquid interface remains stable on average,
it fluctuates with time due to the convective heat transport across the liquid interface.
Figure 3(a) shows the measured mean temperature profile 〈T(z, t)〉t across the liquid
interface. The mean temperature profiles show hysteresis near the liquid interface. This
is caused by the wetting effect of the liquid interface to the thermistor tip, which stretches
the interface when the thermistor tip passes through it. The black circles measured by
Thermistor 1 when it moves upwards before touching the interface from below (FC770
side, z < 0) do not suffer this interface stretching effect. Similarly, the red triangles
measured by Thermistor 2 when it moves downwards before touching the interface from
above (water side, z > 0) do not suffer the interfacial wetting either. We, therefore, use the
linear extrapolation of the local slope of the measured 〈T(z, t)〉t on both sides of the liquid
interface (coloured solid lines in figure 3a) to determine the intercept location, which is
defined as the interface location, as shown by the vertical dotted line in figure 3(a). The
experimental uncertainty for the interface location determined by the linear extrapolation
is ±50 µm (one data point on either side of the interface). Figure 3(b) shows the final
mean temperature profile 〈T(z, t)〉t across the liquid interface.

As shown in figure 3(b), the time-averaged temperature profile 〈T(z, t)〉t across the
liquid interface is continuous (within the experimental resolution) but its slope has a
finite jump across the interface, as indicated by the two solid lines with slopes of
−11.7 K mm−1 (on the FC770 side) and −3.6 K mm−1 (on the water side), respectively.
The ratio of the two slopes, 11.7/3.6 � 3.25, is smaller than the thermal conductivity ratio,
kLW/kLF = 9.8, indicating that the heat flux across the liquid interface involves both the
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Figure 4. Measured temperature variance profile η(z) across the liquid interface. The black circles are obtained
with Thermistor 1 (see inset) moving upwards across the interface from below and the red triangles are obtained
with Thermistor 2 moving downwards across the interface from above. The measurements are made at RaLF =
1.8 × 1011 and RaLW = 6.8 × 108. The vertical dotted line indicates the (extrapolated) location of the liquid
interface, as determined in figure 3(a).

conduction (−k(d〈T(z, t)〉t/dz)) and convection (ρCp〈w′T ′〉) contributions (see § 3.4 for
further discussion). Here k, ρ and Cp are, respectively, the thermal conductivity, density
and specific heat of the convecting fluid, and 〈w′T ′〉 is the velocity–temperature correlation
function with T ′ and w′ being, respectively, the local temperature and vertical velocity
fluctuations. The measured 〈T(z, t)〉t reveals a well-developed thermal BL formed on each
side of the liquid interface, whose thickness λ is defined as the distance at which the linear
extrapolation of the mean temperature gradient at the interface intersects the bulk fluid
temperature (Wang et al. 2016), as marked in figure 3(b).

Figure 4 shows the measured temperature variance profile ηLF(δz) across the liquid
interface, which shows hysteresis similar to that shown in figure 3(a). The black circles
measured by Thermistor 1 when it moves upwards before touching the interface from
below (FC770 side, z < 0) do not suffer the wetting effect of the thermistor. Similarly,
the red triangles measured by Thermistor 2 when it moves downwards before touching
the interface from above (water side, z > 0) do not suffer the interfacial wetting
either. The measured temperature variance profile ηLF(δz) is a direct measure of BL
fluctuations and is absent in laminar BLs. The measured ηLF(δz) has a sharp peak
on each side of the interface and the peak height on the FC770 side (z < 0) is much
larger than that on the water side (z > 0). This peak is caused by the intermittent
emission of thermal plumes from the shoulder of the thermal BLs (Wang et al. 2016,
2018a).

3.2. Normalized mean temperature profiles near the lower conducting plate and near the
liquid interface

Figure 5(a) shows the normalized mean temperature profiles θSF(δz) obtained at different
values of RaLF near the bottom heating plate. Here δz is used to indicate the distance
away from the solid interface. It is seen that all the normalized mean temperature profiles
collapse onto a single master curve, once δz is normalized by the BL thickness λSF. The
measured θSF(δz) thus has a universal form independent of RaLF. Similar results were also
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Figure 5. (a) Normalized mean temperature profiles θSF(δz) as a function of the normalized distance δz/λSF
away from the bottom conducting plate for different values of RaLF . The error bars show the standard deviation
of the black circles. The solid line shows a fit of (3.1) to the data points with c = 1.55. The dotted and
dashed lines are the calculated θSF(ξ ; c) using (3.1) with c = ∞ and c = 1, respectively. (b) Normalized mean
temperature profile θLF(δz) as a function of the normalized distance δz/λLF away from the liquid interface for
different values of RaLF . The error bars show the standard deviation of the black circles. The dotted and dashed
lines are, respectively, the calculated θSF(ξ ; c) using (3.1) with c = ∞ and c = 1.55. The solid line shows a fit
of (4.4) to all the data points with c = 1.55 and ξ0 = 0.23.

obtained in previous studies (Wang et al. 2016). The three sets of data are well described
by the following equation (Shishkina et al. 2015):

θSF(ξ ; c) =
∫ ξ

0

(
1 + κt(ε)

κ

)−c

dε �
∫ ξ

0
(1 + aε3)−c dε, (3.1)

where ξ = δz/λLF and κ is the molecular thermal diffusivity. To derive the second equality
of (3.1), Shishkina et al. (2015) introduced the turbulent diffusivity κt(δz) to describe
the convective heat transfer, 〈w′T ′〉 = −κt(δz)∂zT , and showed that κt(δz) near a solid
wall has a scaling form, (κt(δz)/κ)SF � aξ3, where a is a proportionality constant. The
exponent c (≥ 1) is a fitting parameter, which is related to a via the condition a =
[Γ (1/3)Γ (c − 1/3)/(3Γ (c))]3. The best fit to (3.1) is obtained with c = 1.55 (a � 0.918),
which is shown in figure 5(a) (solid line). When c → ∞ (a → 0), θSF(ξ ; c) approaches
the Prandtl–Blasius–Pohlhausen form (Landau & Lifshitz 1987) for laminar BLs without
fluctuations (dotted line). The lower bound for the value of c is c = 1 (dashed line).

Figure 5(b) shows the normalized mean temperature profile θLF(δz) near the liquid
interface on the FC770 side. Here δz is used to indicate the distance away from the
liquid interface. Similar to θSF(δz), all the normalized mean temperature profiles θLF(δz)
obtained at different values of RaLF have a RaLF-invariant form, once δz is normalized by
the BL thickness λLF. However, the actual shape of the measured θLF(δz) near the liquid
interface shows considerable deviations from the measured θSF(δz) near the solid wall
(dashed line with c = 1.55) and (3.1) is no longer able to fit the measured θLF(δz) directly
with any value of c ≥ 1.

3.3. Normalized temperature variance profiles near the lower conducting plate and near
the liquid interface

Figure 6 shows a comparison between the measured ηLF(δz) near the liquid interface and
ηSF(δz) near the lower conducting plate. In the plot, ηLF(δz) (ηSF(δz)) is normalized by its
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Figure 6. (a) Normalized temperature variance profiles (η(δz)/η0)LF as a function of δz/λLF away from
the liquid interface for different values of RaLF . The solid line shows the calculated ΩLF(ξ ; ξ0) using (4.8)
with all the parameters already determined in (b) and figure 5. (b) Normalized plots of (η(δz)/η0)SF as a
function of δz/λSF away from the lower conducting plate for different values of RaLF . The solid line shows the
calculated ΩSF(ξ ; c, Δ2

B/η0, d, α) with c = 1.55, Δ2
B/η0 = 128, d = 5.3 and α = 7.8. The error bars show the

experimental uncertainties of the black circles.

peak value η0 and δz is normalized by λLF (λSF). All the normalized plots of (η(δz)/η0)LF
((η(δz)/η0)SF) for different values of RaLF collapse onto a single master curve, indicating
that the measured (η(δz)/η0)LF ((η(δz)/η0)SF) has a scaling form independent of RaLF.

Recently, Wang et al. (2016) derived a BL equation for ΩSF(δz) ≡ (η(δz)/η0)SF with
Pr > 1:

(1 + dξ3)
d2ΩSF(ξ)

dξ2 + (β + 3d)ξ2 dΩSF(ξ)

dξ
+ 2

Δ2
b

η0

aξ3

(1 + aξ)2c

−1
2

[dΩSF(ξ)/dξ ]2

ΩSF(ξ)
− 2αΩSF(ξ) = 0, (3.2)

where ξ = δz/λLF and a is given in (3.1). Equation (3.2) is an ordinary differential
equation, which can be numerically solved using the Runge–Kutta method under the initial
conditions

ΩSF(ξp) = 1,
dΩSF(ξp)

dξ
= 0, (3.3a,b)

where ξp is the peak position of ΩSF(ξ), as shown in figure 6(b). The final solution
ΩSF(ξ ; c, Δ2

B/η0, d, α) has four parameters. The parameter c (= 1.55) has been obtained
separately from the fitting of (3.1) to the measured θSF(δz), as shown in figure 5(a).
The parameter δ2

B/η0 is a measurable quantity, which is directly determined from the
experiment. There are only two adjustable parameters remaining, d and α, which are used
to best fit the measured (η(δz)/η0)SF. As shown in figure 6(b), the measured (η(δz)/η0)SF
near the lower conducting plate is well described by (3.2) (black solid line).

3.4. Visualization of thermal plumes near the liquid interface
In addition to the above time-averaged measurements of the temperature field across the
liquid interface, we also use a shadowgraph technique (Settles 2001) to visualize the
instantaneous convective flow near the liquid interface. Details about the shadowgraph
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set-up are given in the Appendix. The shadowgraphic supplementary movie 1 available
at https://doi.org/10.1017/jfm.2022.846 shows the emission dynamics of thermal plumes
at the water–FC770 interface. It is found that cold plumes emit from the lower BL of the
liquid interface and fall into the lower FC770 layer. Warm plumes, on the other hand,
emit from the upper BL of the liquid interface and rise to the upper water layer. As a
result, the liquid interface undergoes strong BL fluctuations with a net heat flux across the
interface. Nevertheless, the liquid interface is stable and remains at an (average) position
with minimal movement. From the zoom-in images of the shadowgraphic movie taken
near the liquid interface, we find that shape fluctuations of the interface are at the level of
1 pixel, which corresponds to 0.1 mm for the imaging set-up used in the experiment.

Note that the boundary conditions at a liquid interface are very different from those
at a solid wall. For a solid wall, both the mean velocity 〈w〉 and velocity fluctuations w′
(in the normal direction) are zero because of the no-slip boundary condition. For a stable
liquid interface, however, we have 〈w〉 = 0 but w′ = 0. In this case, the total heat flux Φ

across the liquid interface contains both the conduction and convection contributions, i.e.
Φ = −k(d〈T(z, t)〉t/dz) + ρCp〈w′T ′〉. At the liquid interface, both w′ and T ′ are non-zero.
At the solid wall, however, we have 〈w′T ′〉 = 0, and thus conduction becomes the dominant
term in the BL. Hereafter, we discuss the effects of the non-zero w′ and T ′ on the measured
mean temperature profile and temperature variance profile near the liquid interface.

4. Further theoretical analysis

By a careful comparison between figures 6(a) and 6(b), we find that the measured ηLF(δz)
near the liquid interface has a shape similar to that of ηSF(δz) near the solid surface,
except that the entire curve of ηLF(δz) is shifted towards the origin by a small distance ξ0
so that the measured ηLF(δz) at the origin (i.e. at the interface) has a non-zero value and
its peak position is shifted from 0.78δz/λSF to 0.63δz/λLF. This finding suggests that the
BL profiles near a liquid interface may be described by the BL equations for a solid wall
modified by a slip length �T , as illustrated in figure 1(b).

The mean temperature profile near the liquid interface can be described based on a
truncated temperature profile θT

SF(ξ ; c, ξ0) near the lower conducting plate with ξ being
equal to or larger than the slip length ξ0. The truncated profile θT

SF(ξ ; c, ξ0) is the portion
of the black curve in the blue coordinates {θLF(δz), δz/λLF}, as shown in figure 7, and has
the form

θT
SF(ξ ; c, ξ0) = θSF(ξ + ξ0; c) − θSF(ξ0; c)

=
∫ ξ+ξ0

0
(1 + aξ3)−c dε −

∫ ξ0

0
(1 + aξ3)−c dε

=
∫ ξ+ξ0

ξ0

(1 + aξ3)−c dε =
∫ ξ

0
[1 + a(ε + ξ0)

3]−c dε. (4.1)

The profile θT
SF(ξ ; c, ξ0) has the following boundary conditions:

θT
SF(∞; c, ξ0) = 1 − θSF(ξ0; c) (4.2)

and
dθT

SF(ξ ; c, ξ0)

dξ

∣∣∣∣∣
ξ=ξ0

= (1 + aξ3
0 )−c. (4.3)
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δz/λLF

δz/λLF

θLF (δz)
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Figure 7. A sketch illustrating the two coordinate systems used to describe the mean temperature profiles near
the lower conducting plate (black coordinates {θSF(δz), δz/λSF}) and near the liquid interface (blue coordinates
{θLF(δz), δz/λLF}). The origin of the blue coordinates is shifted by an amount of {θSF(ξ0; c), ξ0} relative to
that of the black coordinates. The black solid line shows the normalized mean temperature profile θSF(ξ ; c) in
(3.1). The blue solid line shows the normalized mean temperature profile θLF(ξ ; c, ξ0) in (4.4).

The normalized mean temperature profile θLF(ξ ; c, ξ0) near the liquid interface then
takes the form

θLF(ξ ; c, ξ0) = 1
1 − θSF(ξ0; c)

∫ bξ

0
[1 + a(ε + ξ0)

3]−c dε, (4.4)

where

b = 1 − θSF(ξ0; c)

(1 + aξ3
0 )−c

. (4.5)

In the above, the prefactor [1 − θSF(ξ0; c)]−1 is introduced to renormalize the slip-induced
amplitude change of the temperature profile. Similarly, b is used to renormalize the
slip-induced local slope change of the temperature profile. This is equivalent to a
correction of the BL thickness λ′LF = λLF/b due to a slip. For small values of ξ0, we
have b � 1 − θSF(ξ0; c) � 1 − ξ0, and thus the slip length �T � ξ0λLF/(1 − ξ0).

Equation (4.4) is shown by the blue curve in figure 7. It is seen that θLF(ξ ; c, ξ0) satisfies
the normalized boundary conditions:

θLF(∞; c, ξ0) = 1 (4.6)

and
dθLF(ξ ; c, ξ0)

dξ

∣∣∣∣
ξ=0

= 1, (4.7)

as required by the definition of the normalized mean temperature profile. Equation (4.4)
has two parameters. The parameter c (= 1.55) has been obtained separately from the fitting
of (3.1) to the measured θSF(δz) near the lower conducting plate, as shown in figure 5(a).
The slip length ξ0 is the only fitting parameter to be determined from the measured
θLF(ξ ; c, ξ0) near the liquid interface. The solid line in figure 5(b) shows a good fit of
(4.4) to the experimental data with ξ0 = 0.23 ± 0.05.
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Figure 8. Log–log plot of the numerically calculated turbulent thermal diffusivity profile (κt(δz)/κ)LF as a
function of δz/λLF at RaLF = 3.2 × 1010, PrLF = 18.46 and Weber number WeLF � 150. The solid line shows
the power-law fit, (κt(δz)/κ)LF = 0.6(δz/λLF + ξ0)

3, in the region δz/λLF � 4 with ξ0 = 0.22.

By the same considerations of the slip boundary condition, we find that the normalized
temperature variance profile near the liquid interface takes the form

ΩLF(ξ ; ξ0) = ΩSF(bξ + ξ0; c, Δ2
B/η0, d, α), (4.8)

where b is used for rescaling of the BL thickness, λ′LF = λLF/b, owing to a slip at the
liquid interface. The solid line in figure 6(a) shows the calculated ΩLF(ξ ; ξ0) using (4.8)
with no adjustable parameter; all of the parameters of c = 1.55, ξ0 = 0.23, Δ2/η0 = 128,
d = 5.3 and α = 7.8 used in the calculation are already determined in figures 5 and 6(b).
An excellent agreement between the theory and experiment is obtained.

By comparing (4.4) with the first equality of (3.1), we find that the turbulent thermal
diffusivity κt(δz) near a liquid interface should have a scaling form, (κt(ξ)/κ)LF =
a(ξ + ξ0)

3. As κt(ξ) is not a directly measurable quantity, we conduct DNS of two-layer
RBC using the open-source code Nek5000 to test this prediction. The DNS is carried
out at fixed values of RaLF, PrLF and Weber number WeLF (with interfacial tension
γ ′ = 44 mN m−1) in a vertical stadium-shaped thin disk having the same dimensions as
those used in the experiment. While the resulting values of RaLF, PrLF and WeLF are not
exactly the same as those in the experiment, they are nevertheless in the same parameter
range as in the experiment. As shown in figure 8, the numerically calculated (κt(ξ)/κ)LF
indeed has the expected power-law form with a slip length, ξ0 = 0.22 ± 0.02, very close
to the experimental value. Figure 8 thus further confirms that the slip length ξ0 is indeed
caused by the velocity and temperature fluctuations at the liquid interface.

5. Conclusion

This work concerns a fundamental issue in interfacial dynamics, namely the boundary
conditions at a stable liquid–liquid interface. The hydrodynamic boundary condition,
which complements the Navier–Stokes equation, serves as a pillar of continuum
hydrodynamics. Unlike other partial differential equations in physics, such as Maxwell’s
equations, for which the boundary conditions can be derived analytically from the
equations themselves, the hydrodynamic boundary condition near a solid wall, which has
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been regarded as non-slip for more than a century (i.e. there is no relative motion at
the liquid–solid interface), has never been derived from first principles. For this reason,
the past decade has witnessed a surge of experimental and theoretical studies of the
hydrodynamic boundary conditions at various liquid–solid interfaces (Lauga, Brenner &
Stone 2007). Compared with the large number of investigations of the BL dynamics near
solid surfaces, our understanding of the BL flow near stable liquid interfaces is rather
limited. Unlike inert and rigid solid surfaces, liquid interfaces are soft and dynamic and
often involve complex transport processes and non-equilibrium fluctuations with a large
number of fluid parameters. Because high-resolution experimental characterization of the
BL flow near a liquid interface is challenging and available experiment results are rare,
our current understanding of the BL dynamics near a liquid interface relies mainly on the
results from molecular dynamic simulations and numerical calculations.

In this work, we demonstrate that quasi-2-D RBC in two stacking layers of immiscible
fluids is a valuable experimental framework for the study of the boundary conditions
at a stable liquid interface. Conceptually, this is a simple convection system with a
constant heat flux provided by the lower heating plate, which has to go through the
liquid interface and reaches the upper cooling plate (similar to a constant electric current
going through two resistors connected in series). Because of the mismatch of the thermal
properties between the two fluids, the temperature profile across the liquid interface forms
a well-developed thermal BL on each side of the interface, instead of having a finite
temperature jump. The two BLs are unstable, however, and emit thermal plumes on each
side of the interface. From a careful flow visualization of the emission dynamics of thermal
plumes at the water–FC770 interface, we find that cold plumes emit from the lower BL
of the liquid interface, which fall into the lower FC770 layer. Warm plumes, on the other
hand, emit from the upper BL of the liquid interface and rise to the upper water layer. As a
result, the liquid interface undergoes strong BL fluctuations and heat transport is realized
with a net heat flux across the interface without involving macroscopic mass transport of
the immiscible fluid molecules.

With this experimental framework, we are able to find a quantitative relation between
BL fluctuations and the thermal slip length �T of the BL profiles. The measured mean
temperature and temperature variance profiles near the liquid interface are found to be
well described by the BL equations for a solid wall, so long as a thermal slip length �T
is included to account for the convective heat flux passing through the liquid interface.
For a solid wall, the no-slip (and no-fluctuation) boundary conditions (i.e. 〈w′T ′〉 = 0)
dictate that the turbulent thermal diffusivity goes as κt(ξ)/κ ∼ ξ3 in the leading order
(Shishkina et al. 2015). At the liquid interface, however, we find the convective heat flux
〈w′T ′〉 = 0 and hence κt(ξ) will contain all lower-order terms in ξ in general. Our finding
that the turbulent thermal diffusivity near a liquid interface has a complete cubic form,
κt(ξ)/κ ∼ (ξ + ξ0)

3, suggests that these lower-order terms have a specific relationship.
In particular, we find 〈w′T ′〉LF = −κt∂ξ θLF|ξ=0 � aξ3

0 κ(ΔB/λ)LF at the liquid interface.
This physical mechanism produces a remarkable thermal slip length at the mesoscale
(�T � ξ0λLF/(1 − ξ0) � 0.32 mm for λLF � 1.07 mm at RaLF = 1.8 × 1011), which is
much larger than the typical velocity slip length of the order of 20 nm for hydrophobic
solid surfaces (Lauga et al. 2007). This work thus represents a breakthrough in our
understanding of the boundary conditions at a stable liquid interface. Our systematic study
of the thermal BL profiles near the liquid interface also paves the way forward for future
studies of the velocity BL profiles near the liquid interface, the coupling of the thermal
BL profiles across the interface between the two fluids and the interactions between the
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large-scale flow and the thermal BL dynamics near the liquid interface. The present study
is the first step in this direction.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.846.
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Appendix. Flow visualization near the liquid interface

A shadowgraph technique (Settles 2001) is used to visualize the convective flow near the
liquid interface. Figure 9 shows the experimental set-up of the shadowgraph measurement.
High-flux-density white LED lighting (LUXEON S1000, Philips Lighting) is used as a
stable white light source and the light is guided by an optical fibre to a pinhole of 1 mm
in diameter. The pinhole is positioned at the focal point of a convex lens of 25 cm in
diameter so that a wide collimated beam of white light is normally incident to the part of
the convection cell under study. Temperature fluctuations in the convecting fluids produce
inhomogeneities in the refractive index, giving rise to a shadow image of thermal plumes.
The shadow image is projected onto a screen made by oil paper and a charge-coupled
device (CCD) camera (Basler, acA1920-155um) with a spatial resolution of 1920 × 1200
pixels is used to record the shadow images at a sampling rate of 20 frames per second.

Figure 10(a) shows a raw shadowgraphic image I(x, z, t) of the thermal plumes
emitted near a stable water–FC770 interface (middle dark line). Because the thermal
plumes in the (upper) water layer have a small shadowgraphic contrast at the working
temperature of 14 ◦C (i.e. small dn/dT with n being the refractive index of water)
(Bodenschatz et al. 1991), their shadowgraphic images are barely seen in figure 10(a),
compared with the thermal plumes in the (lower) FC770 layer, which have a higher
shadowgraphic contrast. To improve the visibility of the thermal plumes emitted near the
liquid interface, we apply a contrast enhancement method (Maragatham & Roomi 2015)
to the background-subtracted image Ĩ(x, z, t) = I(x, z, t) − I0(x, z), where the background
image, I0(x, z) = (1/N)

∑N
i=1 I(x, z, ti), is obtained by averaging N = 8.64 × 105 raw

images (24 h of time series data). With the background subtraction, all of the stationary
defects and noise in the images are removed. The linear contrast enhancement and gamma
correction (Maragatham & Roomi 2015) are then applied to the images of the two fluid
layers separately.

The thermal plumes have a typical mushroom-like shape consisting of a front cap with
a sharp temperature gradient and a diffusive tail (Du & Tong 2000). When a parallel
beam of light passes through a convecting fluid, its transmission intensity I(x, z, t) (or
shadowgraph) is related to the second-order spatial derivative (Laplacian) of the refractive
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Convection cell

Lens

Pin hole

Optical fibre

Oil paper

CCD camera

f

Figure 9. A schematic showing the experimental set-up of the shadowgraphic measurement with focal length
f = 666 mm.

(a) (b)

Figure 10. (a) A raw shadowgraphic image I(x, z, t) showing a magnified view of plume emission near a stable
water–FC770 interface (middle dark line). The image is taken at RaLF = 1.8 × 1011 and RaLW = 6.8 × 108,
and the grey level of the image is in the range 0–255. The coordinates used here are the same as those in
figure 1(a) with −50 mm ≤ z ≤ 50 mm and −100 mm ≤ x ≤ 100 mm. (b) The resulting image after the linear
contrast enhancement and gamma correction are applied to the raw image shown in (a).

index variation n(x, z, t) due to temperature fluctuations T(x, z, t) in the convective flow
(Settles 2001). For small temperature variations (� 25 K), n(x, z, t) is linearly proportional
to T(x, z, t). As a result, the cold plumes emitted from below the liquid interface appear
as bright stripes flanked by dark ones, whereas the warm plumes emitted from above
the liquid interface appear as dark stripes flanked by bright ones (Wang et al. 2018b).
Figure 10(b) shows the final result after the contrast enhancement.
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