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ON THE CONJECTURE OF JESMANOWICZ
CONCERNING PYTHAGOREAN TRIPLES

MOUJIE DENG AND G.L. COHEN

Let a, b, c be relatively prime positive integers such that a2 + b2 = c2.
Jesmanowicz conjectured in 1956 that for any given positive integer n the only
solution of (an)x + (bn)v = (en)* in positive integers is x —y = z = 2. Building
on the work of earlier writers for the case when n = 1 and c = b + 1, we prove
the conjecture when n > l , c = b + l and certain further divisibility conditions
are satisfied. This leads to the proof of the full conjecture for the five triples
(o,6,c) = (3,4,5), (5,12,13), (7,24,25), (9,40,41) and (11,60,61).

1. INTRODUCTION

Let a, b, c be relatively prime positive integers such that a2 + b2 — c2, and let n
be a positive integer. Clearly, the Diophantine equation

(1) (na)x + (nb)y = (nc)z,

has the solution x — y = z = 2. Whether there are other solutions in positive integers
when n — 1 has been investigated by a number of writers. Sierpinski [6] showed there
were no other solutions when n = 1 and (a, b, c) = (3,4,5), and Jesmanowicz [2] that
there were no others when n = 1 and (a, b, c) = (5,12,13), (7,24,25), (9,40,41) and
(11,60,61). He conjectured that the equation (1) has no positive integer solutions for
any n other than x — y = z = 2.

The general solution of a2 + b2 = c2 in relatively prime positive integers is of
course well known to be a = u2 — v2, b = 2uv, c — u2 + v2, where u > v > 0,
gcd (u, v) — 1 and one of u, v is even, the other odd. A number of other special cases
of Jesmanowicz's conjecture have since been settled. Lu [5] proved it when v = n = 1.
In 1965, Dem'janenko [1] extended earlier results in several papers by proving the
conjecture to be true whenever n — I or 2 and u = v + 1. Takakuwa and Asaeda (see
[7]) have proved the conjecture in a number of special cases in which, in particular,
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n = 1 and v = 1 (mod 4), and Takakuwa [8] has proved it when u is exactly divisible
by 2, v = 3, 7, 11 or 15, and n = 1. More recently, Le has verified the conjecture if
n = 1 and 2 exactly divides uv and, in [3], c is a prime power, in [4], v = 3 (mod 4)
and u ^ 81u.

A more general conjecture has been considered by Terai (see [9]). He asks whether
the equation (1) with n — 1 and a? + bq = cr, has any positive integer solutions
other than (x, y, z) = (p, q, r). In particular, he has considered (p, q, r) — (2,2,3) and
(p,q,r) = (2,2,5).

Some authors and reviewers have stipulated that n = 1 in (1), but this is apparently
not part of Jesmanowicz's conjecture. Nor is it a particularly easy case when n > 1.
In this paper, we shall take a = 2fc + 1, 6 = 2k(k + 1), c— 2k(k + 1) + 1, where A; is a
positive integer, and will obtain by completely elementary means certain conditions on
n under which the only positive integer solution of the equation (1) is x = y = z = 2.
This will lead us to prove Jesmanowicz's conjecture in full for this generalisation of the

original five cases settled by Sierpinski and Jes"manowicz, that is, for k € {1,2,3,4,5}.
t t

For any integer N > 1 with prime factorisation [J p°*, we write C(N) = II P» •
i=i »=i

All Greek and Roman letters in this paper denote positive integers unless specified
otherwise.

The following two theorems will be proved.

THEOREM 1 . Let a- 2Jfc + l , b = 2k(k+ 1), c= 2k(k+ 1) + 1, for some positive

integer k. Suppose that a is a prime power, and that the positive integer n is such

that either C(b) \ n or C(n) \ b. Then the only solution of the Diophantine equation

(an)x + (bn)y = (cn)z is x = y = z = 2.

THEOREM 2 . For each of the Pythagorean triples (a, b, c) - (3,4,5), (5,12,13),
(7,24,25), (9,40,41), (11,60,61), and for any positive integer n, the only solution of

the Diophantine equation (an)x + (bn)v = (cn)z isx = y = z = 2.

Theorem 2 is the confirmation of Jesmanowicz's conjecture in the five cases stated,
corresponding to k = 1, 2, 3, 4, 5, respectively, in Theorem 1. The first case, when
k = 1, is an immediate corollary of Theorem 1. The remainder of the proof of Theorem 2
uses Theorem 1 and special arguments in each of the cases k = 2, 3, 4, 5, with no
pattern apparent. It is plausible that similar approaches will be successful for the next
permissible cases k = 6, 8, 9, 11, . . . , but the details have not been carried out.

Three lemmas will be required.

LEMMA 1 . Let a = 2k + 1, b = 2k(k + 1), c = 2k(k + 1) + 1, for some positive

integer k. The only solution of the Diophantine equation ax+by = c* isx = y = z — 2.

This is Dem'janenko's result, mentioned above, when u — v + l and n = 1.
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LEMMA 2 . If z ^ max{x, y}, then the Diophantine equation ax + by — c*, where

a, b and c are any positive integers (not necessarily relatively prime) such that a2+b2 =

c2, has no solution other than x — y — z = 2.

P R O O F : If z — 1 then z = y = 1 and (a + b)2 > a2 + b2 = c2 , so a + b > c.
Suppose z ^ 2 and, without loss of generality, that x ^ y. If y — 1, then ax + by =
a + b<a2+b2 = c2 ^ c*. If y ^ 2, then

ax + &» < (a2)y/2 + {b2)y/2 ^ (a2 + b2)y'2 = c " ^ c\

and there is strict inequality unless x — y = z — 2. D

LEMMA 3 . If p is an odd prime and gcd (a, b) = 1, then

P R O O F : Let q be a prime divisor of a + b, so that q \ a and b = —a (mod q).

Then
aP
a + b

= a""1 - ap-2b +--- + bp~1= pap-x (mod g).

It follows, if q is a divisor of (ap + bp)/(a + 6), that q — p and that p is an exact
divisor of (a? + W)/{a + b). D

2. P R O O F OF T H E O R E M 1

By Lemma 1, we may suppose n > 1, and by Lemma 2 that z < max{x,y}.

Of course, a2 + b2 = c2. Notice also that a2 — b + c, c = b + 1, b = k(a + 1),

c = A ; ( a — l ) + o , and a, b, c are relatively prime in pairs. We also suppose that

equation (1) holds, and will show that this leads to a contradiction. There are two

main cases to the proof, depending on whether gcd (n, c) = 1 or gcd (n, c) > 1, and

numerous subcases in each case, indexed by a decimal numbering system.

1 Suppose gcd (n, c) = 1. We cannot have x = y, since then z < x and, from (1),

we may write nx~z(ax + bx) — <?. Then gcd (n, c) > 1, a contradiction.

1.1 Suppose x > y, so that we may write nv(nx~yax + bv) = rfc*. Then clearly

z ^ y, so that also z < x.

1.1.1 Suppose n\bv. Since we may write nx~yax + bv — nz~vc*, then we cannot

have z > y, so z = y in this case, and nx~zax + bz — c*. Modulo a, we have

kz = (-k)z, and gcd (o, k) = 1, so z is even. Write z = 2z\, so that

- bZl).
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The factors on the right cannot both be divisible by a. Since ax > az = a2*1 =
(c •+• b)Zl ^ cZl 4- bZl > cZl — bZl, we have a contradiction.

1.1.2 Suppose n | i " . Then it is not the case that C(n) \ b, so necessarily
8 8

C(b) I n. We may take b = f\ r?* (prime factorisation), so n = JJ ri' with Vi ~£ 1
i = l t= l

for each i — 1, . . . , s. By the division algorithm, we write ^y = Uvi + Zj, say, where
ti ^ 1 and 0 ̂  li < i>i, for i = 1, . . . , s.

1.1.2.1 If x > y + ti for all i = 1, . . . , s, then we may write

(2) II r^+ti) ( n &—-*> a* + f[ r'A = f{ r?' • cf.
t=l ^i=l i=l ' i=l

Since we cannot have r^ \ c for any i — 1, . . . , s, because gcd(n,c) — 1, and since
li < Vi for each i, it follows that we must have z — y + ti — • • • — y + ta, so

tx = • • • = ts = t, say, and (2) reduces to f] rv
i
i{-x~v~t) • ax + Yl rj* = <?. It is then

t=i t=i
apparent that li = 0 for i — 1, . . . , s, so that

say, where gcd (y',t') = 1. Also, (2) further reduces to

(4) nx-zax + l=c*.

If z is even, then, writing z — 2zi, we have nx~zax — (cZl + l)(cz i - 1). However,

a cannot divide both factors on the right, and

ax >az = a2'1 - (6 + c)*1 > czi + 1 > c*1 - 1,

so this is impossible.

Suppose now that z is odd. Using (3), we have n = bv /* so that, from (4),

6y'(a:-z)oit' = (^ _ tf' = ^f, + y * _ tf' S ince f, ig eve]lj t h e n fc | Z) s o (ft + 1)* _ 1
is divisible by b exactly. Hence y'(x - z) = t'. Since gcd (y',t') = 1, then y' = 1,

x = z + £' and, from (3), yt' — t. Since z = y + t = y(l + t'), then t' is even and x is

odd. Write x = 2x\ + 1. We have nx~z = ra4' = 6"' = b, so that, from (4),

cz - 1 = 6a1 = a(c - 1)(6 + c)Xl = a(c - l)(2c - I ) 1 1 .

Modulo c, we have a(—1)X1 = 1, from which c | (a + 1) or c | (a — 1). But this is
impossible, since c > a + 1.

https://doi.org/10.1017/S0004972700031920 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031920


[5] On the conjecture of Jesmanowicz 519

1.1.2.2 If x ^ y + ti for at least one i = 1, . . . , s, then we can quickly obtain a
contradiction. The approach may be illustrated by taking x ^ y + ti and x > y + U
for i = 2, . . . , s (if s ^ 2) . Then, adjusting (2), we may write

r?X f[r?{v+ti) fflr^1^^ • ax + r ? { v + t l x ) flr^ = J^rfz • c*.
t=2 N=2 t= l ' t = l

s

But since x > z, this implies that r\ | PJ r"tZ • cz, which is the desired contradiction.
t=2

1.2 Suppose x < y and write (1) as nx(ax + ny~xby) = nzcz. Then clearly
y > z ^ x.

1.2.1 If n\ax, then we cannot have z > x,so z = x and we have nv~zbv — cz — az.
Consider this equation modulo 4 if k = 1, in which case a = 3, 6 = 4 and c = 5, and
modulo k +1 if k > 1. In both cases, we conclude that z must be even. Write z = 2z\.

If k = 1, then n»-*4» = 52 - 3 Z = (5*i + 32i)(5Zl - 321)- The factors on the right
are both even but cannot both be divisible by 4. Hence one of them is divisible by
22"-1. But

22j/-l > 2 2 z - l = 24Z!-1 ^ 23Z! = (5 + 3)*1 -. 5*1 + 3*1 > 5*1 _ 3*1.

We have a contradiction.
Suppose k > 1. We have ny~zbv — (cZl +aZl)(cZ1 - az i ) , and we observe that

b = 2A;(fc + 1), fc | (c - a) | (c*! - azi) and gcd(czi + azi,czi - azi) = 2. If Z! is even,
or if z\ is odd and k is even (in which case, a = c = 1 (mod 4)), then if1 + aZl is
divisible by 2 but not by 4, so that 2»~1Jt!/ | (c*1 - aZl). However,

Zl > (2fe2 + 2fe + 1)Z1 = cz> > czi - azS

which is also a contradiction. If z\ and k are both odd, then, since c = -a = 1
(mod (fc + 1)), we have (k + 1) | (c2^ + az>) and 4f(c*i - a z i ) - Hence 2"-1(A; + l)y |
(c2i +a z i ) . But

2«"1(ifc + l)v > | (2(* + l))z = i(4fc2 + 8k + 4)*1

^ (2Jfc2 + 4fc + 2)21 = (c + a)Zl ><?!+ azi,

our final contradiction in this case.
1.2.2 Suppose n \ ax. Write a = pa, where p is prime, and n — p". Also, write

ax = ft +1, where 0 ^ / < v.
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Suppose y > x + t, and write (1) as nx+t(p' + ny~x~*by) = nzc*. From this, it
follows that z = x + t and I = 0, so that nv~zbv = <? - 1. If z is odd, then, as in the
last paragraph of 1.1.2.1, c* — 1 is exactly divisible by b. But y > z, so y > 2 and
b2 | (c* - 1). Then z must be even. Write z -2zx. We have c*1 + 1 = 2 (mod 6),
from which (cZl + 1 , 6 ) = 2. Since ny~zby — (c*1 + l^c*1 - 1), we must then have

/ | (c*i - 1). But

hV h ! 1

- > - y - = 2<c- a)Zl(c + a)z i ^ c»i + a^ > c^ - 1.

This is a contradiction.
If t/ ^ x + t, then write (1) as ny (nx+t~ypl + by) = n'c". Since y > z, we have

n | cz, a contradiction.
t

2 In the second main case, we suppose gcd (n, c) > 1. Write c = Yl Q?* (prime
factorisation). *=1

f2.1 Suppose first that C(n) | c, so that we may write n = flqf', say, with s ^ t
Pi ^ 1 for i = 1, . . . , s. i = 1

2.1.1 Suppose x — y, so z < x. Prom (1), we have

«=1 i= l t=l i = s + l

so that

(5) a* + V- _
i=l t=s+l

It is clear from this that (*iZ — 0i(x — z) ^ 0 for each i — 1, . . . , s.

We shall show that a\z — j3\{x — z) > a\. Suppose this is not true. If t = 1 then

s = 1 and g ° i z -0 i ( x - z > j - q°i = C < ax + bx, contradicting (5). If t > 1 then, since
t

Qi1 ^ c/i2 < c — 1 = b and Y\ if* ^ c/<li < c — 1 = 6, we have
i=2

t=l »=»+! i=2

another contradiction. Thus ot\z — /?i(x — z) > a\, and similarly aiz - /3<(i - z) > oii

for i = 2, . . . , s. It follows from (5) that

(6) ax + bx = 0 (mod c).
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If x is odd, say x = 2xi + 1, then

ax + bx = aa2xi + 662xi = a(-l)*1 - 1 (mod c).

By (6), then c | (a — 1) or c | (a + 1), which is impossible since c> a+1.

If x is even, say x = 2x\, then, from (6), (—l)Xl + 1 = 0 (mod c), so xi is
odd. In that case, ax + bx = ( a 2 ) x i + (ft2)*1 is divisible by a2 + b2, and, since z < x
implies x > 2, the quotient must exceed 1. Furthermore, by (5), (ax + bx)/(a2 + b2)
is divisible by qj, say, for some j = 1, ... , t. Since a2 = - 1 = b2 (mod c), we have

£±£ 2)j2 + ... + j ad- i ) = Xi = 0 (mod qj)j

that is, qj \ x x . Then a?qi+b2qi divides a2xi+b2xi. Furthermore, (a2qi + b2gi)/(a2 + b2)

divides a2xi +b2xi, and, from (5), must be a product of primes in {qi,..., qt\ • It follows

then from Lemma 3 that gcd( a 2 +6 2 , (a29-* + b2qi)/(a2 + 62) J = qj. However, it is clear
t

that (a2q3 + b2qi)/{a2 + b2) > qj, and f] q2 \ (a2 + b2) , so we have a contradiction.
t=i

2.1.2 Now suppose x > y. From (1), we may write

i=l t=l i=l

If z ^ y then q\ \ b, contradicting gcd (6, c) = 1, so z < y and we write

(7) nx-ya
x + by = f[q^z-^y-z)- J ] <7t

Q'2.
i=l «=»+l

Again we have a contradiction if ajZ — 0j (y — z) > 0 for some j — 1, . . . , s, since then

q}: | 6, so f [ q°iZ~Pi{v~z) = 1. It follows that s < * but, since f ] iV < c/ii <b,v/e
«=1 1=8+1

have
t

J J «?" < 6Z < 6y < n * - ^ 1 + 6",
i=s+l

which is then a contradiction of (7).

Similarly, we cannot have x < y.

2.2 If C{n) \ c, then we may write n = TI1TI2, where ri\ > 1 and gcd(ni,ri2) =

gcd(ni,c) = 1.

2.2.1 If x = y then (1) becomes nxnx(ax + bx) = n\n\c*. Since z < x, this

implies that n\ \ n^c?, a contradiction.
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2.2.2 Suppose x > y, and write (1) as n\ny
2{nx-yax + V) = nln^c*. If z ^ y

then gcd (6, c) > 1, since gcd (n, c) > 1, and this is a contradiction. If z < y then
ni I cz, and this is also impossible.

Similarly, we cannot have x < y.

This completes the proof of Theorem 1. D

3. PROOF OF THEOREM 2

In the notation of Theorem 1, we must extend that proof for the special cases
k = 2, 3, 4 and 5, without the restriction that C(b) \ n or C(n) \ b. In effect, we
need only look to the case 1.1.2 in the proof of Theorem 1, so that we may assume
gcd (n, c) = 1, x > y, n \ by and C(b) \ n. The four values of k must be considered in
turn. For this purpose, we continue the previous decimal indexing.

3 Take k = 2, so (a,b,c) = (5,12,13). The relevant assumptions are: x > y,

n | 12y and 6 \ n. Then n is either a power of 3 or a power of 2.

3.1 Let n = 3 r , and write y = tr +1 where 0 ^ I < r. If x > y + t, then we
may write (1) as nV+t(nx-v-t5x + 3'4«) = nz13z. It follows that z = y + t, so that
nx-z5x + 3i4y = 13z t a n d t h e n t h a t i = 0 s i n c e x > z T n e i l ) modulo 5, {-l)y = 3Z,

from which z must be even. Write z = 2zx, so that nx~z5x = (13*1 + 2!')(1321 - 2y).

The factors on the right cannot both be divisible by 5, and, noting that z = y +1 > y,

5X > 5Z = 25Z1 > 13Z1 + 4*1 > 1321 + 2y > 13*1 - 2y,

so we have a contradiction. If x ^ y + t, then we may write (1) as

nx(5x + 3lny+t-x4y) = nz13z.

This is clearly impossible, since x > z.

3.2 Now let n = 2s , and write 2j/ = ts + I, where 0 ^ / < s. As in 3.1,
we easily show that we cannot have x ^ y + t, so x > y + t and we may write

ny+t(nx-y-t5x + 2/3y) _ nzl3z T h i s im pi i e s t n a t z = y + t, and then that I = 0, so

(8) nx~z5x + 3y = 13Z.

Then 3^ = 3Z (mod 5), so y and z are both even or both odd. If 4 | nx~z, then

(8), considered modulo 4, shows that y is even. If nx~z = 2, then (8), considered

modulo 3, shows that x is odd so that z = x - 1 is even. Thus we may put z = 2zi

and y = 2t/i, and then n x - z 5 x = (13Zl + 3s'i)(13Zl - 3yi). As in 3.1, we may show

this to be impossible.

4 Now take k — 3, so (a,b,c) = (7,24,25). We are assuming that x > y, n \ 2\y

and 6 \ n, so that again n is a power of 3 or a power of 2.
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4.1 Suppose n — 3 r , and y — tr +1 where 0 < I < r. As in 3.1, we see that we
must have x > y + t, and, as before, that z ~ y + t and 1 = 0. Then nx~z7x+8y = 25Z.
Considering this equation modulo 3, this implies that we may write y = 2yi so that

nx-z7x _ (5z + 8y i ) ( 5* - 8 y i ) . However, 7 cannot divide both factors on the right and

7* > V = 7t49»1 > 5*(25W + 8"1) ^ 5y+t + 8yi = 5Z + 8"1 > 5Z - 8yi,

so we have a contradiction.

4.2 If n = 2s, then, very much as in 3.2, we again obtain a contradiction.

5 Next, take k = 4, so (a,b,c) = (9,40,41). We are assuming that x > y, n \ 40y

and 10 \ n, so that n is a power of 5 or a power of 2.

5.1 Suppose n = 5 r , and y = tr + I where 0 ^ I < r. Again, we must have
x > y + t, so that, from (1), ny+t(nx-y-t9x + 5l8v) = nz41z, and this implies that
z = y + t, and then that 1 = 0. The equation nx~z9x + 8V = 41Z, considered modulo 5,
shows that y is even, and then, considered modulo 3, that z is even. Write y = 2j/i and
z = 2zi, so that we have nx~z9x = (41zi + 8!'1)(41il - 8Vl)- T h e factors on the right
cannot both be divisible by 3, and 9X > 9Z = 81Z1 > 41*1 +g*i > 41zi + 8 ^ > 41zi - 8 y i ,
so we have a contradiction.

5.2 If n = 2s, then, again as in 3.2, we obtain a contradiction.

6 In our final case, take k = 5, so (a,b,c) = (11,60,61). We assume that x > y,

n | 60y and 30 \ n. We need to consider the possibilities n = 3 r i , n = 5r 2 , n = 2s,
n = 3 r i5 r 2 , n = 2 s 3 r i , n = 285r2, and the proofs in each of these cases follow lines
similar to the above.

This completes the proof of Theorem 2. D
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