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It is well known that deterministic two-dimensional marine ice sheets can only
be stable if the grounding line is positioned at a sufficiently steep, downward
sloping bedrock. When bedrock conditions favour instabilities, multiple stable ice
sheet profiles may occur. Here, we employ continuation techniques to examine the
sensitivity of a two-dimensional marine ice sheet to stochastic noise representing
short time scale variability, either in the accumulation rate or in the sea level height.
We find that in unique regimes, the position of the grounding line is most sensitive
to noise in the accumulation rate and can explain excursions observed in field
measurements. In the multiple equilibrium regime, there is a strong asymmetry in
transition probabilities between the different ice sheet states, with a strong preference
to switch to the branch with a steeper bedrock slope.
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1. Introduction
With the increasing global mean temperatures over the last decades, the behaviour

of marine ice sheets, such as those on Greenland and Antarctica, has become a major
topic in climate research. The marine ice sheets are grounded on bedrock below sea
level and can lose mass at their edges through a floating ice shelf (Weertman 1957).
They may respond sensitively to variations in ocean temperatures at their boundaries
(Park et al. 2013). Under global climate change, a destabilisation of marine ice
sheets (in particular, the West Antarctic Ice Sheet) may lead to enhanced sea level
rise (Oppenheimer 1998).

In the theory of marine ice sheet stability, the grounding line position, i.e. the
position at which the sheet becomes afloat, is the key quantity (Weertman 1974). A
perturbation of the grounding line will lead to enhanced ice growth or loss when the
bedrock at the grounding line is sloping upwards in the direction of flow. A grounding
line advance, for instance, leads to a broadened ice sheet and hence an increase in
total accumulation. The simultaneous decrease in ice thickness at the grounding line
prevents the ice flow to balance this increase, allowing the sheet to grow. A positive
feedback is activated (Schoof 2012) and the grounding line will be displaced until
bed conditions are stabilising again. Gomez et al. (2010) showed that gravitational
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effects of the ice sheet on sea level play a stabilising role in this feedback. For
two-dimensional models of a marine ice sheet under a constant accumulation rate,
linear stability analyses have shown that grounding lines are only stable in positions
where the bedrock slopes downwards sufficiently steeply (Schoof 2012). It was also
found that, depending on the shape of the bedrock, multiple steady ice sheet states
can exist in these models (Schoof 2007a).

A recent analysis of the (dynamically stable) Petermann Glacier on Northwest
Greenland has shown that strong variability can occur in the grounding line position
(Hogg et al. 2016). Over a period of 19 years, an absolute (spatial) average grounding
line migration of 450 m was found, with local excursions up to 7 km. These
variations were attributed to small-scale processes (in both space and time), such
as ocean tides and localised changes in the ice thickness. The latter were thought
to be the dominant factor. These results motivate an investigation into the effects of
noise as a representation of small-scale processes in marine ice sheet dynamics. In
a unique regime, with only one stable deterministic equilibrium, noise may cause
variability in the grounding line position. In a multiple equilibrium regime, noise can
lead to transitions between these equilibria. The statistics of grounding line variability
and possible transitions are of key interest.

The effect of stochastic noise in the climate forcing on ice stream temporal
dynamics was studied in Mantelli, Bertagni & Ridolfi (2016). It was, for example,
shown that realistic climate fluctuations are able to induce the coexistence of
dynamical behaviour (e.g. steady, transient) that could not be generated by a
deterministic system. For other problems in climate dynamics, such as Dansgaard–
Oeschger events (Ganopolski & Rahmstorf 2002) and Arctic sea-ice dynamics (Moon
& Wettlaufer 2017) such stochastic analyses have also lead to novel and useful
explanations of the observed variability.

In this paper, we study the dynamics of two-dimensional marine ice sheets using
the ‘full model’ in Schoof (2007a). We extend the analysis in Schoof (2007a) by
forcing the marine ice sheet with noise resulting from small-scale variability in
the accumulation rate or in sea level. We apply continuation methods to follow
deterministic steady solutions of the two-dimensional ice sheet model versus
parameters. Next, we apply a recently developed method (Baars et al. 2017) to
determine (Gaussian) probability density functions under small noise amplitudes
along the steady state branches. The numerical approach allows us to efficiently
analyse stable and unstable steady states, the corresponding grounding line fluxes and
the response to noise, in particular stochastic induced transitions between equilibria.
These phenomena can be investigated under a range of external conditions and
different internal dynamics, including the gravitational effect of ice sheet variations
on sea level variability (Gomez et al. 2010).

In § 2, the formulation of the stochastic extension of the Schoof (2007a) model
and the numerical methods to compute bifurcation diagrams and probability density
functions are presented. Numerical details and comparisons of the methods used
are presented in four appendices. In § 3, we study the bifurcation behaviour of the
deterministic version of this model, including a linear stability analysis, followed by
the behaviour of the stochastic model in § 4. A summary and discussion of the results
concludes the paper (§ 5).

2. Methodology
Consider in figure 1 a two-dimensional marine ice sheet situated on a bedrock

topography in a Cartesian coordinate system, with a symmetry axis at x = 0.
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Ice
Bedrock
Sea level at the grounding line
Reference (zero) line

FIGURE 1. (Colour online) A two-dimensional marine ice sheet. The ice thickness is given
by h(x) and the horizontal ice velocity by u(x). Up until the grounding line xg, the ice
sheet rests on the bedrock b(x). At the grounding line the sea level is given by S(xg) and
the ice sheet extends into a floating ice shelf.

The grounding line is indicated by xg, the ice thickness by h, the ice velocity
by u, the bedrock depth by b and the sea level by S.

2.1. Model
The dynamics of the marine ice sheet is modelled using the shallow-shelf approxima-
tion (SSA), which is obtained by simplifying the full Stokes problem for gravity
driven ice flow (Greve & Blatter 2009). The SSA, as implemented in Schoof (2007a),
is a vertically integrated, two-dimensional model for a rapidly sliding ice sheet, and
is used as a benchmark problem for the marine ice sheet intercomparison project
(MISMIP) (Pattyn et al. 2012), see also appendix C. Note that the SSA equations do
not capture vertical gradients in horizontal velocity and hence neglect vertical shear.
Thus, u is a function of horizontal position only. Conservation of mass is expressed
by

∂h
∂t
+
∂(uh)
∂x
= a, (2.1)

where a is the accumulation rate. Conservation of momentum is formulated as

∂

∂x

[
2A−1/nh

∣∣∣∣∂u
∂x

∣∣∣∣(1/n)−1
∂u
∂x

]
−C|u|(m−1)u− ρigh

∂(h− b)
∂x

= 0, (2.2)

where A and n are coefficients of Glen’s flow law, a constitutive relation describing
the rheology of ice (Greve & Blatter (2009), Van der Veen (2013), typically n = 3).
The ice density is given by ρi, g is the gravitational acceleration and the bedrock
depth and b is taken positive in the downward direction. The consecutive terms in
the momentum balance (2.2) represent longitudinal stress, basal shear stress and the
driving stress respectively, where C and m determine the sliding of the ice. Note that
the parameters A, n and C, m have an opposite physical significance: an increase in
stress may be induced by an increase in C, m, and/or a decrease in A, n.

The left boundary of the domain (x= 0) is assumed to be located at an ice divide,
a location in the ice with zero horizontal velocity. Hence, at the ice divide, u= 0 and
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FIGURE 2. (Colour online) (a) Fit of dS/dxg in Gomez et al. (2010). Points corresponding
to 0.20 m km−1 at x=265 km and 0.34 m km−1 at x=1400 km are marked with crosses.
(b) Sea level as a function of xg. For the reference ice sheet we take S(xg = Li)= 0, as
is marked with a dot in the graph.

symmetry in thickness and bedrock depth requires a zero surface slope

∂(h− b)
∂x

= 0 at x= 0. (2.3)

There are two boundary conditions at the grounding line x= xg. One condition results
from ice-shelf equations, with the same assumptions as used in deriving (2.1) and
(2.2) (Weertman 1957). From a horizontal integration of shelf flow (Schoof 2007a)
it follows that

2A−1/n

∣∣∣∣∂u
∂x

∣∣∣∣(1/n)−1
∂u
∂x
=

1
2

(
1−

ρi

ρw

)
ρigh at x= xg. (2.4)

The other boundary condition is the flotation requirement:

ρih= ρw (b+ S) at x= xg, (2.5)

where S(xg) is the sea level at the grounding line position.
When an ice sheet melts, the additional water will raise the sea level (eustatic

effect). However, the gravitational pull of the reduced ice mass on the water will
also decrease, and hence sea level lowers. To determine the sea level S due to the
loading of the ice and the bedrock, we formally need to solve the sea level equation
for this configuration. However, an easier representation was formulated in Gomez
et al. (2010), who show that sea level S can be expressed as a single function of the
grounding line position xg. In this case, the equation for the mean sea level (constant
in x) reduces to

dS
dxg
= f (xg), (2.6)

where f is a function of xg that can be determined from figure 2 in Gomez et al.
(2010).

Here we will use a function of the form

f (xg)=−α(xg − Lr)
k
+ β, (2.7)

where we choose α, β, Lr and k to fit the results in Gomez et al. (2010), see
figure 2(a). The coefficients α and β are fixed to match the correct range in sea level
changes. The index k and constant Lr are chosen to mimic the nonlinearity of the
curve, see table 1 for their values. Hence, the sea level S(xg) is given by

S(xg)=−
α

k+ 1
(xg − Lr)

k+1
+ βxg + γ , (2.8)
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α 1.35× 10−29

β 3.42× 10−4

γ̄ −2.25× 102 m
Lr 2.0× 106 m
Li 6.18× 105 m
k 4

TABLE 1. Coefficients for our fit of the gravitational sea level effect (GSLE) in Gomez
et al. (2010). The initial grounding line position Li and deterministic sea level correction
γ̄ are determined after a starting solution with fixed sea level is obtained, see § 3.

where γ is chosen such that the sea level for the reference solution is zero (see
figure 2b and § 3).

We will assume noise in both the accumulation rate a and the sea level according
to

a= ā+ ηacζ (t), (2.9)
γ = γ̄ + ηslζ (t), (2.10)

where the bar indicates the mean quantities, ηac and ηsl the standard deviation of the
accumulation and sea level noise, respectively and ζ (t) is a Gaussian white noise
process with unit variance, hence with

E[ζ (t)] = 0, E[ζ (t)ζ (s)] = δ(t− s), (2.11a,b)

where δ is the Dirac delta function. Other parameters can be assumed to have a
stochastic component as well. Uncertainty in the grounding line stress, caused for
instance by buttressing, may be similarly parameterised (see appendix E).

Details on how the equations are non-dimensionalised and discretised on a staggered
one-dimensional grid with spatial index i= 1, 2, . . . ,N are given in appendix A. The
discretised problem can be formulated as a system of stochastic differential–algebraic
equations (SDAE):

M(x) dx= F(x) dt+ B dW, (2.12)

where W ∈ RNw is a vector of Nw independent standard Wiener processes and
B ∈ R(2N+1)×Nw controls the distribution of the noise in the system. Furthermore,
x= (h, u, xg)

T
∈ R2N+1 is the state vector, with h, u ∈ RN being the values of h and

u at the grid points. M ∈R(2N+1)×(2N+1) is a real-valued matrix with constant diagonal
and non-constant off-diagonal coefficients, determined by the dependencies of the
discretisation on time derivatives. Non-zero rows in M correspond to differential
equations, whereas the zero rows give a system of algebraic equations, hereafter
referred to as ‘algebraic constraints’. Finally, F :R2N+1

→R2N+1 is a nonlinear operator
arising from the spatial discretisation. Explicit expressions for the deterministic
components are given by

M =

 I 0 Mstr(h, xg)

0 0 0
0 0 0

 , F=

Fmass(h, u, xg)

Fmom(h, u, xg)

Fflot(h, xg)

 , (2.13a,b)
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where I ∈RN×N is the identity matrix and Mstr(h, xg) ∈RN is the discretisation of the
left-hand side of (A 16)–(A 21). Fmass(h, u, xg)∈RN is given by the right-hand side of
(A 16)–(A 21). Similarly, Fmom(h, u, xg) ∈ RN and Fflot(h, u, xg) ∈ R are given by the
right-hand sides of the discretised momentum equation and flotation criterion (A 22)–
(A 23). Explicit expressions for the noise distributions B are given in § 4.

2.2. Pseudo-arclength continuation
The deterministic part of (2.12) gives a problem of the form

M(x)
dx
dt
= F(x, λ). (2.14)

We explicitly introduce the parameter dependence λ since we are interested in solution
branches (x, λ) satisfying F(x, λ)= 0. For example, the main parameter of interest is
the coefficient A in Glen’s flow law, which is affected by the external (global mean)
temperature. We use a continuation method to compute branches of stable and unstable
steady states (x, λ), obtain perturbations that describe (de)stabilising mechanisms and
identify bifurcations. Here we will give a brief overview of the continuation procedure.

Various continuation techniques exist to trace a stationary solution branch while
varying a parameter. An efficient approach is to parameterise a solution branch
with a pseudo-arclength parameter s (Keller 1977), i.e. (x(s), λ(s)), and impose an
approximate normalisation condition on the tangent to close the system of equations:
ẋT(x− x0)+ λ̇(λ− λ0)−1s= 0, where (x0, λ0) is an initial known stationary solution,
(ẋ, λ̇) the tangent with respect to the arclength parameter at (x0, λ0) and 1s a
specified step size.

To find a new point on the solution branch a predictor–corrector method is used. A
suitable tangent predictor is given by

x1
= x0 +1s ẋ, (2.15)
λ1
= λ0 +1s λ̇. (2.16)

Note that the predicted solution is denoted by (x1, λ1), whereas an actual new point
on the branch will be denoted by (x1, λ1). The correction onto the solution branch is
made through the solution of the nonlinear system given by

F(x, λ)= 0, (2.17)
ẋT(x− x0)+ λ̇(λ− λ0)−1s= 0. (2.18)

A Newton–Raphson root finding procedure, initialised with the prediction (x1, λ1),
gives the following iteration:[

J Fλ
ẋT λ̇

] [
1x
1λ

]
=

[
−F(xk, λ)

1s− ẋT(xk
− x0)− λ̇(λ

k
− λ0)

]
, (2.19)

where 1x := xk+1
− xk, 1λ := λk+1

− λk and J is the Jacobian matrix of F. If this
iteration converges a new stationary solution (x1, λ1) has been found. At a fold
bifurcation the Jacobian matrix J will have a zero eigenvalue, yet the system in
(2.19) remains non-singular and the continuation is able to trace the solution branch
into its unstable domain.
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When a stationary solution x̄, satisfying F(x̄, λ) = 0 has been found, its linear
stability can be investigated with a perturbation x̄+ x̃ and a linearisation around the
stationary solution. The evolution of x̃ follows from

M(x̄)
dx̃
dt
= J(x̄, λ)x̃. (2.20)

See appendix B for details. Solutions of (2.20) are of the form x̃ = x̂ exp (σ t).
Substitution gives a sparse generalised eigenvalue problem that needs to be solved
numerically:

σM(x̄)x̂= J(x̄, λ)x̂. (2.21)

The stability of a stationary solution depends on the sign of the real part of the
eigenvalues, i.e. if we find an eigenvalue with a positive real part the steady solution
is unstable.

2.3. Variability under small noise approximation
With the continuation method described above we find linearly stable and unstable
steady states x̄ of the deterministic part in (2.12). Linearising the stochastic equations
around a deterministic equilibrium gives

M dx̃= J x̃ dt+ B dW, (2.22)

for the perturbation x̃= x− x̄ with zero mean 〈x̃〉 = 0.
Now M is obviously not invertible, but in §§ 4.1 and 4.2 below we will show that

for both noise in the accumulation and in the sea level, the problem (2.22) can be
written as a multivariate Ornstein–Uhlenbeck (OU) process:

dy=M−1J y dt+M−1B dW, (2.23)

with modified matrices M, J , B and W and a modified state vector y, with steady
state ȳ (cf. (4.4) and (4.11)). A stationary covariance matrix C = E[yyT

] is obtained
from the generalised Lyapunov equation (Gardiner 2009; Kuehn 2012; Baars et al.
2017)

J CMT
+MCJ T

+BBT
= 0. (2.24)

Once C is computed, the covariance matrix C = E[xxT
] can be obtained (Baars et al.

2017), which allows the computation of the stationary probability density function,
indicated by p(x̃; x̄), as (Gardiner 2009)

p(x̃; x̄)=
1

(2π)d/2
| C |−1/2 e−1/2(x̃−x̄)TC−1(x̃−x̄), (2.25)

where d= 2N + 1 is the dimension of the state vector x.
One limitation of this approach is that the obtained probability density function is

only valid on a subexponential time scale, i.e. before large deviations occur. Secondly,
only the local behaviour near the steady state and Gaussian stochastic behaviour of the
perturbation state vector are obtained.
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3. Results: deterministic model
In this section, we will focus on the steady states of the deterministic model and

the existence of multiple equilibrium regimes (§ 3.1). Furthermore, using the linear
stability analyses, a novel, more detailed view on the marine ice sheet bifurcation
behaviour is presented (§ 3.2). In § 3.3 we will study the impact of the gravitational
sea level effect on the stability of the marine ice sheet.

3.1. Bifurcation diagram
We consider the case of constant accumulation a= ā, flat sea level, i.e. S(xg)= 0 and
a fixed shape of the bedrock b(x) given by (Schoof 2007a):

b(x)=−

(
729− 2184.8

(
x

LB

)2

+ 1031.72
(

x
LB

)4

− 151.72
(

x
LB

)6
)
, (3.1)

with LB= 750× 103 m. To obtain a starting solution for the continuation it is possible
to use the boundary layer theory developed in Schoof (2007b). However, we found
that an ice sheet surface profile of the form

s(x)=G1

√
1−

(
x
xg

)2

+G2, (3.2)

with x ∈ [0, xg], is sufficient to give an initial state that will rapidly converge to a
stationary (starting) solution using the Newton–Raphson method. The initial ice sheet
thickness is then given by h(x) = s(x) + b(x) and the initial velocity follows from
assuming steady conditions and integrating the continuity equation:

u(x)=
ā x

h(x)
. (3.3)

A typical height is chosen with G1= 3× 103 m and a correction G2 (in m) is used
such that the flotation criterion (2.5) is satisfied: G2= (ρw/ρi− 1)b(xg), where we use
that the sea level S(xg)= 0 at the starting solution. Note that the profile (3.2) contains
a steep gradient at the grounding line, which is essential for a converging Newton–
Raphson iteration to a starting solution. The continuation in A is initialised with a
solution at A0 = 4.6416× 10−24. All other model parameters are given in table 2.

From the steady starting solution at A0, a pseudo-arclength continuation traces
the solution branch in the direction of decreasing A, see figure 3. A decrease in
the parameter A in the SSA model corresponds to a decrease in temperature and
an increase in ice growth. The bifurcation diagram presented reveals the multiple
equilibria regime associated with hysteretic behaviour (Schoof 2007a). For an
interval of values of the parameter A, three equilibria are distinguished for the
case A = 8.5014 × 10−26, marked with labels b, d and f in figure 3. At point c, an
eigenvalue of (2.21) is found to cross the imaginary axis to the right half-plane,
coinciding with the annihilation of a stable and an unstable branch in the direction of
decreasing A. Hence a saddle-node bifurcation is identified (L1). At point e, the same
eigenvalue returns to the left half-plane through a second saddle-node bifurcation (L2).
The values of the parameter A at the labelled points, including the bifurcations, are
shown in table 2.
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FIGURE 3. One-parameter bifurcation diagram (a) and solutions (b) with the parameter A.
The bedrock contains an upward slope which admits multiple steady states for a constant
parameter (points b, d and f in panel (a)). Eigenvalue analysis shows two saddle-node
bifurcations, L1 and L2: a single eigenvalue crosses the imaginary axis to the positive right
half plane at point c and returns to the left half plane at point e. The number of grid-
points is N = 1600; the other parameters are given in table 2.

A (s−1 Pa−3)

C= 7.624× 106 Pa m−1/3 s1/3 a: 4.6416× 10−24

m= 1/3 b: 8.5014× 10−26

n= 3 c: 4.9274× 10−26

g= 9.8 m s−2 d: 8.5014× 10−26

ρi = 900 kg m−3 e: 2.0450× 10−25

ρw = 1000 kg m−3 f: 8.5014× 10−26

ā= 0.3 m y−1

TABLE 2. Parameter values for the experiment in figure 3, similar to the values chosen
in Schoof (2007a) and Pattyn et al. (2012).

3.2. Instability mechanism
The advantage of the approach chosen here is that the spatial patterns of perturbations
destabilising the marine ice sheet can be determined from the eigenvectors in (2.21).
For the unstable equilibrium (point d) in figure 3, it is of interest to examine the
eigenmode with a positive growth factor, showing in detail the characteristics of the
instability. The eigenvector is made available using (2.21) and is depicted for the
steady states (points b–f) in figure 4. The perturbations in thickness and velocity are
taken corresponding to a positive grounding line perturbation. Note that a perturbation
of the solution vector has the form x̂eσ t

= [ĥ, û, x̂g]
Teσ t, with x̂g the scalar grounding

line perturbation. An eigenvector with corresponding eigenvalue σ >0 and x̂g<0 gives
the destabilising pattern for unstable ice sheet retreat. By adjusting the sign of the
eigenvector, such that x̂g > 0, we restrict our exposition to destabilising patterns for
unstable ice sheet growth.

At the grounding line xg, the perturbation of the unstable steady state (point d)
shows a slight decrease in ice thickness, while at (points b, c, e and f) a slight increase
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FIGURE 4. (Colour online) Normalised components of the eigenmode that becomes
unstable. The corresponding steady states are located at points b–f, described in figure 3
and table 2. We distinguish between a perturbation pattern related to sheet thickness ĥ and
a pattern related to ice velocity û. The signs of the eigenvectors are taken such that the
perturbation in the grounding line is positive. From the eigenvectors and the equilibrium
solution we compute a normalised spatial pattern of the evolution ∂ h̃/∂t, together with
normalised components −∂(ûh̄)/∂x and −∂(ūĥ)/∂x.

is observed. In the interior of the ice sheet a relatively large increase in ice thickness
is visible for the unstable equilibrium (point d), indicating interior ice growth due to
an imbalance between global accumulation and ice flux at the grounding line. That
is, the reduced grounding line ice discharge is unable to accommodate the increased
accumulation. The resulting interior thickness anomaly is central to the unstable
growth/retreat mechanism, as we will see next.

The velocity perturbation at the grounding line shows an increase for stable states
and a clear decrease for the unstable state (point d). Together with the negative
perturbation in thickness this implies that, at (point d), there must be a decrease in
flux uh across the grounding line for a positive perturbation x̂g > 0. An increase in
grounding line position implies a rise in global accumulation, hence the reduction
in grounding line flux implies a net ice growth, confirming the marine ice sheet
instability hypothesis. Note that a similar result holds if we take the perturbation in
xg negative, giving a net ice loss and a retreat from equilibrium.

The continuation approach allows an efficient computation of flux perturbations
using (2.21). From a linear stability analysis of (2.1) with perturbation h̃= cĥ, ũ= cû
around an equilibrium h̄, ū we obtain an evolution equation for the thickness
perturbation h̃:

∂ h̃
∂t
+ c

∂ q̂
∂x
= 0, with c> 0, (3.4)

q̂(x)= ûh̄+ ūĥ, (3.5)
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FIGURE 5. (Colour online) Perturbations in grounding line and accumulation flux against
the parameter A (a) and as a function of xg (b), together with the bedrock slope. The
first and second saddle-node bifurcations are marked L1 and L2. Dashed lines correspond
to growing perturbations of unstable steady states. The perturbations q̂(x̄g) and a|x̂g|

correspond to a positive grounding line perturbation x̂g > 0. At L1 and L2, the grounding
line bedrock slope is −195 mm km−1 and −65 mm km−1 respectively. The maximum
slope in the unstable regime is 620 mm km−1. Note that grounding line flux perturbations
depend on the steady grounding line position x̄g, whereas accumulation flux perturbations
depend on the grounding line perturbation x̂g.

where we neglect higher-order terms. At the unstable steady state (point d) in figure 4,
the thickness perturbation (green squares) shows positive growth, whereas the other
points show a dampening. These patterns are determined by spatial derivatives of
the perturbed advection of the steady thickness ûh̄ (black dash-dotted line) and the
advected thickness perturbation ūĥ (red dotted line). The latter clearly dominates the
instability in (point d). Note that at the bifurcation points c and e the components of
the perturbation flux have a compensating effect.

To investigate how a perturbation changes from stable to unstable through the
saddle-node bifurcation L1, we compute the accumulation and grounding line fluxes.
The steady state (h̄, ū) gives a balance:

q̄(x)= ūh̄= ax. (3.6)

In figure 5 we show perturbations of the balance (3.6) at the grounding line. A
perturbation in accumulation flux is given by a|x̂g|, a grounding line flux perturbation
by q̂(x̄g) in (3.4). The perturbations are plotted against A/A0 (figure 5a) and x̄g
(figure 5b), together with the bifurcation points and the bedrock slope. At the first
saddle-node bifurcation L1, the flux q̂(xg) becomes smaller than the accumulation
a|x̂g|. Beyond this point, a change in accumulation due to x̂g is not balanced by the
grounding line flux and, hence, the perturbation x̃ changes from damped to growing.
At L2, q̂(xg) becomes greater than a|x̂g| and the mode is damped again.

In figure 5(b) we also plot the bedrock slope, taken positive when the bed elevation
increases with xg, that is

rbed =−b′(xg), (3.7)

with b(x) as in (3.1). Note that the sign switch in q̂(xg) coincides with the sign switch
in the bedrock slope. The grounding line flux will increase for a positive x̂g between
the bifurcation L1 and the point of zero bedrock slope, but, since the change is less

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.148


Stochastic marine ice sheet variability 759

100 10–1 10–2 10–3
600
700
800
900

1000
1100

1500

1200
1300
1400

0

20

–20

40

–40

60

–60

80

–80
800 900 1000 1100 1200 1300 1400

0
200

–200

400

–400

600

–600

800

–800

Bedrock slope

Fixed sea level
Variable sea level

Effective slope

(a) (b)

FIGURE 6. (Colour online) (a) Bifurcation diagrams in the parameter A. Fixed sea
level bifurcation diagram (black) and bifurcation diagram with variable sea level (red).
(b) Accumulation and grounding line flux perturbations as a function of xg for variable
sea level, together with the bedrock slope and the resulting effective topographical slope.
The first and second saddle-node bifurcations are marked L1 (S1) and L2 (S2) for fixed
(variable) sea level. Dashed lines correspond to (perturbations of) unstable steady states.

than the change in accumulation, the ice sheet will grow. Thus, figure 5 confirms that
an eigenvalue of the ‘full model’ in Schoof (2007a) becomes positive when

a|x̂g| − q̂(xg) > 0. (3.8)

Using a continuation of steady states with the original SSA equations, we find
that the flux perturbations and their relative magnitude fully describe the instability
mechanism, confirming the analysis in Schoof (2012), but without the need for
asymptotic expansions. In addition, the eigenvectors reveal destabilising interior
patterns with, most interestingly, interior thickness anomalies and their advection.
These turn out to play a major role in the growth and retreat of the ice sheet.

3.3. Gravitational sea level effect
Next, instead of a fixed S(x) = 0, we use the gravitational sea level effect (GSLE)
formulation given by (2.8). With the added sea level we repeat the continuation in
the parameter A (§ 3.1). The new bifurcation diagram is shown in figure 6(a) (red
triangles). The width of the multiple equilibria regime has decreased significantly and
the bifurcations have shifted in the direction of decreasing A. The same grounding line
advance now requires a greater decrease in A compared to the fixed sea level case.
The parameter difference between the saddle-node bifurcations with fixed sea level is
|AL2 − AL1 |/A0 = 3.34× 10−2; for the variable sea level case we find |AS2 − AS1 |/A0 =

3.18 × 10−3. Here we denote the parameter values at the bifurcations L1, L2, S1 and
S2 with AL1,AL2,AS1 and AS2 respectively. The unstable regime has a horizontal extent
of approximately 326 km in the fixed sea level case; for the variable sea level case
we find 248 km.

Changes in the instability mechanism due to the presence of a varying sea level
are investigated using the eigenvectors from the linear stability analysis (2.21). In
figure 6(b), the perturbation in flux intersects the perturbation in accumulation at S1
and the ice sheet state becomes unstable. At the second saddle-node bifurcation S2
the reverse occurs. Both sign switches in bedrock slope are now located in the stable
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regime. This confirms that, for our choice of sea level response, a reverse bed slope
is reduced from a sufficient to a necessary condition for the instability mechanism.

In figure 6(b) we also plot the effective topographic slope, taken positive when the
bed elevation increases with xg, that is

reff =−(b′(xg)+ S′(xg)). (3.9)

Similar to the fixed sea level case, there is a direct correspondence between the
grounding line flux perturbation and the effective topography. Note also that the
magnitudes of the fluxes in the unstable regime are strongly affected by the magnitude
of the slope. Hence, the dampening effect of the added variable sea level acts through
the response of the unstable flux perturbations to the significantly decreased effective
slope, in agreement with the analysis in Gomez et al. (2010). Whether the dampening
extends to the stochastic case is explored in the next section.

4. Stochastic variability
In this section, we present the results for the stochastic model with a variable

(GSLE) sea level. In §§ 4.1 and 4.2, we consider separate noise in the accumulation
rate and sea level amplitude and in § 4.3 we study the variability due to both types
of noise on a deterministically stable ice sheet. Finally, in § 4.4 we consider the
transition probabilities between different ice sheet states in multiple equilibrium
regimes.

4.1. Additive noise in the accumulation rate
The linearised system of SDAEs (cf. (2.22)) that arises when adding noise to the
accumulation a is given by

M dx̃= Jx̃ dt+

Ba
0
0

 dW, with x̃=

 h̃
ũ
x̃g

 and M =

 I 0 Mstr
0 0 0
0 0 0

 , (4.1)

where J denotes the Jacobian matrix. As the accumulation is taken uniform over
the sheet, the additive noise is integrated with respect to a one-dimensional Wiener
process, that is, Nw = 1 and Ba ∈ RN with elements (Ba)i = ηac, where ηac (my−1)
determines the noise amplitude and is taken at 10 % of the accumulation constant.

The matrix M in the left-hand side of (4.1) is not invertible. In order to achieve a
problem of the form (2.23), we need to bring M in block-diagonal form and eliminate
the system of algebraic equations. The transformation x̃= Rz with

R =

 I 0 −Mstr
0 I 0
0 0 I

 , (4.2)

gives a system of SDAEs in a more convenient form:[
I 0
0 0

] [
d z1
d z2

]
=

[
J11 J12
J21 J22

]
R

[
z1
z2

]
dt+

[
Ba
0

]
dW, (4.3)

where the second row combines the algebraic constraints and provides an expression
for z2 in terms of z1. Substituting this expression in the first row eliminates z2
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FIGURE 7. (Colour online) First empirical orthogonal functions (EOF) for grounding lines
at points P1 (left), P2 (centre) and P3 (right) to the left of the first saddle-node bifurcation
S1, together with the dominant eigenvector of the Jacobian matrix corresponding to the
rightmost eigenvalue (dotted). Noise is added to the uniform accumulation with standard
deviation ηac= ā/10 my−1 (closed markers) or to the sea level at the grounding line with
ηsl = 1 m (open markers). The separate components corresponding to thickness (black
squares) and velocity (red triangles) are normalised and their sign is taken according to
a positive grounding line perturbation x̃g > 0. The explained variances of the EOFs at P1,
P2 and P3 are given in table 3.

from (4.3) (Baars et al. 2017) and gives an OU-process in z1:

dz1 = Sz1 dt+ Ba dW, with S = J̃11 − J̃12J̃
−1
22 J̃21, J̃ = JR. (4.4)

The associated Lyapunov problem with Z 11 = E[z1zT
1 ] is given by

SZ 11 + Z 11ST
+ BaBT

a = 0. (4.5)

A solution to (4.5) is obtained using the RAILS solver (Baars et al. 2017). To obtain
the blocks Z 12, Z 21 and Z 22, the algebraic constraints in (4.3) are used. The full
covariance matrix of the perturbation x̃ is then given by

C = E[x̃x̃T
] = E[Rz zTRT

] = RZRT. (4.6)

The first empirical orthogonal function (EOF), i.e. the dominant eigenvector
corresponding to the rightmost eigenvalue of the covariance matrix, is shown in
figure 7 (closed markers) for three stable equilibria with their grounding line at
points P1= 40.96 km, P2= 16.384 km and P3= 2048 m to the left of the grounding
line position at S1. Noise is added to the accumulation with standard deviation
ηac = ā/10 my−1. The position of the equilibria and the explained variance of the
EOFs are given in table 3. In the case of noise in accumulation, the EOFs correspond
very well to the eigenvectors of the linear stability problem (dotted in figure 7).

4.2. Additive noise in sea level
Another source of variability is the sea level at the grounding line S(xg). In the
model, the sea level enters through the flotation condition (2.5). Adding noise to
the sea level gives a system of SDAEs, where the stochastic forcing appears in
the algebraic constraints. Using the transformation x̃ = Rz and again combining the
algebraic constraints, we find:[

I 0
0 0

] [
dz1
dz2

]
=

[
J11 J12
J21 J22

]
R

[
z1
z2

]
dt+

[
0
Bs

]
dW. (4.7)
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Grounding line position Distance from S1 σ 2
expl (noise in a) σ 2

expl (noise in γ )

P1 xg = 950.301 km 40.960 km 98.80 % 62.47 %
P2 xg = 974.877 km 16.384 km 99.02 % 78.03 %
P3 xg = 989.213 km 2.048 km 99.79 % 96.44 %

TABLE 3. Horizontal position of the points P1, P2 and P3. The grounding line at the
bifurcation S1 is positioned at 991.261 km from the origin. The explained variance (scaled
rightmost eigenvalue) corresponding to each EOF, σ 2

expl, is given for noise in accumulation
and noise in sea level (see also figure 8).

The noise forcing now enters through the flotation condition and is determined via
Bs ∈R(N+1), with elements

(Bs)i = 0, i= 1, . . . ,N − 1, (4.8)

(Bs)N =−
1
2

(
1−

ρi

ρw

)
ρwgηsl, (4.9)

(Bs)N+1 =−2
ρw

ρi
ηsl. (4.10)

The final two entries of Bs follow directly from incorporating sea level noise in
the two discretised right boundary conditions in appendix A, specifically (A 23) and
(A 24), where the stochastic terms are separated to give the entries in Bs. Eliminating
z2 gives an OU-process in z1:

dz1 = V z1 dt+ B̃s dW, with V = J̃11 − J̃12J̃
−1
22 J̃21, B̃s =−J̃12J̃

−1
22 Bs. (4.11)

The covariance matrix of the perturbation x̃ is subsequently found by solving

VZ 11 + Z 11VT
+ B̃sB̃T

s = 0, (4.12)

computing the remaining blocks in Z using the algebraic constraints in (4.7) and
computing C = RZRT. The first EOF is plotted in figure 7 (open markers), again for
stable equilibria at P1, P2 and P3. The standard deviation for noise in sea level is taken
ηsl= 1 m. For each EOF in figure 7, the corresponding explained variance is given by
the solid lines in figure 8. An additional (dashed) eigenvalue curve in figure 8 shows
the explained variance of the second dominant EOF for sea level noise.

The structure of the sea level noise induced EOFs is noticeably different from the
eigenvector patterns of the Jacobian matrix, in particular at points P1 and P2 (left
and centre panel in figure 7). Overall, the explained variance of the dominant EOF at
the three positions is considerably less than in the accumulation case. The difference
between the EOFs of both noise types is due to the spatial noise distribution in the
Ornstein–Uhlenbeck process. The noise in accumulation is distributed homogeneously,
whereas the noise in sea level is applied with a spatial pattern given by −J̃12J̃

−1
22 Bs.

With this spatial pattern a second EOF is excited that competes with the dominant
EOF before the bifurcation, see figure 8.

4.3. Unique regime: stochastic variability
With the availability of covariance matrices at any stable steady state, we can
investigate the effect of the two distinct noise sources on the grounding line variability.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.148


Stochastic marine ice sheet variability 763

700 750 800

1st EOF, noise in a
1st EOF, noise in

850 900 950 1000

1.0

0

0.2

0.4

0.6

0.8

2nd EOF, noise in

E
xp

la
in

ed
 v

ar
ia

nc
e

FIGURE 8. (Colour online) Explained variance of EOFs due to noise in accumulation and
sea level, i.e. rightmost eigenvalues of the covariance matrices, scaled with the total sum
of the eigenvalues (trace). The open circles mark the points P1, P2, P3 from left to right.
Two eigenvalues are plotted for noise in sea level, as the variability is influenced by a
second mode to the left of the first bifurcation S1.
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FIGURE 9. (Colour online) (a) Ratio of the grounding line standard deviation due to noise
in sea level σ sl

xg
and noise in accumulation rate σ ac

xg
, for several points along the branch

before the first saddle-node bifurcation S1. The noise amplitudes are ηac = ā/10 my−1

and ηsl = 1 m. Ratios of the total variability and the ratios for velocity variability at the
grounding line are plotted as well. (b) Flux perturbations at the steady grounding line,
computed from the first EOF for both noise in accumulation rate and noise in sea level
at several points along the branch before the first bifurcation.

In figure 9(a), we plot the ratio of the grounding line standard deviations σxg due to
noise in sea level and accumulation rate:

rxg = σ
sl
xg
/σ ac

xg
. (4.13)

Next to the grounding line noise response, we are interested in the total induced
variability and hence depict the ratio of the covariance matrix traces

rtr =
∑

i

(σ sl
i )

2/
∑

i

(σ ac
i )

2, i= 1, . . . , 2N + 1, (4.14)

where σ 2
i is the dimensional variance of every state vector component. The ratio of

the velocity standard deviations at the grounding line are given as well:

ru = σ
sl
uN
/σ ac

uN
. (4.15)
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The quantities are plotted along the bifurcation diagram up to the saddle-node
bifurcation S1. For our amplitude choices ηac, ηsl, the effect of noise in the
accumulation rate on the variability in the grounding line position is considerably
greater than that due to sea level noise, in agreement with the analysis in Hogg
et al. (2016). In the vicinity of the saddle-node bifurcation, the ratio ru shows a local
maximum due to sea level variability. As the total dimensional variability is mainly
determined by the grounding line variance, the effect is not present in the ratio rtr.

The noise induced perturbations in grounding line flux and accumulation are
computed from the relevant EOFs and plotted in figure 9(b). The sea level induced
maximum in ru is related to the difference in noise induced flux perturbations q̂(xg),
which directly depend on the ice thickness at the grounding line. The flux perturbation
under sea level variability q̂sl(xg) remains large, close to the bifurcation, compared to
its accumulation counterpart q̂ac(xg).

Note that the fluxes calculated from the EOF due to noise in accumulation mimic
the perturbations in figure 6(b), since this mode follows the eigenvectors of the
Jacobian matrix. Furthermore, analogous to the results in figures 5 and 6(b) and
Schoof (2007a), we find that, at the bifurcation, the noise induced accumulation
and grounding line flux perturbations behave according to the instability mechanism
(Schoof 2012), with equality at the bifurcation.

Recall that figure 6 shows a significant change in the multiple equilibria regime
when a GSLE is represented in the model. Using the Lyapunov techniques described
in the previous section we can now investigate the stochastic properties of the different
model configurations. For every computed stable point in the bifurcation diagram we
solve the Lyapunov equation and determine the variances for noise in the accumulation
rate and noise in the sea level variability. The results are shown in figures 10 and 11.

The introduction of a sea level equation causes a slight change in the stochastic
properties under noise in accumulation rate. In general, as the multiple equilibria
regime is shifted and decreased, an ice sheet will have a smaller grounding line
variance and grounding line position for the same parameter value A (cf. figure 6).
Hence, the adaptation of the effective topographic slope causes the sheet to become
more resilient under noise.

The standard deviations of the grounding line flux shown in figures 10(b) and 10(d)
are computed from

σ 2
uh =Var(uh) = Var((ū+ ũ)(h̄+ h̃)) (4.16)

≈ h̄2 Var(ũ)+ ū2 Var(h̃)+ 2h̄ū Cov(ũ, h̃), (4.17)

where we distinguish between steady (ū, h̄) and stochastic components (ũ, h̃), and
ignore higher-order terms. The variability in flux shows a decrease just before a
bifurcation, followed by a drastic increase at the bifurcations. This in contrast to
the grounding line variability, which shows a steady increase when approaching
a bifurcation. The overlay of the bifurcations in figure 10(c,d) shows a lack
of qualitative differences in the stochastic properties. However, for both model
configurations we find a major asymmetry in the flux variability around the
bifurcations, a feature that is not present in the grounding line variability.

The difference in variances between the models with the two different sea level
representations in the case of noise in sea level are more pronounced. Both grounding
line and flux variance show a decreasing trend as the sheet becomes larger under
decreasing A, see figures 11(a) and 11(b). An ice sheet will vary less under sea level
noise as its size increases. The overlays in figures 11(c) and 11(d) show that the
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FIGURE 10. (Colour online) Comparison of the model statistics without (black) and with
a gravitational sea level effect GSLE (red), with additive noise in the accumulation. (a)
Grounding line standard deviation σxg at every stable point in the bifurcation diagram,
where L1, S1 and L2, S2 mark the first and second bifurcation encountered when decreasing
A. (b) Grounding line flux standard deviation σuh. (c) Overlay of the data in (a), such that
the bifurcation points lie on the dashed line. (d) Overlay of the data in (b).

adaptation of the effective topographic slope causes a significant additional damping,
which cannot be solely due to a difference in sheet size, since at A/A0∼ 1 the sheets
are equal in size for both model configurations. As noise in sea level is applied at the
grounding line, the model response is likely to be more sensitive to changes in slope
than the response to noise in accumulation. Note that, again, an asymmetry is present
in the flux variability.

In general, the results in figures 10 and 11 show typical grounding line variabilities
ranging from O(100 m) for noise in sea level, to O(1000 m) for noise in accumulation,
depending on the dynamical regime. A continuation of steady states accompanied
by the solution of the Lyapunov equations enables a straightforward separation of
variability sources. This may be useful to explain observed grounding line migration
(Hogg et al. 2016), as will be elaborated in the discussion below.

4.4. Multiple equilibria: transition probabilities
For noise in accumulation we find roughly the same variability with a GSLE equation
as in the case without such a representation. In contrast, variability due to noise in
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FIGURE 11. (Colour online) Comparison of the model statistics without (black) and with
a gravitational sea level effect GSLE (red), with additive noise at the sea level. (a)
Standard deviation σxg at every stable point in the bifurcation diagram, where L1, S1 and
L2, S2 denote the first and second bifurcation encountered when decreasing A. (b) Standard
deviation of the grounding line flux σuh. (c) Overlay of the data in (a), the bifurcations
lie on the dashed line. (d) Overlay of the data in (b).

sea level is clearly dampened by the added GSLE equation. Here, the adaptation
of the topographic slope appears to not only dampen the growth of perturbations,
but also reduce the spread of the probability distributions along the branch. In
figure 6, however, the distance between the stable branches is reduced in the GSLE
configuration. This could have an effect on noise induced transitions in the multiple
equilibrium regime, which we will investigate in this section. Although there is less
sea level induced variability in the GSLE configuration, a smaller spatial distance
between high (2N+ 1) dimensional ellipsoidal confidence regions may indicate higher
transition probabilities (Kuehn 2012).

These confidence ellipsoids are determined by the probability density functions
(PDFs) and indicate, with a certain confidence, where a state may be during a
transient computation. The distance between ellipsoids associated with equilibria at
different branches, but with the same parameter value, provides information about
the relative frequency of noise induced transitions (Kuehn 2012). Hence, calculating
the distance between ellipsoids can be worthwhile when transient computations are
expensive. Note, however, that such confidence regions are limited to representing
the PDF under the assumption of linearised dynamics according to (2.22). For more
information about these ellipsoids, see for instance Cowan (1998).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.148


Stochastic marine ice sheet variability 767

0

0.2

0.4

0.6

0.8

1.0

10–2 10–3

FIGURE 12. (Colour online) Distance patterns between the ellipsoids, calculated for the
case without GSLE (black) and the case with GSLE (red), for noise at the accumulation
(solid line) and at the sea level (dashed line). The noise amplitudes for the different
sources (ηac, ηsl) are amplified according to the amplifications in the transient results (see
figure 13).

Assuming we have computed a stable deterministic steady state (x̄, A) and the
associated covariance matrix C, then the confidence ellipsoid can be represented as

E=
{

x ∈R2N+1
: vTx 6 vTx̄+

√
vTC̃v ∀ v ∈R2N+1

}
, (4.18)

where C̃ = QαC is the positive semi-definite shape matrix associated with the
confidence ellipsoid and Qα = 3239 is a scalar that can be obtained from the
χ 2-distribution for a confidence level 1− α = 0.683 (Cowan 1998).

To determine the distance d between ellipsoids, a convex minimisation problem of
the form

−d= min
‖v‖2=1

(
−vTx̄1 +

√
vTC̃1v + vTx̄2 +

√
vTC̃2v

)
(4.19)

is solved. Here x̄1 is an equilibrium at one branch and x̄2 the equilibrium at the other
branch, for the same parameter value A. C̃1=QαC1 and C̃2=QαC2 are the respective
shape matrices.

The results in figure 12 show that the distance between the ellipsoids is clearly
reduced when approaching a bifurcation point, leading to larger transition probabilities
(Kuehn 2012). The shapes of the distances reveal asymmetries between the bifurcations.
The case without GSLE shows a slight minimum at L2. The case with GSLE has a
similar, but more pronounced asymmetry with a minimum distance at S2.

The main drawback of the ellipsoid distance computation is that it is based on
local dynamical and stochastic behaviour of the model, combined with the global
distance between branches. Possible nonlinear processes that affect the noise induced
perturbations are, at best, only partially represented. Moreover, to compare the
different model configurations, we restrict ourselves to normalised distance patterns
in figure 12. Actual distance values have little meaning and serve merely as a test
function for transition probabilities (Kuehn 2012).

To verify the relative transition frequencies that the ellipsoid distances in figure 12
suggest, we perform transient computations using a backward Euler–Maruyama
scheme, a well-established time integration technique for systems of SDAEs. Here, the
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FIGURE 13. (Colour online) Sum of the transitions from the upper to the lower branch
and vice versa, relative to the total number of transients Ntrans, i.e. (#Tu→l

+ #T l→u)/Ntrans.
(a) Transitions under noise in accumulation with GSLE (red) and without GSLE (black),
using a backward Euler–Maruyama time integration with time step 1t= 1000 y, end time
Te= 100 000 y and amplified standard deviation facηac, fac= 5. (b) Transitions under noise
in sea level with GSLE (red) and without GSLE (black), with amplified noise fslηsl, fsl=20.
The total number of transient experiments for each point on the branch is Ntrans = 960.
A neighbourhood is defined in terms of grounding line positions, where the tolerance is
chosen to be ρ = 10 km.

deterministic part of (2.12) is treated implicitly, whereas the stochastic part is
integrated explicitly with respect to a Brownian path. For a transition count we
define a transition as a trajectory θ(t) from the upper branch to the lower branch and
vice versa, similar to the definition in Kuehn (2012). Let pu and pl denote steady
states in the upper and lower branch respectively and define some small tolerance ρ.
A trajectory is counted as a transition from the upper to the lower branch Tu→l when
it reaches a neighbourhood of pl, ||θ(t)− pl

||2 < ρ, after visiting a neighbourhood of
pu, ||θ(t)− pu

||2 < ρ, within some time Te. T l→u is defined similarly. In order to get
a reliable number of transitions, we need to multiply the standard deviations ηac, ηsl
by amplification factors fac, fsl, respectively. In the case of noise in the accumulation
we choose fac = 5, for the sea level noise we choose fsl = 20. The results are shown
in figures 13(a) and 13(b).

Although the distance between the probability distributions shows a decrease, this
is not sufficient to compensate for the decrease in variability. Hence, the number of
transitions is significantly reduced in the model with GSLE. This holds for both noise
in accumulation rate (figure 13a) and noise in sea level (figure 13b), although the
reduction of variability is more drastic in the sea level noise case.

From the results in figure 13 we may conclude that it is more likely to travel
from the upper branch (large sheet) to the lower branch (small sheet) than vice
versa, which holds for both noise types. The asymmetry in figure 12 for both model
configurations is similar. As described above, the same asymmetry can be found in
the flux variability. Figures 10(d) and 11(d) show that the flux variability near L2(S2)
at the upper branch is generally higher than at the lower branch near L1(S1), which
is likely due to the weaker effective topographical slope at L2(S2).

5. Summary and discussion
Even dynamically stable marine ice sheets display substantial variability in their

grounding lines (Hogg et al. 2016). In this paper, we have investigated the stochastic
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variability of marine ice sheets in a two-dimensional model with a specific bed
topography (Schoof 2007a). The deterministic model already has an interesting
behaviour with unique regimes and a multiple equilibrium regime. The back-to-back
saddle-node bifurcation diagram is associated with the traditional stationary marine
ice sheet instability (Schoof 2012). The changes in the parameter A in Glen’s flow
law, used as control parameter, are interpreted here as changes in external conditions
such as the mean atmospheric temperature over the ice sheet.

As far as we know this is the first study where the bifurcation diagrams of
such two-dimensional marine ice sheet models have been explicitly computed
using continuation methods. The continuation approach allows the computation of
eigenvectors of the steady states in the multiple equilibrium regime, at both stable
and unstable branches. With this information it was possible to validate and extend
findings based on the boundary layer theory in Schoof (2007a) and Schoof (2012).
In figure 4(d), for instance, the eigenvectors at the unstable branch confirm the
mechanism at the grounding line as explained in Schoof (2007a), but also reveal the
associated behaviour in the interior of the ice sheet. A positive eigenvalue was shown
to be associated with the instability criterion (Schoof 2012) for the full problem. The
advected thickness perturbation (the term ūĥ, where ū is the steady state velocity and
ĥ the ice thickness perturbation) turns out to dominate the instability process.

We also showed that the representation of the gravitational sea level effect as used
in Gomez et al. (2010) leads only to a shift in the bifurcation diagram and a slight
decrease in the width of the hysteresis characterising the multiple equilibrium regime.
From this perspective, it does not add any new dynamics to the marine ice sheet
system, but only quantitatively modifies the stability properties of the states. The
mechanism of destabilisation is also similar to that of the flat sea level case and the
growth of perturbations can be connected to an ‘effective’ topography slope.

The main innovation in this work, however, is the analysis of the response of the
marine ice sheet to small amplitude stochastic noise in accumulation rate and sea
level. Under linearised dynamics of the perturbations, the covariance matrix can be
determined from a Lyapunov equation that was solved efficiently using the RAILS
method (Baars et al. 2017). Here we have restricted our analysis to additive noise,
but elaborate accumulation noise distributions are easily studied using the Lyapunov
approach. In the unique regime of the ice sheet, it is found that the variability induced
by the sea level noise is much smaller than that due to the accumulation rate. The
order of magnitude (for typical noise levels) is of the order of 100 m grounding line
variations for sea level noise and 1000 m for noise in the accumulation.

There are only very limited data available on grounding line migration (e.g. 19 years
in Hogg et al. (2016)). In addition, the two-dimensional model here is highly idealised,
with only one bed topography and also one particular parameterisation to represent the
gravitational effect on sea level. Hence, only a qualitative comparison between the
model results and observations can be made. Our results indicate that accumulation
noise can induce grounding line excursions of the observed magnitude and that noise
in sea level variations plays only a minor role, in agreement with the analysis in Hogg
et al. (2016).

One important effect that has been neglected in the analysis of this paper is
that of buttressing, i.e. stresses exerted on the ice sheet due to floating ice. The
reason is that, in the two-dimensional model context, such an ice-shelf buttressing
effect is absent (Gudmundsson 2012). However, in reality (and in three-dimensional
models), this effect can clearly be important. To estimate the magnitude of buttressing
effects within our model context, we propose a stochastic parameterisation of these
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inherently three-dimensional effects in appendix E. The results in appendix E show
that grounding line variations of the order of 1000 m are already obtained for a
buttressing variability of 2 % of the full stress regime (from fully buttressed to
unbuttressed). Hence, short-term variations in ice thickness and variations in ice-shelf
buttressing may both play an important role in real grounding line migrations (Hogg
et al. 2016). As ice-shelf break-up may give a change of up to 100 % of the stress
regime, a standard deviation of 2 % is not unthinkable. It is thus necessary to find a
realistic estimate of temporal buttressing variability using, for instance, the approach
in Fürst et al. (2016). Future work could then use the Lyapunov approach to further
extend the comparison of the effect of noise sources on grounding line variability.

Having determined the extent of the equilibrium regime, we studied the transition
probabilities between both states using transient simulations and distances between
confidence ellipsoids. We find that, for both accumulation and sea level noise types,
it is more likely to jump from a large ice sheet state to a small ice sheet state than
vice versa. Grounding line flux variability shows a related asymmetry, likely due to
differences in local bedrock slope and/or global ice sheet extent. Although more work
is needed to study the robustness of these results to different bed topographies, it
can be anticipated that the parameter range of the transition regime will depend only
on the local ‘effective’ topographic slope at the grounding line. The possibility of
stochastic induced transitions (in multiple equilibrium regimes of marine ice sheets)
adds another aspect of possible rapid climate changes which may have occurred in
the past and which may occur in the future.
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Appendix A. Non-dimensional equations and numerical implementation
A.1. Non-dimensional equations

The first difficulty one encounters is the unknown right boundary of the problem given
by the grounding line position xg. As discussed in Schoof (2007a) and Vieli & Payne
(2005), a moving grid approach can be used to track xg. Using a transformation z=
x/xg, we are able to map the original domain x ∈ [0, xg] onto the fixed domain z ∈
[0, 1]. As a result, the problem now has three unknowns: h, u and xg. The differential
operators are transformed using the chain rule:

∂

∂t
=
∂

∂τ

∂τ

∂t
+
∂

∂z
∂z
∂t
=
∂

∂τ
−

z
xg

dxg

dt
∂

∂z
, (A 1)

∂

∂x
=
∂

∂τ

∂τ

∂x
+
∂

∂z
∂z
∂x
=

1
xg

∂

∂z
, (A 2)

where z and τ denote the independent variables in the transformed domain. Since we
only transform in space we have that τ = t. The transformations of (2.1)–(2.5) are
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given by (A 3)–(A 7):

∂h
∂τ
−

z
xg

dxg

dτ
∂h
∂z
+

1
xg

∂(uh)
∂z
= a, (A 3)

1

x(1/n)+1
g

∂

∂z

[
2A−1/nh

∣∣∣∣∂u
∂z

∣∣∣∣1/n−1
∂u
∂z

]
− C|u|(m−1)u−

ρigh
xg

∂(h− b)
∂z

= 0, (A 4)

∂(h− b)
∂z

= u= 0 for z= 0, (A 5)

ρih= ρw(b+ S) for z= 1, (A 6)

2A−1/n 1

x1/n
g

∣∣∣∣∂u
∂z

∣∣∣∣(1/n)−1
∂u
∂z
=

1
2

(
1−

ρi

ρw

)
ρigh for z= 1. (A 7)

To improve numerical accuracy the equations are non-dimensionalised. Let

h= h0h̃, b= h0b̃, S= h0S̃, xg = x0x̃g, u= u0ũ, τ =
x0

u0
τ̃ , (A 8a−f )

with typical thickness h0 = 1 × 103 m, horizontal extent x0 = 1 × 105 m and typical
velocity u0 = 1 m day−1. Substituting these expressions in (A 3) gives

u0h0

x0

(
∂ h̃
∂τ̃
−

z
x̃g

dx̃g

dτ̃
∂ h̃
∂z
+

1
x̃g

∂(ũh̃)
∂z

)
= a⇔

∂ h̃
∂τ̃
−

z
x̃g

dx̃g

dτ̃
∂ h̃
∂z
+

1
x̃g

∂(ũh̃)
∂z
= ã, (A 9)

with ã= x0/u0h0a. Similarly, the non-dimensionalised version of (A 4) is given by

c1

x̃(1/n)+1
g

∂

∂z

[
2A−1/nh̃

∣∣∣∣∂ ũ
∂z

∣∣∣∣(1/n)−1
∂ ũ
∂z

]
− c2|ũ|

(m−1)ũ− c3 ρig
h̃
x̃g

∂(h̃− b̃)
∂z

= 0, (A 10)

where we introduce new constants

c1 =
1
C

h0

x0

(
u0

x0

)1/n

, c2 = um
0 and c3 =

1
C

h2
0

x0
. (A 11a−c)

Finally, at the boundaries we obtain

∂(h̃− b̃)
∂z

= ũ= 0 for z= 0, (A 12)

ρih̃= ρw

(
b̃+ S̃

)
for z= 1, (A 13)

2 c4 A−1/n 1

x̃1/n
g

∣∣∣∣∂ ũ
∂z

∣∣∣∣(1/n)−1
∂ ũ
∂z
=

1
2

(
1−

ρi

ρw

)
ρigh̃ for z= 1, (A 14)

with

c4 =
1
h0

(
u0

x0

)1/n

. (A 15)
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A.2. Numerical implementation
From here on we omit the tildes and assume the unknowns are non-dimensional. As
in Schoof (2007a), the domain z ∈ [0, 1] is discretised using a staggered grid with a
fixed mesh-width: 1z = 1/(N − 1/2). The left boundary is taken at the vertex i = 1
and the right boundary at the cell centre i= N + 1/2. Thus, for i= 1, 2, . . . , N, we
have vertices at zi=1z(i− 1) and cell centres at zi+1/2=1z(i− 1/2). The discretised
solution values for ice thickness are located at the vertices hi, while the values for ice
velocity are positioned at the cell centres ui+1/2. Hence, the subscript (i+ 1/2) denotes
an existing location for the velocity unknowns.

The transformed and non-dimensionalised continuity equation (A 9) is discretised
using a central difference for the stretching and an upwind discretisation for the flux:

dhi

dτ
−

zi

xg

(
hi+1 − hi−1

21z

)
dxg

dτ
=−

hi(ui+1/2 + ui−1/2)− hi−1(ui−1/2 + ui−3/2)

2xg1z
+ ai.

(A 16)

At the left boundary symmetry requires

(h2 − h0)/(21z)= 0 (central), (A 17)
(h1 − h0)/1z= 0 (upwind), (A 18)

u3/2 + u1/2 = 0, u5/2 + u−1/2 = 0. (A 19)

Using these expressions we can resolve the dependence on the unknowns at non-
existent grid points h0, u−1/2, u1/2. For i= 1 and i= 2, mass conservation is therefore
given by

(i= 1)
dh1

dτ
=−

h1(u3/2 + u5/2)

2xg1z
+ a1, (A 20)

(i= 2)
dh2

dτ
−

z2

xg

(
h3 − h1

21z

)
dxg

dτ
=−

h2(u5/2 + u3/2)

2xg1z
+ a2. (A 21)

Note that at the rightmost vertex (i= N), the right-hand side of the discretised mass
conservation (A 16) does not contain any dependencies on non-existent grid points. On
the left-hand side we will need to use a one-sided difference for the stretching term.

Define 1ui :=ui+1/2−ui−1/2. The momentum conservation (A 10) is discretised using
central differences:

0 =
2 c1 A−1/n

(xg1z)1+1/n

[
hi+1|1ui+1|

1/n−11ui+1 − hi|1ui|
1/n−11ui

]
− c2 |ui+1/2|

m−1ui+1/2 −

(
hi + hi+1

2

)
c3 ρig
xg1z

[hi+1 − bi+1 − hi + bi]. (A 22)

At the left boundary we let 1u1 = 2u3/2. At the right boundary we impose the
following discretisation of (A 14) with a substituted flotation condition ρihN =

ρw(bN + SN) (cf. (A 13)):

0= 2A1/n c4

(xg1z)1/n
|1uN|

1/n−1(1uN)−
1
2

(
1−

ρi

ρw

)
ρwg(bN + SN). (A 23)
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The discretisation contains N unknown hi, N unknown ui+1/2 and an unknown
grounding line position xg. To achieve a closed system of 2N + 1 equations, the
flotation criterion at the cell centre zN+1/2 is prescribed using an extrapolation of the
thickness, which gives the closing requirement:

0= 3hN − hN−1 − 2
ρw

ρi
(bN + SN). (A 24)

Appendix B. Linearisation of the model
Linearising (2.14) with a perturbation x̃ around a stationary point x̄ gives

M(x̄+ x̃)
d(x̄+ x̃)

dt
= F(x̄, λ)+ J(x̄, λ)x̃, (B 1)

which is equivalent to(
M(x̄+ x̃)−M(x̄)

)dx̃
dt
+M(x̄)

dx̃
dt
= J(x̄, λ)x̃. (B 2)

Using (2.13a,b) we find that

(
M(x̄+ x̃)−M(x̄)

)dx̃
dt
=


(
Mstr(x̄+ x̃)−Mstr(x̄)

)dx̃g

dt
0
0

, (B 3)

where x̃g is the grounding line component of the perturbation. A linearisation of Mstr
around x̄ shows that(

Mstr(x̄+ x̃)−Mstr(x̄)
)dx̃g

dt
=

d
dx

Mstr(x̄)x̃
dx̃g

dt
. (B 4)

As (B 4) is O(x̃2
), we can neglect this term and (B 2) reduces to (2.20).

Appendix C. MISMIP comparison
In the marine ice sheet intercomparison project MISMIP (Pattyn et al. 2012),

numerical marine ice sheet models are compared and verified using the boundary
layer result in Schoof (2007a). We perform a similar comparison using Model B in
Schoof (2007a), where

C
(axg)

m+1

ρig h(xg)m+2
− A

(
ρig(1− ρi/ρw)

4

)n

h(xg)
n+1
= 0 (C 1)

is solved for xg to obtain a steady state grounding line ((20) in Schoof (2007a)).
Figure 14(a) shows the grounding line advance for a marine ice sheet grounded on a
bedrock given by

b(x)= 720− 778.5×
x

750 km
; (C 2)

the same linear profile as used in Schoof (2007a) and Pattyn et al. (2012). In
figure 14(b) the relation between grounding line flux and grounding line thickness is
compared with the theoretical boundary layer result.

The experiments are similar in set-up to figures 3 and 4 in Pattyn et al. (2012).
The moving grid implementation used here appears to be in good agreement with
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FIGURE 14. (Colour online) (a) Grounding line advance for decreasing A. (b) Grounding
line ice flux versus grounding line thickness. The numerical moving grid (MG)
implementation is compared against the boundary layer theory result, for 800, 1600 and
3200 grid points.
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FIGURE 15. (Colour online) Grounding line advance throughout the multiple equilibria
regime. The moving grid (MG) implementation is again compared against boundary layer
theory, for 800, 1600 and 3200 grid points.

the boundary layer flux formula. According to Schoof (2007a), grounding line
flux depends on grounding line ice thickness through a power law, of which the
exponent is given by the slope in figure 14(b). The numerical results show a good
approximation of the correct slope. Hence, both the grounding line advance and the
power law behaviour of the flux are well represented by our implementation.

For a final comparison we repeat the computation of the multiple equilibria regime
in figure 3 for several grid sizes, see figure 15. The grounding line advance is again
compared to boundary layer theory, with a bedrock profile that is now given by (3.1).
The grounding line computed using our moving grid implementation is used as initial
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N AN DN RN

50 2.62× 10−26

100 3.49× 10−26 8.68× 10−27

200 4.15× 10−26 6.63× 10−27 1.31
400 4.57× 10−26 4.18× 10−27 1.59
800 4.80× 10−26 2.35× 10−27 1.78
1600 4.93× 10−26 1.25× 10−27 1.88

TABLE 4. Convergence of the first bifurcation (point c in figure 3).

guess for the Newton iteration solving (C 1). The results show that the computed
grounding line advance is again in good agreement with boundary layer theory,
with progressively better approximations for increasing grid sizes. The order of this
convergence is explored in appendix D. We conclude that the resolution chosen in
this paper (1600 grid points) is more than adequate to capture the correct steady state
grounding line migration and multiple equilibria regime.

Appendix D. Numerical accuracy of bifurcation points
The results of a convergence experiment are shown in table 4. Let the error in the

approximated bifurcation point AN be proportional to a power of the mesh width:

AN = A+ α(1z)β, (D 1)

where A denotes the parameter value at the true bifurcation point and α and β are
constants. We define a difference between subsequent mesh halvings DN :=AN −AN/2
and let 1z ≈ 1/N. Then the ratio between consecutive differences only depends on
the power β:

RN =
DN/2

DN
=

AN/2 − AN/4

AN − AN/2
=

(1/2)β − 1
(1/4)β − (1/2)β

. (D 2)

From table 4 we suspect RN → 2 as N becomes large, corresponding to β = 1.
The scheme must therefore be of first order accuracy, which is likely due to the
first-order upwind discretisation in the continuity equation (A 16). Unfortunately, the
upwind discretisation of the ice flux is essential to the stability of the scheme. Hence,
it might be worthwhile to consider a higher-order upwind scheme in (A 16).

Appendix E. Variability due to noise in buttressing
Temporal variability in buttressing can be interpreted as parameterising a collection

of geometric effects, e.g. the occurrence of pinning points and embayments, the
creation of ice rumples and the opening of cracks and crevasses. Buttressing has been
neglected in our stochastic analyses thus far, as the effect is absent in one horizontal
dimension (Gudmundsson 2012). It is possible, however, to introduce a stochastic
buttressing coefficient as a parameterisation of an essentially three-dimensional
geometric effect.

The influence of buttressing enters through a simple adaptation θ of the grounding
line stress (Schoof 2007a). We let θ = θ̄ + ηbtζ (t), with mean θ̄ and standard
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A/A0 σ ac
xg

σ sl
xg

σ bt
xg

(ηbt = 0.01) σ bt
xg

(ηbt = 0.02) σ bt
xg

(ηbt = 0.04)

0.1 1295 265 671 1341 2682
0.05 1510 253 722 1443 2887
0.02 1960 248 827 1655 3309

TABLE 5. Standard deviation σxg (in m) for five different noise sources at three distinct
parameter values, and with a gravitational sea level effect GSLE (cf. the red curves in
figures 10–11). The variability due to noise in accumulation (σ ac

xg
) and noise in sea level

height (σ sl
xg

), is compared against variability due to noise in the buttressing coefficient σ bt
xg

,
with several choices for the standard deviation ηbt = 0.01, 0.02, 0.04.

deviation ηbt. This leads to a multiplicative noise term in the boundary condition
(2.4):

2A−1/n

∣∣∣∣∂u
∂x

∣∣∣∣1/n−1
∂u
∂x
=
θ

2

(
1−

ρi

ρw

)
ρigh at x= xg, (E 1)

where θ = 0 (θ = 1) corresponds to a fully (un)buttressed ice sheet. A linearisation
of (E 1) gives a problem with additive noise that we can solve using the elimination
approach in § 4.1:

2A−1/n

∣∣∣∣∂u
∂x

∣∣∣∣1/n−1
∂u
∂x
=

1
2

(
1−

ρi

ρw

)
ρig(θ̄h+ h̄ηbtζ (t)), (E 2)

where h̄ is the equilibrium thickness. Note that we locally introduce a stochastic
term that is proportional to the steady grounding line thickness. This leads to an
inhomogeneous noise distribution over the ice sheet, similar to the distribution of sea
level variability, but now with a significantly larger amplitude.

In table 5 the grounding line standard deviations σxg are compared for different
noise sources at distinct parameter values A/A0, using variable (GSLE) sea level
boundary conditions. The standard deviations for accumulation and sea level noise
are again ηac = ā/10 my−1 and ηsl = 1 m, as in the previous experiments. Since
variability in buttressing is not well constrained by observations (Fürst et al. 2016),
we use several choices for the standard deviation ηbt = 0.01, 0.02, 0.04, i.e. fractions
of the stress regime from fully buttressed to fully unbuttressed ice sheets. The mean
buttressing is taken at θ̄ = 1, in order to maintain the same dynamical regime that is
used in the other noise studies.

The results in table 5 indicate the relative importance of the different noise sources
we apply. We find that a variability of only 2 % of the full range of stress conditions
induces a noise response of the same order as 10 % variability in accumulation rate.
The effect of uncertainty in the buttressing coefficient can therefore not be neglected.
More precise measures of temporal buttressing variability are necessary to make a
more thorough comparison.
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