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Introduction.

The interpretations of simplicial cohomology groups for associative
commutative algebras and for Lie algebras were given by Beck [2], Iwal
[9] and Shimada and others [15,16]. On the other hand, Jonah [10] gave
a formulation and an interpretation of the second and third cohomology
groups of an associative coalgebra after the Hochschild’s treatment [5 ~ 8].

The purpose of this paper is to deal with cosimplicial cohomology
groups of a coassociative (ungraded) coalgebra (over a field), with coef-
ficient in a two sided comodule (§ 3), and to interpret their first (§ 6) and
second cohomology groups (§ 5), where the dimension indices in the
cosimplicial cohomology are one less than the usual.

We will describe in detail the interpretation of the second cohomology
groups, while we sketch the interpretation of the first cohomology groups,
since the latter is more simple and analogous to the fromer.

In the first section, generalities on coalgebras over a field and
comodules are given, and, in particular, it is proved that the category %
of coalgebras has (finite) products and difference kernels. We characterize
abelian cogroup objects in the category (4,%) in the second section.
Before interpreting the second cohomology groups, we insert § 4, in which
some properties of cosimplicial coalgebras are verified.

The main theorem of this paper is that Ex*(M,A) =~ H*(M,A), where
Ex*(M,A) denotes the set of all equivalence classes of two term exten-
sions of a coalgebra A by a two sided A-comodule M and H%M,A) the
second cosimplicial cohomology group of A with coefficient in M
(Theorem 5.4). It seems that furthermore complicated calculations will
be needed to interpret H*(M,A) (n > 3).

The auther is indebted to Professor Nobuo Shimada for his kind
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guidance, suggestion to the results in this paper and constant encourage-
ment, to Professor Akira Iwai for his advice particularly on the treat-
ment of abelian cogroup objects and cosimplicial coalgebras. Simultane-
ously, the auther would like to express thanks to Professor Hideyuki
Matsumura for his critical reading and improvement of the manuscript.

1. Coalgebras and Comodules

In the sequel we assume that K is a fixed field.

DEFINITION 1.1. A coalgebra over K (or simply a coalgebra) is a
K-module A together with K-module maps

4, A—ARA, eyt A— K
such that the diagrams

4 e R
A—t S5ARA K®A&A®—1—A®A—14®—AﬁA®K

AAl J/AA@I ’ \TA%
A4 A0 AR4 - A B

are commutative. The first diagram is called the coassociativity of 4,
(p. 5 of [17]), the map 4, is called the comultiplication of A and ¢, is
called the counit of A ([14]).

A morphism f:A — B of coalgebras (or simply a coalgebra map)
is a K-module map satisfying the commutative diagrams

At A®A Aa—1 sp
fJ/ if@f, x %
B p&n K

If we want to regard a coalgebra map f as K-module map, we shall

denote this by Uf.
Suppose 4 is a coalgebra and V a submodule of A with 4,V C VRV,

Then V is a coalgebra with its comultiplication 4,|V and counit ¢,|V,
and is said to be a subcoalgebra of A. The following are easily proved

{17D.

PROPOSITION 1.2. (i) The sum of a collection of subcoalgebras is
a subcoalgebra.
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(ii) The intersection of subcoalgebras is o subcoalgebra.
(iii) The image Uf for a coalgebra map f is o subcoalgebra.

DEFINITION 1.3. Let A be a coalgebra. A left A-comodule is a K-
module M together with a K-module map 4% : M — A ® M such that the

diagrams
M—2  sieM M SKQM
Azfi ll@dﬁf , As[\ @1
AM-2Cl a0 a0M UM

are commutative. Similarly, with a K-module map 45, : M - M Q A we
can define a right A-comodule. Sometimes 4% and 45 are called the
comodule structure maps of M. Let M be both a left and a right A-
comodule. If moreover (4% ® 4% = A & 43,)4%, then we call M a two
sided A-comodule. In particular we can regard A as a two sided A-
comodule with 4, = 4, = 47.

If M and M’ are left A-comodules, then a K-module map f: M — M’
is called a left A-comodule map if it satisfies the commutative diagram

—_—n ARQM

M
fl 11 f,
yi17%

M——s AQ M

1
4y

Similarly, we can define a right A-comodule map and a two sided A-
comodule map.

DEFINITION 1.4. Let A be a coalgebra, and let I be a submodule
of A. We call I a (two-sided) coideal of A if

DI ICARI+IRA, (i) e, =0
In this case we have the following which are easily verified (17]).

PROPOSITION 1.5. (i) The sum of a collection of coideals is a coideal.

(ii) The kernel Ker US for a coalgebra map is a coideal.

(iii) For two coalgebra maps f,9: A — B, Im(Uf — Ug) is a coideal
of B.

(iv) If A is a coalgebra and I o coideal of A, then the quotient
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A/l as K-module has a natural coalgebra structure induced by the pro-
jection A — A/l

Let @ be the category consisting of all coalgebras over K and coalge-
bra maps. The following is trivial.

PROPOSITION 1.6. € has sums and difference cokernels. Accordingly
% has pushouts.

In consequence ¥ has direct limits (p. 38 of [19]). We shall describe
the definition of cofree coalgebras and its existence following [17].

DEFINITION 1.7. Let V be a vector space over K. A pair (FV,z,)
with F'V a coalgebra and a K-module map 7, : FV — V is called a cofree
coalgebra on V if for any coalgebra A and a K-module map f: 4 —-»V
there is a unique coalgebra map h: A — FV such that the diagram

A—" 5@y

N

14

is commutative. If there exists a cofree coalgebra on V then it is unique
up to isomorphism of coalgebras.
For each algebra X over K we define

X’ = {xe X*|Ker « contains a cofinite ideal},

where X* is the dual of X and a cofinite ideal is an ideal I in X such
that X/I is finite dimensional. We can prove that X° is a coalgebra in
X* with 43,: X' > X"®@ X" and ez: X° — K defined by 4y = ¢*|X°® and
exot = 2(1) for xe X’ where ¢: X ® X — X is the multiplication of X
and ¢* the dual of ¢.

Given a vector space V over K, let T(V*) be the tensor algebra of
V*. Since there is the natural inclusion map 7: V* — T(V*) we can define
a K-module map »: T(V*)* — V**, In this case (T(V*)’,5) is the cofree
coalgebra on V** (see p. 126 of [17]). Let F'V = > W with the sum taken
over all subcoalgebras W of T(V*)* such that yW C V, and put », = 5|FV
then (F'V,7,) is the cofree coalgebra on V. Thus we have the following.

THEOREM 1.8. For any vector space V over K there is the cofree
coalgebra on it.
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This theorem says that there is an adjoint pair (U, F) such that
U
C = My
F

where U is the underlying object functor, F' the cofree coalgebra functor,
and 4 the category of all vector spaces over K. That is, there is a
natural isomorphism in C and in V

(1.8) AC,V): Hom,, 5 Hom, (C,FV)

as sets for Ce ¥ and Ve #x. In thissituation U is the left adjoint of
F (F the right adjoint of U), which is denoted by U — F in general.
Define natural transformations ¢ and » by

e(C) = XAy : C — FUC for Ce ¥,

1.9
49 (V) = 2'Apy) : UFV -V for Ve dy

with abbreviations 2 = A(C, UC) and 1 = A(F'V,V), respectively. Then we
have:

Af) = F(f)-«C)  for feHomy, (UC,V),
(1.10) () = 7(V)-U(p)  for peHom, (C,FV),
gU-Ue=1,:U —UFU U, FyeF=1,:F —>FUF F.

PROPOSITION 1.11. % has (finite) products and difference kernels.
Accordingly € has pullbacks.

Proof. Let A and B be coalgebras. We have canonical projections
p,: F(UA® UB) — FUA and p,: FUA® UB) —» FUB in ¥. Define P =
p7Y(eA) N p;YeB) which is a subcoalgebra of F(UA @ UB). The projections
ps:p—A and pp: P— B are defined by p, = ¢ '(p,| P) and pz = ¢ '(p,| P).

Assume f:L —A and ¢g:L — B are in ¥. By the universality of
F(UA @ UB) there exists a unique coalgebra map 4:L — F(UA® UB)
such that

oagus-h =Uf® Ug , ph=¢f and ph=eg.

Therefore Imh C P, p,h = e'p,h = f and pgh = ¢7'p,h = ¢g. That is, P
is the product of A and B.

Assume f and g: A— B are coalgebra maps. Put D, =Ker(Uf — Uy),
and define D, by D, = {ac A|4,aCD,® D,}. Since for aeD,,a = (¢,&1)
dae(e, ®1)(D,® D) < D,, we have D, C D,. Inductively, we define D,
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by D,={acA|dpoc D, ®D,_}, then D, C D,_,. Put D= "3z,D,,
then it follows that D is a subcoalgebra of A and the natural inclusion
map i: D — A is a coalgebra map.

Suppose there is a coalgebra map i: L — A with fh = gh. Then AL
is a subcoalgebra of A contained in D. So there is a unique coalgebra
map l: L — D with ¢l = h. Thus D is the difference kernel for f and g¢.

q.e.d.

(Note: In our proposition (finite) means that the first part holds
even if the word “finite” is omitted.) In consequence % has inverse limits
(p. 38 of [19)).

2. Abelian cogroup objects in (A, %)

In the sequal we assume that A is a coalgebra.

DEFINITION 2.1. We define a new category (4, %) whose each object
is A — B in ¢, and each morphism is a commutative diagram

B——(C

\/

for any two objects A —- B and A — C in (4,%), where B— C is in %.
An object gz: A — B in (4, %) will be denoted by (83, B) (or simply by B),
and B is called the structure map of B.

An abelian cogroup object in (A, %) is an object B such that for any
Ce(4,%), Hom, (B,C) is an abelian group and

Hom 4 (B,—):(A,%) — Ab

is a covariant functor, where Ab is the category of all abelian groups
(for abelian group objects see [11]).
Let B be an abelian cogroup object in (4,%). In the commutative

diagram
B—"1" 54
A

with 7, the zero element of the abelian group Hom,, (B, 4), we put M
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= Ker Uy,, then M is a coideal (see Proposition 1.5), and B is isomor-
phic to direct sum B = A ® M as K-modules.
Consider the diagram of the pushout

A—f  p
.BBl liz
B—> SB 1B
A
then it follows that we have a canonical direct decomposition B 1l , B =
AP MDPM as K-modules. We put
r=1%+,eHomy, (B,B i B).
Identifying A and pzA we have
pa = 4,0 = 4,0 = (a,0,0) for acA
ym = (0,m,0),7,m = (0,0, m), pm = (0, m, m) for meM .
PROPOSITION 2.2. Under the above situation

dgo = 4,0 for acA and A;MCAQM + MQA .

Proof. Assume dzm = > ; [a; @m; + m,@a] + m] @m;”’] for me M,
where a;,a;€¢ A and m;,m;,m;,m e M. Since (¢ @ Wdz = dp, 5-pt We

have the following:

ABJ.LAB’ﬂm = ABuAB(il + iym = G ®i)dpm + (1, @ i)dzm
= Zz [(a’i» 0’ 0) ® (0, m;, mz) + (O, m;, mfl) ® (a'::’ 0; O)
+ (0, m7,0) ® (0, m;”,0) + (0,0, m;) ® (0,0, m;)],

and on the other hand,

(e ® pdpm = 3, [(a4,0,0) ® (0, my, m;) + (0, m;, m) @ (a3, 0,0)
+ (0, m7,0) ® (0, m;,0) + (0,0, m;) ® (0,0, m;)
+ (0, m7, 0) ® (0,0, m") + (0,0, m;) ® (0, m;”,0)] .

Therefore we have >, [(0,m],0) ® (0,0, m]") + (0,0,m]) Q (0, m;”’,0)] = 0,
which implies that >}, m] @ m{” = 0. 4za = 4,0 is clear. q.e.d.

COROLLARY 2.3. With the above situation M is a two sided A-
comodule.

Proof. Since we can put 4y;m = Y ;[a, ® m; + m;® ai] for me M
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we define 44, : M > AQ@M and 4yy: M ->MQA by d4ym = Y ,;a; @ m; and
dym = >, m; @ aj. By the coassociativity of 4; we know that M satisfies
all conditions (see Definition 1.3) for a two sided A-comodule. q.e.d.

Conversely, let M be a two sided A-comodule. We define d,gy: A M
- (ADM)®RADBM) and e4q04: ADM — K by

AA@M:AA OnA, AA@B=A§”+A;{ OnM
eaen(®, M) = e,40 for (a,m)c AD® M.
Then A ® M is a coalgebra, and A @ M with the natural structure map

A—->ADPM is an object in (A,%). The coalgebra A @ B is called the
coidealization of M, and we shall denote this by AxM.

For an object C in (A,%) and a two sided A-comodule M a coderi-
vation f: M — C is defined as a K-module map such that

dofm = 3 [Boa; @ fm; + fm; @ Beai] .

where me M and 4d,,m = > ;[a; @m; + m,; @ a;]l. The set of all such
coderivations f: M — C forms an abelian group denoted by Coder; (C),
and it gives the coderivation functor

2.4) Codery: (A,%) — Ab .
As is well known, there is a canonical isomorphism
(2.5) Codery (C) = Hom 4, (AxM,C) .

We sometimes put Coder,, (C) = Coderg (M, C). This shows that a coideali-

zation of a two sided A-comodule is an abelian cogroup object in (4, %).
Accordingly we have:

THEOREM 2.6. An object B in (A,%) is an abelian cogroup object
iff there is a two sided A-comodule M such that AxM = B as coalgebras.

We shall denote by ,CM, the category consisting of all two sided
A-comodules and two sided A-comodule maps. Since A is an ungraded

coassociative coalgebra over a field K, we can easily check that ,CM, is
an abelian category.

3. Cosimplicial Cohomology

We shall begin with the general theory for right derived functors.
Let o be an arbitrary category. We define the category «/* whose

https://doi.org/10.1017/5S0027763000015002 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015002

COALGEBRAS 207

objects are the same as those of .«# and whose morphisms are formal
sum of morphisms in 7, i.e., Hom_, (X, Y) is the free abelian group on
Hom, (X, Y).

DEFINITION 3.1. Let J be a class of objects in «/. A J-injective
resolution for X € o/ is a cochain complex

X->X - X, — (%)
in o/* satisfying
(i) X,ed for n>0
(ii) for each Y e J the functor Hom,.(__,Y) transforms (x) into an
acyclic complex of abelian groups

0 — Hom,, (X,Y) — Hom,. (X, Y) — --- .

A class of injective models for </ is a class J of objects in « such
that each X ¢ ./ has a J-injective resolution (3], [18]).

If a category «/ has a class J of injective models, for each covariant
functor 7:o — /b from « to an abelian category b right derived
functors R"T: .o/ — «b(n > 0) of T with respect to J can be defined as
follows. If X is an object in .«Z, then R*TX is the n-th cohomology

group of
T+d T+d
0—> T X, —> T*X, —> T* X, —> -+,
d d. .
where 0 > X - X, —> X, —> X, — ... is a J-injective resolution of X

and TV: % — /b is a unique additive functor induced from 7. Note
that T*X = TX for Xe /. The obvious comparison theorem holds for
J-injective resolutions, and therefore we get a unique functor R*T: & —
/b up to natural equivalence, which is called the right derived functor
of T. As is well known ([12]),

(i) X — X, induces a natural map TX — R'TX

(ii) for XeJ,TX — R'TX is isomorphic and R"TX =0 if n > 0.

It is convenient to use cosimplicial method in studying derived
functors.

DEFINITION 3.2. A cosimplicial object X, in a category ./ consists of

(i) an object X, c .« for each n > 0.

(ii) morphisms ¢: X, ,— X, (0<i<mn) (coface operators) and
: X, - X,_, (0<i<n—1) (codegeneracy operators) such that
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ddet =/t if 1 < 7, oot =00t if i< 7,
et =gl if 1< 7,
olet = identity = o%?*, o'’ =W if 1 > 7+ 1.

An augumentation for X, consists of a map ¢: X_, —» X e & with
ee=¢%:X_,— X,. If X, is an augumented cosimplicial object of X:

g0
e —

X, :0—X "X, 33X, - - X,
— :

€ _
en

then there is a cochain complex

Mt X, 00— X > X, x, B x, s

in &%, where d, = > 7., (—=1D% (n > 1).

We next prove that the category (4, %) has a class of injective models
using a triple, and define right derived functors from (4,%) to Ab.
Recall that there is the adjoint pair U — F' between categories € and .,
(§1). There is a triple (G,¢,6) ([1]). That is, put

G=FU:4¥—-%, ¢:1,-G, 6:GG—-G,
where 6 = FpU: GG = F(UF)U —- FU = G. For
G.A={G,A|G,A=G"4,n > —1}

we define the following:

(Gl =5 GoA) = @4 FE7 grig) 0 <i<m)
5t igGn-i
G 5 G, 4) = (G4 L0 grog)  0<i<m,
then ¢ and §¢ satisfy the identities in Definition 3.2. Therefore we obtain
an augumented cosimplicial object G,A of A with the natural augumen-
tation e: G_LA = A — G, i.e.,

3 €0 E.o;

GA:0— A—>GA—3GA... - G"A.
3 .
en-1

This sequence together with codegeneracy operators §° is called the
augumenetd stondard cosimplicial resolution of A.
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PROPOSITION 38.38. Let J be the class of all Ce € with C= FV for
some Ve My, then J is a class of injective models for €, and ch* G, A
is a J-injective resolution for Aec¥.

Proof. Let us construct a contracting homotopy
S ={S,|S.: Hom,, (G"A,FV) - Hom,. (G*"*'A, FV)} n>0),

where G’A = A. For each f:G"A — FV in ¥ we define S,f = Fy,-Gf.
Setting

d¥ = Homy. (d,, FV) (n > 1) and df = ¢* = Hom,. (¢, F'V)

d38,f = 35 (~D)'Fpy-Gf & = Fyy- G- + 3 (~DFpy- G &
= Fyp-eF-f + 3 (= DFny- G- GieG™)
= F + 5 (D Fpy- G e = f = Sy @iaf) 2 1),
dfSof = Fny-Gf-e =Fpy-eF-f = f .

(Note: By (1,10) Fypy-eF' = 1.) So we have d¥-S,f + S,_,-d¥_..f = f, and
therefore S = {S,} is the required contracting homotopy. q.e.d.

Note that each G"A is regarded canonically as an object of (4,%)
with a unique structure map A — G®A expressed by a composition of
coface operators. By the same way as in the proof of the previous
proposition we can prove that the category (4,%) hasaclass J, = {4 —
FVe(A,%)|Ve 4} of injective models. Also, if A — C is an object in
(A, %) then ch* G,C is a J,-injective resolution for C.

Let B = AxM, which is the coidealization of a two sided A-comodule
M, be an abelian cogroup object in (A,%). Then there is the covariant
functor 7 = Hom, , (B, _):(4,%) — Ab, and therefore we can define
the right derived functor of T such that

R'TA = H ( 3} Homy,,, (B, G,,,A)) (or H"(Hom,, o, (B, G,,A)
(n>0),
where H is the cohomology functor. By (2.4) and (2.5) we have
H (Hom,, ,, (B, G4A)) = H" (Coder, (M, G,,A))
(: Hr ( 33 Codery (M, GmA))) =0,
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and put H" (Coder; (M,G,A)) = H*(M,A). H"(M,A) is called the n-
dimensional cosimplicial cohomology group with coefficient in a two sided
A-comodule M. Since the functor Coder, (M, ) is left exact we have

THEOREM 3.4. Hom,, ., (B, A) = Coder, (M, A) = H'(M, A).

THEOREM 3.5. If 0 —» M —> M —1» M” 0 is exact in ,CM,, then
there is the long exact sequence of the cohomology groups

0 — HY(M", A) — HYM, A)
S H M, A) -2 B, A) —s

Proof. Let i: AxM’ — A+«M and j: AxM — A+«M" be the induced
maps of ¢« and j, respectively. Assume FV e (4,%) for some Ve #;. We
shall first prove that the sequence

0 «— Hom,, , (A+M', FV) <— Homy, ,, (A+ M, FV)
< Hom, ., (A% M",FV) 0

is exact, where i* = Hom,, (, FV) and j* = Hom,, (4, FV). We can
easily check that j* is a monomorphism. Take a map fe Hom, o, (AxM’,
FV), then by (1.8) there is a unique K-module map 1-'(f) = f: U(A«M’)
— V. Since UA+xM) = UA+«M)DW for some K-module W, we can
choose a K-module map ¢: U(A*M’) — V such that ¢g.-Ui = f. Again,
by (1.8), there exists a unique coalgebra map §: AxM — FV in (A, %)
corresponding to g, and therefore, by (1.10) we have 2-(§-7) = »(V)-Ug- Ui
=9-Ui = f=2'f) and §-: = f. Therefore ;* is an epimorphism. (In
fact, F'V is an injective object in ¥).

Taking G®A for FV, the usual argument in homological algebra
gives the cohomology exact sequence, as asserted. q.e.d.

We conclude this section with a proposition which will be used some-
times later on. Recall the standard cosimplicial resolution of A. We put

UG,A:0—vA L5 v6a TS uea Yy ..

where Ud, = U — Ue' + -+ + (=D"Ue" (n > D).

PROPOSITION 3.6. The augumented cochain complex UG.A is acyclic.

Proof. By (1.9) and (1.10) there are K-module maps 7, = fyg,4°
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UG,.,A - UG,A such that 7,8 =1, p,-es =¢"Y,, 0<i<n+ 1) and

7-i-e = 1. (Note: G_,A =A.) We can easily check 9,d,,; + dp,_, = 1,

and therefore » = {y,|n > —1} is the required contracting homotopy.
q.e.d.

4. Cosimplicial Coalgebras.

A cosimplicial object {4, = A,|n > 0} in the category ¥ is called a
cosimplicial coalgebra. For an augumented cosimplicial coalgebra of A:

g0
g0 —_—

As:0—> A5 A=A - 1 A,
1

e —>
en

we define ¢,: UA, —» UA, and u,: UA,,,— UA, by

t,=A— U™ Us"Y ... A-U- U (n>1), t,=1,,
U, = U8 t, — Us*t, + -+« + (DU %,., (m>1),
Uy=0=1u_,.

For simplicity we shall omit U in UA, U<, etc., in the sequel. Then we
have the following.

PrOPOSITION 4.1. (i) . =d, t,_, .8 =0 0 <i<n) and 1 — ¢,
= Unly 1 + dglly_;-

(i) et, , = (8" — &Y t,, e, , = (80P — &~ W9 Det,_, 2L i< m).

(i) t, = tn,, + (0" — 9" DL, where d, = > 2 (— 1)U (n > 1).

Proof. We can prove (i) by mathematical induction (for detailes
see p. 7 of [16]). (ii) and (iii) follow that &%, , = ¢, 2 <i < n) =
5t (n > 1) =0, 6 = % and 6% = 1902 q.e.d.

Put Imt, = A, (n > 1) and fio = A,, then we have the cochain com-
plex of K-modules:

d

A, 0—A4-"54,-5 4,

which is called the normalized complex of UA, (for notation see Propo-
gition 3.6). (Note: Since d,t,_, =t,-¢ and ¢,-¢¢ =00 > 1), for xe 4d,_,
d,xzeA,.)

PROPOSITION 4.2. A, = (N7 Ker Us* for n > 1.

Proof. For each x ¢ A, t,x = z, and conversely ¢, = z implies that
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xze A,, because of ¢,-t,& = t,& = x. Take x e (2 Ker Us' then t,x = «,
and so xe A,. Conversely, take z ¢ A, then 'z = 0, because of itz = 0.
q.e.d.

COROLLARY 4.3. A, is a coideal of A,.

The proof follows that A, is the kernel U3 of the coalgebra map
8" (Proposition 4.2).

PROPOSITION 4.4. Two cochain complexes UA, and A, are cochain
equivalent.

Proof. Since 1—t,=u,t, ,+ d,u,_, and t,|A, =1z (.e., t, =1z, t,),
two cochain homomorphisms ¢,: 4, — A, and 1;: A, — A, are cochain
homotopic with homotopy u,. q.e.d.

DEFINITION 4.5. Let A, be an augumented cosimplicial coalgebra of
A. We define

Coderg (M, A,) = {f € Coderyx (M, A)|t.f = f},

where M is a two sided A-comodule. In this case f is called a normal
coderivation.

THEOREM 4.6. H"(Codery (M, A,)) = H" (Codery (M, A,)) (n>0),
where H is the cohomology functor.

Proof. We put (CD), = Coderg (M, A,) and (CD)* = Coderg (M, A,).
Note that (C‘D)* is a cochain subcomplex of (CD),. Since ¢, and u,_,
are linear compositions of coalgebra maps, respectively, for fe(CD),
tof ¢ (CD), and wu,_, f e(C’D)n_l. By the same reason as in the proof
of Proposition 4.4 (CD), and (C’D)* are cochain equivalent. q.e.d.

Put H» (Coder (M ,GLA) = H™(M,A). Then we know that H™(M, A)
=~ H™(M,A) by the above proposition. We shall conclude this section
with description of two properties for cosimplicial coalgebras which are
used in the next section.

PROPOSITION 4.7. For an augumented cosimplicial coalgebra A, of A
the following hold:

() A, =4, @4, (i) A, =EO"4,04,0I, n>2),

where @ means direct sum as K-modules and I, = 3 75 (%! — 169 A,,.
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Proof. (i) is clear. Put ()", + x, + D oot (€89 — 61y, = 0 for
vedA,x,cl, and y,€A, 1 <i<n—1). Apply (3" from the left on
both sides, then z, = 0, because of (")t x, = 0 = (O)"(%6¢! — &*'9)y; = 0.
Again, apply ¢, from the left on both sides of the above, then x, =0,
because of t,(e)*x, = 0 = t,(c%0¢! — 199y,

We want to prove that A, is spanned by (¢)*4,, ﬁ,, and I,. To do
this it suffices to show that there exist x,¢ 4, and «, e A, for a given
xze A, such that z = (¢)*z, + x, mod. I,. Since z = ¢'0°¢ + ¢, and (¢")™*?
(@) — ()7(0)" = (70" — 76" )()H(8%)” e In+l — ZLI (et6+! — 199 A, if
we assume that z = ()@Y x + t,2 (r > 2) mod. I,, then we have z =
@)@ e + t,,,2mod. I,,, by Proposition 4.1. q.e.d.

In the above proposition I, (n > 2) is a coideal of A, (Proposition
1.5), so we have the quotient coalgebra A, = A,/I, (Proposition 1.5).
Let M be a two sided A-comodule. Then M is a two sided A4,_,-comodule,
and hence we have the coidealization D,_, = A,_,*M of M.

Consider two coalgebra maps g, 0,: D,_, — A, defined by

(4.8) 0, = the composition :
Do, =A, «M Projection A, €0 . A, Projection An ’
0, = the composition :
Dy = A, M (89" @ 1y A M (" ®f) i,

where f e Codery (M, A,) with d,,,f = 0.
PROPOSITION 4.9. py|A,_, = dA,_,.

Proof. We have to prove that for each xeﬁn_l &x = d,x mod. I,.
By Proposition 4.1 ¢t,_xel, (1 < i < n), and therefore ', & = d,t,_&
= d,x mod. I,. q.e.d.

5. Interpretation of H*(M, A)

In this section we assume that A is a coalgebra and M is a two
sided A-comodule.

DEFINITION 5.1. By a (normal) coderivation 2-cocycle we mean a
normal coderivation f: M — G*A such that d,f = 0. Two such cocycles
f and f’ are cohomologous if there exists a normal coderivation ¢g: M —
G’A such that f—=f=dg.
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DEFINITION 5.2. By a two term extension of A by M we mean an
exact sequence (e) of K-modules:

@©:0 —A xS x M 0

satisfying the conditions:

(i) X, is a coalgebra and ¢, a coalgebra map,

(ii) X, is a two sided X,-comodule with (¢, ® 1)4%, = (1 ® ¢)4%, and
¢, a two sided X;-comodule map,

(iii) M is a two sided X,~comodule induced by ¢, and ¢, a two sided
X,comodule map. That is, the structure of M as a two sided X,-
comodule is induced from the commutative diagrams

p®1 1 .
X,OMe——"  AQM MRA —2" 5 MeX,

W% ol
4% ,[ ”]\ Y|

M, "M

where % and o7, are the comodule structure maps of M as a two sided
A-comodule.

DEFINITION 5.3. The totality of all two term extensions of A by M
forms a category whose each morphism (e) —(e’) is a commutative diagram

©: 0— 4 2 x, 25 x M —o0
| l l li
/ ’ 4
(e): 0—> Ay x fyxr Bysm 5o

with +, a coalgebra map and 4, a K-module map such that (y,, ® ¥)4%,
Ai;‘!’l and (Y, ® Y)dy, = A%l

For two term extensions (e) and (¢’) of A by M they are said to be
equivalent, written (e) ~ (¢’), if they are connected by a sequence of
morphisms of both direction, e.g.,

(e) = (&) (e) e e—(e,) = ().

The main theorem of this paper is the following.

THEOREM 5.4, Let Ex*(M,A) be the set of all equivalence classes
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of all two term extensions of A by M. Then there is a bijection between
Ex*(M,A) and H*(M, A).

We will prove this theorem in three steps: i) to define «: H*M, A)
— Ex*(M, A). ii) to define p: Ex*(M,A) — H%M, A), and iii) to prove that
Bt = g ay a0 @B = g o(HAM, A) = HM, A)).

First Step: Consider the standard cosimplicial resolution of A.

PROPOSITION 5.5. G°A is expressed by the direct sum GP*A = (¢)°Ga
@ G4 @ SGA @ SGA.

Proof of 5.5. At first we prove that I, = (£16° — %)VGA = ¢GA &)
€GPA. To do this we have to prove that &GHA I,D ¢GPA. For ve GPA

el = (0" — W) e I, 5 & = (20 — 0% (Note: 62 = 0) .

Conversely, for z e G*°A and (¢'9° — &)z c I,

(@ — & = (1 — ¢80 — &1 — ddV)i'w e e GA + 2GA .
Assume that ¢z = &y for xz,y < G*A. Applying ¢' we have x = y. That
is, ¢'x = ¢y implies that ¢z = &x. Applying (1 — ¢'9°) we have 0 = &z,
ie, 2 =0. So ¢GANeGA = {0}

In order to complete our proof it suffices to verify that G°A = (¢)’GA
@ GA @ I,. But, this is just the case » = 2 in Proposition 4.7. q.e.d.
Put GA=:ADC,C =1 — e9)GA = 9:,d,GA,
GA=GARGA =ADCONDE,
N=dC and E =1 — dy)GA4
= 77G2Ad2(/;2\1/4 ’
GA = (%A D ()CDGFA D GA®2GA
= (%A D (YC D GFAD N DN D E @ 2B .
Given a coderivation 2-cocycle f we want to calculate 4,.,& for ze £
with d,x = fm, where m e M. Since G*4 is a coideal of G4 (Corollary 4.3)
Ao C GAQGA + GAR®GA
= e°eA®é?z/4 + (,}-'?4@30&4 + EIC®G\2;/4 + @4@5‘0
+NE+ERQN+EQE +NQN .
So we may put
dgaa® = Z [%ea; ® x; + ] ® %a; + e'c; ® ¥, + y; R e'c;
+ 1, Qe + €, @n; + e/ Qe + n ®n'],
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where a,,d}e 4,z @, y;, vie G4, ¢, ¢ e C,mi, i, n,n” e N and e;, ¢}, ef,
e/'e Rk
For convenience we put T ='®e — ! ®e!' + £ X% We have the
following
Tdgeqyx =T Z (ea; @ x; + 2, Q Leatr)
+ Z ((eD%c; ® dyy; + €die;, ® €Yy)
+ 3 (@ ® (6, + € ® i)
+ T Qe+ 6;@n; + e Qe + n @ni)
g - -/
= dgs fme (AR GA + GARQ (") A =W,,
T3 (fea; @ @ + 2R fea)) e W, ,
3 (e @dyi e (CQ GA =W, ,
Sedie, ® Y c N Q GFA + eNQeE + N ® ¢E + &N Q@ &N
[2
+NREN =W,,
A ® (6 e A ® (e = W,
S, @ edicie AR N + ¢E® N + ¢E ® &N + !N ® &N
+ eN®eN = W,,
TS n®e¢edN®GA + ¢N®CE + ¢N:® GA + N Q ¢E
+ eNQ®SE = Wy,
T ¢,®@ncFARIN + cE RN + GAR SN + &N ®E
+ E Q&N =W,
T3 ®NecGFARGTA + CARE + CPARCE + dE® GA
1 EQGA + dEQPE + PEQRIE + fEQE = W, ,
T>n/@n’” ceeN QN + &N @ N + eNRQEN = Wy .
%
In the above we know the following.
(i) Each term in W, does not appear in W,,...,W, This im-
plies that
T3 ®y + ¥ ®ec; + Qe + €, Qn;
¢ + e/_/ ® e + n’ ® n{//) =0.
(ii) The term ¢N ® &E in W, does not appear in W,,...,W,, W,
-+, W, Since ¢ and & are monomorphisms we have >;n, ®e;, = 0.
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(iii) The term ¢F Q@ ¢N in W, does not appear in W, ..., W, W,
and W,. By the same reason as above we have > ;e¢;®@n; = 0.

(iv) The term &€E Q ¢'E in W, does not appear in W,, ..., W, and
W,. This implies that > ;e ® e/ = 0.

(v) W, does not appear in W,, W,,W,,...,W,. This implies that
> (Ee; ®dy, =0, If we take {¢;} as a base of C we have d,y;, =0
for each 7. So y,eN. Similarly %,eN.

By (i) ~ (v) above we may put

Agaa® = 2] [%ea; @ o, + @] ® et + e, @ n; @ e'c; + n’ @ n’],
(]

-/ .
where a;,a;¢ A, x;, x, € G*A, ¢;, ¢, e C and n,n,,n!,n’N. Since

T3> [e;®@n + n,@edc, + n/ Qnu1e W,N W, =0,
we have T >, [é'¢; @ n; + n, Q@ e'c; + n) @ n;”] = 0. It follows that

(i) 2 e&die;®en, — 3 énf ®en” =0 (in ¢N ®¢'N) ,

(i) X énm®édc, — 3 e ®en =0 (in &N ® &N) ,

(i) 23 eny @n’ — 3 ddie, ® ény — 3 en; ® &dic; = 0

' ' (in &N Q &N) .
We take {c¢;} and {c;} as bases of C. Then {d,c;} and {d,c;} are bases of
N (Proposition 3.6). Take n; = d,c;, then we have n; = n}’ from (i)
above.

Put n, =n)" =di¢/, ¢/ = 3 ; a;;¢j, where «;;€ K for each ¢ and j.
Then, by (ii) above and = = d,c; we get n) = >, a;;d,c;, These ex-
pressions of n;,n;,n; and n)”’ satisfy (iii) above.

Using

n;! = d,c;,,m, = ; ajdic; and n; =0 = die; = d,(3] a0 5
J
we have
Z Elci ® n; = Z Elci ® dlcg’ ,
Z n: ® 5102 = Z (Z a/idlcj) ® 6102
1 1 J
=2 die; Qe (3] ay;c)) = 3 die; Qe'ey
£3 7 7
2 @n =3 die, ®dcl .
In consequence, writing newly c¢; instead of ¢/, for x e £ with d,x = fm
(m e M) we have
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dgag = Y [fea; @ 2, + ) @ %a;
+ ee; ® die; + die; R elel + die, @ dicll,

where a;,a,¢ A, x;, x; ¢ é?fl, iy Ci€ Cy Ay = > (a; @ my + m Q af), dyx;
= fm,; and d,x; = fm, for each <.

We put E(f) = {(x,m)e G4 x M|dx = fm for some me M}, and
recall the case n=2 in (4.8). There exist two coalgebra maps p,, p,: D, =
G*A+M — G*A.

PROPOSITION 5.6. The difference kernel E, for p, and p, in € is just
Ker (Up, — Upy, i.e., E, = ¢GA D E(f).

Proof of 5.6. Ker (Up, — Up) =GADE(f) is obvious by the
definitions of p, and p,. Using 4g.,x and 4,,,m, for (x,m)ec E(f)
dp, (@, m) = 3] (%5, 0) ® (s, my) + (@7, M) @ (°ear;, 0)

+ 6, ® (A, 0) + (die,0) ® ¢ + (doc, 0) @ (dicl, 0]
where dx; = fm;, dx; = fm, and d,m = > (e, @ m; + m; @ aj). This
implies that

dp(GADE(f) S (€GADE()) ®(GADE(S) ,

and therefore E, = ¢GA ® E(f). q.e.d.
Put 45, = 4,,|¢GA @ E(f), then we have

45,(d,c,0) = 2; [e'y; ® (d;, 0) + (dyy;, 0) ® &'y;
+ (d:,0) ® (dy;, 01,
g (@, m) = 3 [(€%a;, 0) @ (;, my) + (&5, M) @ (%, 0)
—:— e'e; ® (dic}, 0) + (dic, 0) @ élc
+ (di¢;, 0) ® (dyci, 0],
where 4,.C = 3, ¥: ® y;. Define 4%, : E(f) — GA ® E(f) and 4%, : E(f)
— E(f) ® GA by
Ay 5(dyc, 0) = Z__. Y¥: ® (dy;,0) ,
Ay (@, m) = };. [ea; ® (x5, m;) + ¢; ® (dyci, 0)]
Lpp(die, 0) = 35 (@i, 0) ® s
A (@, m) = 2 [(#}, m) ® ea; + (dic, 0) ® c;l
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then E(f) becomes a two sided GA-comodule by the coassociativity of
4z,. In consequence we have an exact sequence of K-modules:

€):0—A—">GA Y B> M —0,

where djx = (d,x,0) and ¢(x,m) = m for x ¢ GA and (z,m) e E(f). This
sequence (e;) satisfies the conditions for a two term extension of A by
M, which is called a standard two term extension of A by M.

Next, consider the commutative diagram

() 0—>4 =564 -5 s By —2 M >0
I 4
0—sA—=5GA-"s g4 —% 54 Zsq4

where (x,m) = x. By the property of E(f) we know that

AGM‘!’l =E'® ‘l’l)AiE(f) + (‘l’l ® 51)42'(]') + (d1 ® ‘Pl)dfv(f)
(: (50 ® ‘lf'l)dfw(f) + (‘!’1 ® 51)42'(/)) .

PropoSITION 5.8. If two coderivations of 2-cocycles f and f' are
cohomologous, then (e;) ~ (€)).

6.7

Proof of 5.8. By our assumption there is a normal coderivation
g: M — G’A such that f— f =d,g. Define +: E(f) — E(f) by v(x,m)
= (¢ — gm,m) for (x,m) e E(f). Since d(x — gm) = f'm (x — gm,m) ¢
E(f"). So we have the commutative diagram

€): 0 >4 —s64 % 5 gy 2

> M > 0
| ll I |
’ € dy o
): 0 > A > GA E(f) > M >0.

We want to prove that the diagram is a morphism (e;) — (e;). Note
that 4%, = 4%,,(0, — g9, ¢), which is defined by dg. V¥ — dg.a9¢ and
Ag s, Where 4, : E(f) — G*A such that +(x,m) =« for (x,m)e E(f).
By (6.7), dgeagy = (€ ® QSD)A%(,*) + (g ® EI)A;:(f) and deqnp = 1A® SD)AfE(f)
+ (p ® DA%, we have

Ai?(f’)‘," = Aimf')(‘h — 99, 90) =1&® W, — go, 99))4’%0) =(1® ‘I’)Ai:(f) .

Similarly we have 4% 1y = (v @ DA% ,,). q.e.d.
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Summarizing the above we get a map «: (M ,A) - Ex*(M, A) such
that a[f] = [(e;)], where [f] means the cohomology class containing f,
and [(e)] the equivalence class of (e).

Second step: For a two term extension (e) of A by M we consider
the diagram:

(e): 0 > A 6-20(1-—\ X, (_—Sil_“ X e__‘pf__, u 50
o ! & | & |
| 1
E% 1 if
v J ) v
0 A e--e—--' GA 'g:é_i_:) G’A s GA LN GiA

where &, &, and &, are K-module maps such that &¢, = 14,08 + &0, = 14,
o0& + &p, = 1, and ¢, = 1. Since & e Hom (UX,, UA) there is a unique
coalgebra map v,: X, > GA such that 7,y, (see (1.7)). Since 746 = 9400
=1, we have ¢ = Jp, (see (1.7)).

Let X, + X, be the direct sum of X, and X, as K-modules. We give

X, + X, the structure of a coalgebra as follows. Define 4y, x, by
Agyox, = dx, on X, , dyyox, = A%, + 4%, + (9, ® 14, on X,
Then we can easily check the coassociativity of 4y,,x, by the coassocia-
tivity of 4y, the properties of X, and ¢,. If we define ey, x,(x + ¥)
ex, 2 for x + ye X, + X, then X, + X, is a coalgebra.

Take o' ¢ Hom (U(X, + X)), UGA) such that o/(x + ¥) = i@ + V&Y
= engln® + P&y, (Note: Y&, = €& = enY,.) Then there is a unique
coalgebra map p: X, + X, — G’A such that p’ = yg4-p (see (1.7)).

PROPOSITION 5.9. The coalgebra map p is denoted by p(x + ¥) = ey
+ ¥y, where x + ye X, + X, and ¥,: X, — G*A is a K-module map satisfy-
ng diry = yup, ond gl = (€, @ )%, + (I, ® ) dy, + (i ® V).

Proof of 5.9. Define ¢ and ¢': X, — X, + X; by 6'v =2 + ¢, and
0'x = x for xc¢ X,. From the definition of X, + X, and the property of
¢ we can prove that ¢° and &' are coalgebra maps. Since G’A is the
cofree coalgebra on UGA

77GA‘A00°x = 776‘«1‘0(517 + (plx) = P/(x + 901-”) = en \re® + ‘I/'osl%x
= e + Vo1 — Q)T = Y& = 754 P .

By the universal property of G?A pf® = &%, Similarly we get pf’ = e'yr,.
Thus
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(T 4+ 01) = P + (& — DY = e + V0T
which implies that ¢, = d4,. Since p is coalgebra map

gty = (p @ P)dxyix, | XD = (€ ® ¥) 4%,
+ (‘T’x ® 51‘?0)431'1 + (dl‘l/‘o ® ‘p;)Afyl . q.e.d.

By (ii) of Definition 5.2 we know that for ye X,

Aey = 21 (02 @ Ys + 2, Q 0127

(5.10) o )
A%y = Z (¥ ® p; + 02,  27)
where a;,0;€ A,y;,y;€ X, and z,2;€Z = (1 — $£)X,. This implies that

AGﬁAtl{pl = AGM‘F; - (5150 ® 5150)AG2A‘F1
= (51‘!’0 &® tl‘pl)Afr, + (tﬂTﬁ ® 51‘#‘0)113'1 + (dl\b‘o & tl‘l_’l)Ale ’

where ¢, =1 — £'6": G*A — G*A. Put , = ¥, then it follows that ¢,
= d\r, and

AGM‘!’l = (EI‘P'O & ‘Ih)Afrl + (11’1 ® 51""0)4&’, + (dﬁ!’o ® ‘P‘l)Afn

(65.11)
= (30‘1’0 ® ‘!"1)4'5?1 + (‘I’l ® 51‘!’0)42'1 .

PROPOSITION 5.12. (1 ® dyfr)4%.§, = (9, @ Aol and (dyy @ DALE,
= (dpné, Q@ p)wy, where oy M > AQM and wy: M —>MQOA are the
comodule structure maps of M as a two sided A-comodule.

Proof of 5.12. Recall that 15, = ¢& + &g, and & = 1, (see the
above diagram). Assume meM and diym = >, p0; @ m;. We put y =
&m (see (5.10)), then

Ay ém = dyy = Z (o @ Y; + 2, ® 0127)
= Z 0o @ Em; + Z (00 ® 0% + 2: @ 9:27)

where y; = &m,; + ¢x; for some z; € X,. Since ¢, = diy, We have
1® dz‘!"l)Afnf 2 = a® dz‘!"l)(?’o ® & z)wfu = (500 &® dz\b'l‘g 2)(1’3{ .
Similarly, we get (dq, ® D4%.6, = (dn&, gy q.e.d.

PropPOSITION 5.13. Let us put f = dan&, then f is a coderivation
2-cocycle.
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Proof of 5.13. It is obvious that f:M — GA. Put T=® —
g®e + 2@ Using (5.11)
Tdgadr = (%, ® dz*lfl)dfn + (d, ® E‘el%)dfn
+ (" ® Y )((1 Q@ ) A%, — (o, @ DAY .

Since (1 ® ¢)d%, = (o, @ 14y, we have

TAGﬂA\h = (5050‘#0 &® dz‘l’x)Afn + (dz‘h ® 5151‘1’0)43’1 .
By Proposition 5.12 we have

AGSAf = TAGZA‘!"P’EZ = (5050‘!’0 ® dz‘!ﬁ)dfxlgz + (dz‘lfl ® Elsl‘lfo)Afngz
= ('’ ® &)oYy + (A&, ® 'e)wy ,

i.e., f is a coderivation with d,f = 0. q.e.d.

In consequence we get a map B’ from the set of all two term ex-
tensions of A by M to the set of all coderivations of 2-cocycles. By the
definitions of g’ and (e;) we have §': (ef) — f.

PROPOSITION 5.14. Assume f': (e) — f, then (e) ~ (ey).
Proof of 5.14. By our assumption there is the commutative diagram

P1 ¥2

(0): 0—> A4 —/> X, > X, > M >0
‘[% l‘l’l J/f
€ d ds " ds .
0—> 4 > GA 25 A 2> A S5 GA.

Define w: X, — E(f) by wr = (4,2,px) for xeX,. Since dyx = fox
oxc E(f). So we have the commutative diagram

@2

(e): 0— A 25 x, 2 x, 5> M >0
J{i’o J/w “
() 0—> A—5¢64 4 B > n 50

By the definition of 4%, (5.11) and 4%¢p, = (1 ® ¢,)4%, we have 4% 0 =
(W, @ w)dy,. Similarly we get 430 = (0 @ ¥)d%,. So (e) ~ (e). q.e.d.

PROPOSITION 5.15. If (e;) ~ (e;) then f and f’' are cohomologous.
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@: 00— A 2D X, DX, =22 UM > 0
50 51 2
5 ,
. 4 (4
€l): 0—>4 > GA > E() > M > 0
¥1 f
v
¢ dy S ds kN 3 ds 4
0 —> A4 —— GA > G2A > GPA —— G*A
Na N
¥ i
di A N
¢p: 00— 4 > GA > E(") > M >0
AN\
/[zl ’
e: 00— 4 > X, > X, > M >0,

Proof of 5.15. Let us prove that if (e;) < (¢) — (e;,) then f and f’
are cohomologous. With this fact and (5.14) all cases in our proposition
can be proved. Under our hypothesis is the commutative diagram
where &, &, &, are K-module maps such that ¢&, + &, = 15, &0 = 14 =
4 and &, = 1. Define the coalgebra X, + X, by the same way as in
the upper part of Proposition 5.9 and o': UX, + X)) — UA by p'(x + ¥)
=t + pa7’éy for x4+ ye X, + X,, then there is a unique coalgebra
map p: X, + X, —» GA such that y,.0 = p’. By the same way as in the
proof of Proposition 5.9 we can prove that p(x + y) = = + gy for = +
ye X, + X, where g: X, —» GA is a K-module map satisfying g¢, =7 — ¢
and 4g,9 = @)Y, + (g%, + (¢ — D)@ g\, = (¢ @ 9) i, + (9@ 7).
Put y = i’ — Yo — dyg: X, — éz\fl, then yp, = 0. In this case, by a
straightforward calculation we have

ooy = dgeaVio — dgsgtrio — (€ Q& — & @ eNdga9
= [ ® (¥10" — Yo — Ay, + [(Pio — Yo — d,9) ® e'cldy,
+ [ — o) @ Yo — di7’ Q e'gldy,
+ [P ez — 1) — 9  d,]dy, .

Since ('(z' — ) ® YV dy, = ("9 @ d0)dy, and Wi @ (7' — o)Ay, =
(d,7’ @ e'g)dy, (refer 5.10) we have dg. .y = (% Q@ 4%, + (x Q e'r)4%,. Using
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x¢p =0 we can prove that (1® p4%.&, = (0, @ x&)wly and (x ® DAL €, =
(26, ® gy (refer Proposition 5.12). A& = (% @ x&)oy + (1€, @ ooy,
which implies that &, is a normal coderivation. Since dy¢, = f/ — f, f
and f’ are cohomologous. q.e.d.
With Propositions 5.14 and 5.15 we can define 8: Ex*(M, A)— H¥m, A)
by Bl(e)Il = [f()]. In this case pl(ey)] = [f].
Third step: By the definitions of « and § we have

Bal f1 = B[(ef)] =[f], ie., pa = 1ﬁZ(M,A) ’
apl(e)] = alf(e) = f1=alf] = [(ep] = [(e)]
(see Proposition 5.14),

i.e., af = lgmu 4y, and therefore we complete the proof of Theorem 5.4.
(Note that H*M,A) = HAM, A) (see 4.6).)

6. Interpretation of H'(M, A).
The arguments in this section are analogous to those in the preced-

ing section. The detailed description will be omitted. In this section
we assume that A4 is a coalgebra and M a two sided A-comodule.

DEFINITION 6.1. By a (mormal) coderivation 1-cocycle we mean a
normal coderivation f:M — G™A such that d,f = 0. Two such cocycles
f and f’ are cohomologous if there exists a coderivation ¢g: M — GA
such that f — f/ = d,g.

Assume f is a coderivation 1-cocycle. Since G’A = GZA:slGA@éZ\A
coalgebra maps p, and p,: GA+M — G’A are defined by p, = the com-
position GA M XHN a4 2, 624 and p, = (&, f) (see (4.8)). Put

E(f) = Ker (Up, — Up,)
={(x,m)e GAxM|dx = fm for some me M} .

Using the direct sum decompositions GA = A @ C(C = (1 — e9,)GA), G’A
= A PICDPH G'A and the monomorphism d,|C (Proposition 3.5) we have

AGA*M('/'U’ m) = Z [(Ea/i9 0) ® (xi’ mz) + (x':’ m:) ® (ECL;, O)]

for (x,m) e E(f), where x;,2; € GA, dom = 3 (a; @ m; + m; ® @7), djx; =
m; and d,x, = m;. This just indicates that E(f) is a subcoalgebra of
GAxM. So we obtain an exact sequence of K-modules
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€): 0—A—S5E()>M—0,
where ¢a = (eat,0) and ¢(x, M) = m for ac A, (x,m) e E(f).

DEFINITION 6.2. By an extension of A by M we mean an exact
sequence of K-modules:

@: 0— A x>0
satisfying the conditions:

(i) X is a coalgebra and ¢, a coalgebra map,

(i) M is a two sided X-comodule induced by ¢, and ¢, a two sided
X-comodule map. That is,

Ay = (¢, ® Doy , 4y = A& gy ,

where w%: N - AQ@M and oy: M —- M ® A are the comodule structure
maps of M as a two sided A-comodule.

The above sequence (e;) is an extension of A by M, which is called
a standard extension of A by M.

DEFINITION 6.3. For two extensions (¢) and (¢’) of A by M, if there
is an isomorphism +:X — X’ of coalgebras satisfying the commutative
diagram

P1

(e): 0

A 4
v
2
(o=

A2 x M

o

(e): 0—> A8y xr Ay 50,

then we say that (e) is isomorphic to (e’), written (e) = (¢').

Given an extension (e) of A by M there is a coderivational 1-cocycle
f such that (e) = (e;), where the standard extension (e;) corresponds to
f. In particular, for two standard extensions (e¢;) and (e}) if f and f’
are cohomologous then (e;) = (¢}), and conversely if (¢;) =~ (¢}) then f and
f’ are cohomologous.

Let us denote the set of all isomorphism classes of extensions of 4
by M by Ex'(M,A). Summarizing the above we have:

THEOREM 6.4. There is an one-to-one correspondence between H'(M,A)
and Ex'(M, A).
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