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COSIMPLICIAL COHOMOLOGY OF COALGEBRAS

KEEAN LEE

Introduction.

The interpretations of simplicial cohomology groups for associative
commutative algebras and for Lie algebras were given by Beck [2], Iwai
[9] and Shimada and others [15,16]. On the other hand, Jonah [10] gave
a formulation and an interpretation of the second and third cohomology
groups of an associative coalgebra after the Hochschild's treatment [5 — 8],

The purpose of this paper is to deal with cosimplicial cohomology
groups of a coassociative (ungraded) coalgebra (over a field), with coef-
ficient in a two sided comodule (§ 3), and to interpret their first (§ 6) and
second cohomology groups (§ 5), where the dimension indices in the
cosimplicial cohomology are one less than the usual.

We will describe in detail the interpretation of the second cohomology
groups, while we sketch the interpretation of the first cohomology groups,
since the latter is more simple and analogous to the fromer.

In the first section, generalities on coalgebras over a field and
comodules are given, and, in particular, it is proved that the category ^
of coalgebras has (finite) products and difference kernels. We characterize
abelian cogroup objects in the category (A,^) in the second section.
Before interpreting the second cohomology groups, we insert § 4, in which
some properties of cosimplicial coalgebras are verified.

The main theorem of this paper is that Ex2(M,A) « H2(M, A), where
Ex2(M,A) denotes the set of all equivalence classes of two term exten-
sions of a coalgebra A by a two sided A-comodule M and H\M,A) the
second cosimplicial cohomology group of A with coefficient in M
(Theorem 5.4). It seems that furthermore complicated calculations will
be needed to interpret Hn(M,A) (n > 3).

The auther is indebted to Professor Nobuo Shimada for his kind
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guidance, suggestion to the results in this paper and constant encourage-
ment, to Professor Akira Iwai for his advice particularly on the treat-
ment of abelian cogroup objects and cosimplicial coalgebras. Simultane-
ously, the auther would like to express thanks to Professor Hideyuki
Matsumura for his critical reading and improvement of the manuscript.

1. Coalgebras and Comodules

In the sequel we assume that K is a fixed field.

DEFINITION 1.1. A coalgebra over K (or simply a coalgebra) is a

If-module A together with K-module maps

ΔA : A > A ® A , εA : A > K

such that the diagrams

are commutative. The first diagram is called the coassocίativity of ΔA

(p. 5 of [17]), the map ΔA is called the comultίplicatίon of A and εA is
called the counit of A ([14]).

A morphism f: A —> B of coalgebras (or simply a coalgebra map)
is a if-module map satisfying the commutative diagrams

f\ I/
* Λ vb
B<Γ—^ B®B K

If we want to regard a coalgebra map / as K-module map, we shall
denote this by Uf.

Suppose A is a coalgebra and V a submodule of A with ΔAV c; V (x) V.
Then V is a coalgebra with its comultiplication ΔA\V and counit εΛ\V,
and is said to be a subcoalgebra of A. The following are easily proved
([17]).

PROPOSITION 1.2. ( i ) The sum of a collection of subcoalgebras is

a subcoalgebra.
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(ii) The intersection of subcoalgebras is a subcoalgebra.
(iii) The image Uf for a coalgebra map f is a subcoalgebra,

DEFINITION 1.3. Let A be a coalgebra. A left A-comodule is a K-
module M together with a K-module map Δι

M: M -* A ® M such that the
diagrams

M $A®M M >K®M

AΘM ΔA®1 yA®A®M A®M

are commutative. Similarly, with a K-module map Δr

M: M —> M ® A we
can define a right A-comodule, Sometimes Δι

M and Δr

M are called the
comodule structure maps of M. Let M be both a left and a right A-
comodule. If moreover (Δι

M ® l)Δr

M = (1 ® Δr

M)Δι

M, then we call M a two
sided A-comodule. In particular we can regard A as a two sided A-
comodule with Δι

A — ΔA — Δr

A.
If M and M/ are left A-comodules, then a if-module map /': M ->Mf

is called a left A-comodule map if it satisfies the commutative diagram

M

f\

M'-

Similarly, we can define a right A-comodule map and a two sided A-
comodule map.

DEFINITION 1.4. Let A be a coalgebra, and let I be a submodule
of A. We call I a (two-sided) coideal of A if

(i) ΔJ c A (g) 7 + / ® A , (ii) ε̂ 7 = 0 .

In this case we have the following which are easily verified (17]).

PROPOSITION 1.5. (i) The sum of a collection of coideals is a coideal.
(ii) The kernel Ker Uf for a coalgebra map is a coideal.
(iii) For two coalgebra maps f,g: A —> B, Im(Uf — Ug) is a coideal

of B.
(iv) If A is a coalgebra and I a coideal of A, then the quotient
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Ajl as K-module has a natural coalgebra structure induced by the pro-

jection A —> A/L

Let # be the category consisting of all coalgebras over K and coalge-
bra maps. The following is trivial.

PROPOSITION 1.6. # has sums and difference cokernels. Accordingly
# has pushouts.

In consequence # has direct limits (p. 38 of [19]). We shall describe
the definition of cofree coalgebras and its existence following [17].

DEFINITION 1.7. Let 7 be a vector space over K. A pair (FV,ηv)
with FV a coalgebra and a Z-module map ηv: FV —> V is called a cofree
coalgebra on V if for any coalgebra A and a l£-module map / : A —> V
there is a unique coalgebra map h: A —> FV such that the diagram

A ?—

V

is commutative. If there exists a cofree coalgebra on F then it is unique
up to isomorphism of coalgebras.

For each algebra X over K we define

X° — {x e X* I Ker a? contains a cofinite ideal} ,

where X* is the dual of X and a cofinite ideal is an ideal / in X such
that X/I is finite dimensional. We can prove that X° is a coalgebra in
X* with Jχo: X° -> X° <g> X° and εχo: X° -> # defined by Aχo = <p*\X° and
εχo# = χ(l) for # e X°, where φ: X (x) X —» X is the multiplication of X
and φ* the dual of 9.

Given a vector space F over K, let Γ(F*) be the tensor algebra of
F*. Since there is the natural inclusion map i: F* —> Γ(F*) we can define
a Z-module map 37: Γ(F*)°->F**. In this case (Γ(F*)0,^) is the cofree
coalgebra on F** (see p. 126 of [17]). Let FV = 2 W with the sum taken
over all subcoalgebras W of T(F*)° such that ηW c F, and put o?F = ίy|FF
then (FV, ηv) is the cofree coalgebra on F. Thus we have the following.

THEOREM 1.8. For any vector space V over K there is the cofree
coalgebra on it.

https://doi.org/10.1017/S0027763000015002 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015002


COALGEBRAS 203

This theorem says that there is an adjoint pair (C7,F) such that

u

F

where U is the underlying object functor, F the cofree coalgebra functor,
and Jίκ the category of all vector spaces over K. That is, there is a
natural isomorphism in C and in V

(1.8)' λ(C, V): HomΛ 5 Horn* (C, FV)

as sets for C e ^ and Ve Jtκ. In this situation U is the left adjoint of
F (F the right adjoint of U), which is denoted by U —\F in general.
Define natural transformations ε and η by

ε(C) = λ(luc): C - F£7C for C e V ,

(7) rKIJFF) : UFV -* T for 7 G A

with abbreviations ^ = ^(C, C7C) and ^ = ^(F7,7), respectively. Then we
have:

χ(f) = F(/) ε(C) for / e Horn*, (UC, V) ,

(1.10) λ^ip) = η(V) U(p) for ^ G Hom^ (C, FT) ,
, ϋ - Uε = IJJ : i7 -> ?7Ff7 -> C7 , F^ εF = 1 F : F -> FC7F — F .

PROPOSITION 1.11. # feαs (finite) products and difference kernels.

Accordingly <€ has pullbacks.

Proof. Let A and B be coalgebras. We have canonical projections
p1: F(?7A Θ C/β) -^ F?7A and p2: F(?7A 0 ?7B) -> F[/β in ^. Define P =
PϊKεA) Π Pa"1^) which is a subcoalgebra of F(Z7A 0 UB). The projections
pA:p—>A and pB:P-*B are defined by p 4 = e^QίJP) and pB = ε~\p2\P).

Assume f:L-*A and g: L -> B are in #. By the universality of
F(UA®UB) there exists a unique coalgebra map h: L-> F(UA® UB)
such that

VuAφUB h = UfΘUg , Pift = ε/ and ^2^ = e0 .

Therefore ImfccP, p^/ι = ε'^j/t = / and p̂ fe = ε'̂ g/i = r̂. That is, P
is the product of A and j?.

Assume / and g:A-^B are coalgebra maps. Put D1 = Ker (t// — J7#),
and define D2 by D2 = {α e A | JAα cfl j® DJ. Since for aeD^a — (εA ® 1)
•Ĵ α e (εA (x) !)(!)! ® Dj) c A, we have A c A. Inductively, we define D

n
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by Dn = {a e A \ ΔAa c Dn_λ <g> Dn_λ}, then Dn c Dn_x. Put D = Πϊ-i Az,

then it follows that fl is a subcoalgebra of A and the natural inclusion
map i: D —• A is a coalgebra map.

Suppose there is a coalgebra map ft: L —> A with /ft = #ft. Then ftL
is a subcoalgebra of A contained in Zλ So there is a unique coalgebra
map I: L —> D with ΐZ = ft. Thus D is the difference kernel for / and g.

q.e.d.
(Note: In our proposition (finite) means that the first part holds

even if the word "finite" is omitted.) In consequence ^ has inverse limits
(p. 38 of [19]).

2. Abelian cogroup objects in (A,^)

In the sequal we assume that A is a coalgebra.

DEFINITION 2.1. We define a new category (A,^7) whose each object
is A -> B in #, and each morphism is a commutative diagram

for any two objects A-+ B and A -* C in (A, #), where B —> C is in #.
An object βB: A-> B in (A, #) will be denoted by (j85, B) (or simply by B),
and j8B is called the structure map of B.

An abelian cogroup object in (A,#) is an object B such that for any
Ce(A,tf), Hom(iljV) (B, O is an abelian group and

is a covariant functor, where Aδ is the category of all abelian groups
(for abelian group objects see [11]).

Let B be an abelian cogroup object in (A,#). In the commutative
diagram

B

A

with ft the zero element of the abelian group Ή.om.Ut9) (B, A), we put M
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= Ker UγQ, then M is a coideal (see Proposition 1.5), and B is isomor-
phic to direct sum B = A 0 M as K-modules.

Consider the diagram of the pushout

βj>

B
A

then it follows that we have a canonical direct decomposition B MAB =
A@M@M as K-modules. We put

μ = h + i2 e H o m ^ ^ (B, B MA B) .

Identifying A and β^A we have

μa = ixα = i 2

a = (α> 0> 0) for a e A

%xm — (0,m,0),i2m = (0,0,m),^m = (0,m,m) for meM .

PROPOSITION 2.2. Under the above situation

ΔBa — ΔAa for αeA and J β M c A 0 I + M ® A .

Proof. Assume ΔBm = 2 i t α *® m ^ + m i ® α i + m Γ ® m Π for meM,
where aua^eA and mi,m'iym",m"'eM. Since (μ®μ)ΔB = ΔBilAB-μ we
have the following:

ΔBllAB μm = ABllAB(ii + %2)m = (h (x) i^J^m + (i2

+ (0, m'U 0) <g> (0, mΓ, 0) + (0,0, m'ft ® (0,0, mHl ,

and on the other hand,

= 2* iiβu 0,0) ® (0, mu md + (0, mi, m[) ® (α{, 0,0)

+ (0, mi', 0) ® (0, mf, 0) + (0,0, m'l) ® (0,0, mf)

+ (0, m^, 0) ® (0,0, mΠ + (0,0, mJO ® (0, m<", 0)] .

Therefore we have Σ< K°»m^ °) ® (°? ° » m Π + (0,0, m'D ® (0, m^, 0)] = 0,
which implies that £ ] * m ^ ® m Γ — 0. ^ 5 α = ΔAa is clear. q.e.d.

COROLLARY 2.3. With the above situation M is a two sided A-
comodule.

Proof. Since we can put ΔBm = J^t [α̂  ®mi + m[® afi for meM
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we define Δι

M:M-> A®M and Δr

M:M-^M®A by Δι

Mm = Σtαt<g)m< and

J^m — 2]i w&ί ® &*• By the coassociativity of ΔB we know that M satisfies

all conditions (see Definition 1.3) for a two sided A-comodule. q.e.d.

Conversely, let M be a two sided A-comodule. We define ΔA®M: A®M

->(A©M)(g)(A0M) and εA@M:A®M->K by

= ΔA on A , J^φ* = J ^ + J i on M

θ = εAα for (α, m) e A 0 M .

Then A 0 M is a coalgebra, and A 0 M with the natural structure map

A-*A®M is an object in (A,^). The coalgebra A 0 B is called the

coidealization of M, and we shall denote this by A*M.

For an object C in (A,^) and a two sided A-comodule M a coderi-

vation f:M-*C is defined as a Z-module map such that

where meM and ΔA*Mm = J^t [at (x)m< + mj ® α£]. The set of all such

coderivations / : M —> C forms an abelian group denoted by Coder^ (C),

and it gives the coderivation functor

(2.4)

As is well known, there is a canonical isomorphism

(2.5) Coder^ (C) ^ H o m ( i | f ) (A * Af, C) .

We sometimes put Coder^ (C) = Coder^ (M, C). This shows that a coideali-

zation of a two sided A-comodule is an abelian cogroup object in (A,^).

Accordingly we have:

THEOREM 2.6. An object B in (A,^) is an abelian cogroup object

iff there is a two sided A-comodule M such that A*M = B as coalgebras.

We shall denote by ACMA the category consisting of all two sided

A-comodules and two sided A-comodule maps. Since A is an ungraded

coassociative coalgebra over a field K, we can easily check that ACMA is

an abelian category.

3. Cosimplicial Cohomology

We shall begin with the general theory for right derived functors.

Let si be an arbitrary category. We define the category J ^ + whose
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objects are the same as those of si and whose morphisms are formal
sum of morphisms in si, i.e., Hom^+ (X, Y) is the free abelian group on

DEFINITION 3.1. Let / be a class of objects in si. A J-injective
resolution for Xes/ is a cochain complex

in J / + satisfying
( i ) Xn e J f or n > 0
(ii) for each Y eJ the functor Hom^+( , Y) transforms (*) into an

acyclic complex of abelian groups

0 <- Hom^+ (X, Y) <- Hom^+ (Xo, Y) < .

A class of injective models for si is a class J of objects in si such
that each Xe<stf has a /-injective resolution ([3], [18]).

If a category si has a class J of injective models, for each covariant
functor T: si —> J/5 from «s/ to an abelian category J/& right derived
functors RnT: si -> j?/&(n > 0) of Γ with respect to J can be defined as
follows. If X is an object in siy then RnTX is the w-th cohomology
group of

0 > T+Xo ^ Γ+X, ΰ Γ+X

where 0 —> X —> Xo —^> Xj —2-> X2 -> .. is a J-injective resolution of X

and Γ+ : J / + —> ^& is a unique additive functor induced from T. Note
that T+X = ΓX for Xesi. The obvious comparison theorem holds for
J-injective resolutions, and therefore we get a unique functor RnT\<srf —>
J/& up to natural equivalence, which is called the right derived functor
of T. As is well known ([12]),

( i ) X -> Xo induces a natural map TX -> i2°ΓX
(ii) for X e J, ΓX -> i2°TX is isomorphic and RnTX = 0 if w > 0.
It is convenient to use cosimplicial method in studying derived

functors.

DEFINITION 3.2. A cosimplicial object X^ in a category si consists of
( i ) an object Xn e si for each n > 0.

(ii) morphisms e*: Xn-ι —> Xw (0 < i < ^) (coface operators) and
δ*: Xn —> Xw_i (0 < i < ^ — 1) (codegeneracy operators) such that
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£Jεi = £iεj-i if i < y , δW = δΨ+ι if i < j ,

δUι = εΨ~ι if i < j ,

δ*e* = identity = 3V+1,3'e* = e*-1^ if i > j + 1 .

An augumentation for Z^ consists of a map ε: X_x - > Z o e j / with

εh = ε°ε: Z_!-> Zi. If Z * is an augumented cosimplicial object of Z :

ε o -—>

Z ^ : 0 • Z >• Z o > Z t Z w ,

then there is a cochain complex

ch+ X^ : 0 ,I-Uz0ΛzAl2

in J / + , where dn = 2 f = 1 ( - l ) V (w > 1).

We next prove that the category (A, #) has a class of injective models

using a triple, and define right derived functors from (A,*7) to A6.

Recall that there is the adjoint pair U —\F between categories <β and JCU

(§1). There is a triple (G,e,δ) ([1]). That is, put

^ - + ^ , e : l , - > G , δ:GG->G,

where ί = ί>E7: GG - F(UF)U -> FU = G. For

G*A - {GnA\GnA = Gn+1A,n> -1}

we define the following:

(G^A ~^-> GnA) - (GnA GHGn'\ Gn+1A) (0 < i < n)

δί G^G
(Gn+1A • GnA) = (Gn+2A . G*+1A) (0 < i < n) ,

then e* and δι satisfy the identities in Definition 3.2. Therefore we obtain

an augumented cosimplicial object G*A of A with the natural augumen-

tation ε: G_λA — A —> G0A, i.e.,

G^A: 0 • A -!-> GA ^z> G2A .. : GWA . . . .

This sequence together with codegeneracy operators δ* is called the

augumenetd standard cosimplicial resolution of A.
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PROPOSITION 3.3. Let J be the class of all CeV with C ̂  FV for
some V e Jί^ then J is a class of injective models for %?, and ch+ G*A
is a Jrίnjective resolution for A e ? .

Proof. Let us construct a contracting homotopy

S = {Sn I Sn: Hom*+ (GnA, FV) -> Hom^+ (Gn+1A, FV)} in > 0) ,

where G°A = A. For each / : GnA -> FV in ̂  we define STO/ = Fηv-Gf.
Setting

d* = Hom^+ (d»,Fy) (w > 1) and d* = e* = Honv (ε,FF)

= ίK-D^ΪΓ G/ e* - FηyGf.ε* + ± (-ΐ)Ψηv Gf ε*
i=Q i=l

= FηyεF f + ± (-DΨηy.CKf G^eG-*)
ί = l

= / + Σ ( - D ^ ^ Gα e*-1) = / - S-iWί-i/) (» > 1),
ϊ = l

- FηyGf ε = FηyεF.f = f .

(Note: By (1,10) Fηv eF = 1.) So we have d* Snf + Sn_vd*.J = /, and
therefore S = {Sw} is the required contracting homotopy. q.e.d.

Note that each GnA is regarded canonically as an object of (A,^)
with a unique structure map A —• GnA expressed by a composition of
coface operators. By the same way as in the proof of the previous
proposition we can prove that the category (A,^) has a class JA = {A —>
F 7 e (A9<β)\V eJ?k} of injective models. Also, if A —> C is an object in
(A,#) then ch+ G^C is a /^-injective resolution for C.

Let B — A*M9 which is the coidealization of a two sided A-comodule
M, be an abelian cogroup object in (A,^7). Then there is the covariant
functor T = Hom(A^ (J?, __): (A,^)-> A6, and therefore we can define
the right derived functor of T such that

RnTA = Hn 2 Homu^ } (B, GmA) (or ί
0* > 0) ,

where H is the cohomology functor. By (2.4) and (2.5) we have

Hn (Hom(ilf1f) (B, G*A)) ^ Hn (Coderfc (M, G*A))

[ - H»l Σ Coder, (M, GmA))) in > 0) ,
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and put Hn (Coder* (M,G*A)) = Hn (M, A). #W(M,A) is called the n-

dimensional cosimplicial cohomology group with coefficient in a two sided

A-comodule M. Since the functor Coder fc (M, _ ) is left exact we have

THEOREM 3.4. Hom U i ? ) (B, A) ^ Coder* (M, A) ^ H\M, A).

THEOREM 3.5. // 0 -> AT —U- M -^-> M " -> 0 is raαcί in ACMA, then

there is the long exact sequence of the cohomology groups

0 > H°(M", A) • H\M, A)

> H%M\ A) - ^ > H\M", A) > . . . .

Proof. Let z: A * M' —> A * M and j : A * M —* A * M/7 be the induced

maps of i and j , respectively. Assume FV e (A, #) for some V e f̂̂ . We

shall first prove that the sequence

0 < H o m ^ , (A * M7, F F ) < ^ - Hom w > i r ) (A * M,

< ^ - H o m W ι „ (A * M / r, F F ) < 0

is exact, where i* = Hom ( i > ? ) O',FF) and i * = H o m ( 4 ^ ( J , F F ) . We can

easily check that j * is a monomorphism. Take a map / e H o m W t y ) (A^M 7 ,

FV), then by (1.8)' there is a unique Z-module map λ~\f) = f: U(A*M')

-»V. Since U(A*M) ^ t7(A*M0ΘTΓ for some K-module TF, we can

choose a K-module map ^ : ί 7 ( A * M 0 - > F such that ^ C7/ = / . Again,

by (1.8)', there exists a unique coalgebra map g: A*M -> FV in (A,^)

corresponding to g, and therefore, by (1.10) we have λ'Xg-i) — η(V)'Ug>Uι

z= g.JJi = f — λ~ι{f) and g i = / . Therefore /* is an epimorphism. (In

fact, FV is an injective object in ^ ) .

Taking GnA for F F , the usual argument in homological algebra

gives the cohomology exact sequence, as asserted. q.e.d.

We conclude this section with a proposition which will be used some-

times later on. Recall the standard cosimplicial resolution of A. We put

^ : 0 —> UA ^U UGA Ξ

where Udn = C7ε° - Uε1 + • + (-ΐ)nUεn {n > 1).

PROPOSITION 3.6. The augumented cochain complex UG%A is acyclic.

Proof. By (1.9) and (1.10) there are Z-module maps ηn = ηUGnA:
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UGn+1A -> UGnA such that ηn>ε° = 1, ^w-e* = ε^V-i (0 < i < n + 1) and

η.i e — 1. (Note: G_XA = A.) We can easily check ηndn+ι + d^n_! = 1,

and therefore η — {ηn\n > — 1} is the required contracting homotopy.

q.e.d.

4. Cosimplicial Coalgebras.

A cosimplicial object {A* = An\n > 0} in the category # is called a

cosimplicial coalgebra. For an augumented cosimplicial coalgebra of A:

>

A * : 0 • A > Ao £ A, . . . Aw ,

we define ίn: UAn -» C7An and ̂ w : Z7AW+1 -> Ϊ7AW by

t , = (1 - ί/εw C/^^1) . . . ( 1 - C/ε1 Uδ°) (n > 1) , t0 = 1 ^

wn = Uδ°'t0 - W 1.*! + + ( - l ) 1 1 - 1 ^ " - 1 * , . ! (n > 1) ,

^ Q = 0 = W_χ .

For simplicity we shall omit U in UA,Uε\ etc., in the sequel. Then we

have the following.

PROPOSITION 4.1. ( i ) tnε° = dn tn_19 tne = 0 (0 < ί < n) and 1 — tn

(ϋ) e i . t ^ = ( e ^ ^ - Λ V ί^e**,.! = (e^*"1 - e'-13l|-2)e*ί»-2 (2 < < < w).

(iii) tn = ίn+1 + (ew+13» - ε^ 'Oίn, wλere dn - Σ t o (-D'ϋe* (w > 1).

Proof. We can prove (i) by mathematical induction (for detailes

see p. 7 of [16]). (ii) and (iii) follow that 8>tn_x = δHn_2{2 <i<n) =

^ - ^ ( n > 1) = 0, βV = ε°50 and 3*"V = ε^1^"2. q.e.d.

Put Im ίn = ATO (n > 1) and Ao = Ao, then we have the cochain com-

plex of K-modules:

which is called the normalized complex of C7A* (for notation see Propo-

sition 3.6). (Note: Since dntn_λ = tn ε° and t n e* = 0 (i > 1), for a e A ^

<ZW# e An.)

PROPOSITION 4.2. An = ΠΓ-i1 K e r Uδ* for n > 1.

Proof. For each α e Aw tnx — x, and conversely tnx — α; implies that
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x e An, because of tn tnx = tnx = x. Take x e O?~? Ker Uδ1 then tnx — x,

and so xeAn. Conversely, take xeAn then διx = 0, because of δHnx = 0.

q.e.d.

COROLLARY 4.3. A1 is a coίdeal of Aλ.

The proof follows that A1 is the kernel UδQ of the coalgebra map

δ° (Proposition 4.2).

PROPOSITION 4.4. Two cochain complexes UA* and A* are cochain

equivalent.

Proof. Since 1 - tn = untn_x + dnun_x and tn\An — lχn (i.e., tn = l i n ίn)>

two cochain homomorphisms tn: Aπ —> Aw and l^n: ATO -> An are cochain

homotopic with homotopy un. q.e.d.

DEFINITION 4.5. Let A* be an augumented cosimplicial coalgebra of

A. We define

Coder* (M, An) = {/ e Coder* (M, An) | tnf = /} ,

where M is a two sided A-comodule. In this case / is called a normal

coderίvation.

THEOREM 4.6. Hn (Coder* (M, A*)) ^ Hn (Coder* (M, A^)) (n > 0),

where H is the cohomology functor.

Proof. We put (CD)* = Coder* (M, A^) and (CD)* = Coder* (M, A^).

Note that (CD)* is a cochain subcomplex of (CD)*. Since t n and un_x

are linear compositions of coalgebra maps, respectively, for fe(CD)n

tnfe(CD)n and un_J e(CD)n_1. By the same reason as in the proof

of Proposition 4.4 (CD)* and (CD)* are cochain equivalent. q.e.d.

Put Hn (Coder (M, G*A)) = JΪW(M,A). Then we know that Hn(M,A)

^ Hn(M, A) by the above proposition. We shall conclude this section

with description of two properties for cosimplicial coalgebras which are

used in the next section.

PROPOSITION 4.7. For an augumented cosimplicial coalgebra A* of A

the following hold:

(i) Ax = ε!A0 Θ A , (ii) An - (ει)nA, ®An®In(n>2),

where φ means direct sum as K-modules and ln = Xl^te^"" 1 — ε*
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Proof, (i) is clear. Put (εOX + %n + Σi-i C^*"1 ~ ^i+1^)Vi = 0 for

x e Ao, xn e Aw and Vι^An (1 < i < n — 1). Apply (3°)w from the left on

both sides, then x0 = 0, because of (δ°)nίn3n = 0 = C W ^ " 1 - εί+1<5')^ - 0.

Again, apply tn from the left on both sides of the above, then xn = 0,

because of tn(ει)nxQ = 0 = ίΛβW"1 - e<+13*)l/i-

We want to prove that An is spanned by (ει)nAQ,Άn and In. To do

this it suffices to show that there exist x0 e Ao and xn e An for a given

xeAn such that a? = {/)nxQ + xn mod. In. Since a; = ε1^0^ + txx and (εx)r+1

.(εO)r + l _ ( e l)r ( eθ)r = (£r + ψ _ ^-1)^1)^' 6 In + ι = ΣS-1 ^ ^ ~ *t + W)An9 if

we assume that x = (e1)r(3°)rίc + ίr^ (^ > 2) mod. 7r, then we have x =
(jy+i(ff>y+ix + tr+1xmod.Ir+1 by Proposition 4.1. q.e.d.

In the above proposition In (n > 2) is a coideal of An (Proposition

1.5), so we have the quotient coalgebra An — An/In (Proposition 1.5).

Let M be a two sided A-eomodule. Then M is a two sided Aw_Γcomodule,

and hence we have the coidealization Dn_λ — An_x*M of M.

Consider two coalgebra maps p^pλ\ Dn_λ —> An defined by

(4.8) p0 = the composition:

^ . __ Projection . £° Λ Projection ΊDn_x = A n _!*M > A n _ λ > An > A n ,

pλ = the composition:

where / e Coder^ (M, An) with dn + 1/ = 0.

PROPOSITION 4.9. ^ l A ^ = dnλn_x.

Proof. We have to prove that for each xeAn_x ε°x = dnxmoά. In.

By Proposition 4.1 εHn^xeln (1 < i < n), and therefore ε 0 ^ . ^ Ξ dntn_xx

= dnx mod. /„. q.e.d.

5. Interpretation of H\M,A)

In this section we assume that A is a coalgebra and M is a two

sided A-comodule.

DEFINITION 5.1. By a {normal) coderivation 2-cocycle we mean a

normal coderivation f:M-> G3A such that d3/ = 0. Two such cocycles

/ and / ' are cohomologous if there exists a normal coderivation g: M —>

(?A such that / - / ' = <Z2#.
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DEFINITION 5.2. By a two term extension of A by M we mean an

exact sequence (e) of Z-modules:

and

satisfying the conditions:

( i ) Xo is a coalgebra and ?̂0 a coalgebra map,

(ii) Zi is a two sided X0-comodule with (φι(&l)Δι

Xl = (

^! a two sided X0-comodule map,

(iii) M is a two sided X0-comodule induced by φ0 and <p2 a two sided

Z0-comodule map. That is, the structure of M as a two sided XQ-

comodule is induced from the commutative diagrams

A®M M®A

where ωι

M and ωr

M are the comodule structure maps of M as a two sided

A-comodule.

DEFINITION 5.3. The totality of all two term extensions of A by M

forms a category whose each morphism (e)—>(eθ is a commutative diagram

(e): 0

0

M

M

0

0

with ψ0 a coalgebra map and ψx a X-module map such that (ψ0 (g) ψx)Δι

Xl

Δι

x,tyι and (ψj ® Ψo)̂ 5r == ^S 'ΨΊ

For two term extensions (β) and (eθ of A by M they are said to be

equivalent, written (β) — (eθ> if they are connected by a sequence of

morphisms of both direction, e.g.,

The main theorem of this paper is the following.

THEOREM 5.4. Let Ex\M,A) be the set of all equivalence classes
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of all two term extensions of A by M. Then there is a bisection between

Ex2(M,A) and H\M,A).

We will prove this theorem in three steps: i) to define a: H2(M9 A)

-*Ex2(M,A). ii) to define β: Ex\M, A) -> H\M, A), and iii) to prove that

βoc = W , Λ ) and aβ = lExHM,A)(H2(M,A) s H\M, A)).

First Step: Consider the standard cosimplicial resolution of A.

PROPOSITION 5.5. G3A is expressed by the direct sum G3A = (ε 1 ) 2 ^

Θσ&φε'&AΘε'CPA.

Proof of 5.5. At first we prove that I2 = (ε1^ - εΨ)G3A = ει@A ©

ε2G*A. To do this we have to prove that ειG*A c I2 Z) ε2&A. For x e GIA

ε1^ = (ε1^ - eW)e0X eI23 ε2x = (ε2βx - ε^°)ε2^ (Note: δ°X = 0) .

Conversely, for x e G3A and (ε1^0 — ε2^1)^ e /2

(eV - ε^1)^ = ^(1 - εWx - ε2(l - ε1^)^1^ e ε'G^A + ε2@A .

Assume that ειx = ε2y for x,ye G2A. Applying δ1 we have x — y. That

is, ζ}χ — iy implies that ε1^ = ε2x. Applying (1 — ε1^0) we have 0 = ε2^,

i.e., x = 0. So ε # A Π ε 2 ^ = {0}.

In order to complete our proof it suffices to verify that G3A = (ει)2GA

0 G3A 0 /2. But, this is just the case n = 2 in Proposition 4.7. q.e.d.

Put GA = εA © C, C = (1 - e^XrA = ηo^GA,

G2A = e'GAΘG^A = ε°εA® eιC ® N® E ,

N = dxC and E = (1 - dlVGA)@A

G3A - (ε°)2

εA 0 (εx)2C © G14 ©

= (ε°)2εA © (εψC © CPA © eW © εW © ε1^ φ ε2£72 .

Given a coderivation 2-cocycle / we want to calculate ΔG*Ax for x e E

with d2x = fm, where meM. Since G2A is a coideal of G2A (Corollary 4.3)

ΔQ%Ax c G2A0G^A + σλ® G2A

- ε°εA (x) &A + G 2 ^ ® ε°εA + ε!C ® δ U + @A <g> e

xC

So we may put

^G^^ = Σ [eoea< ® ̂  + 3ί (x) e°εaί + ε1^ ® Vt + V
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T I T Π Λ l Λ /"# /Ίf' / ^ Λ /Y* /V*' /)/ /ϊi /"* t^" Λ /ϊ /V /"** # ^ ΛΛ /M Ί Ί *Vl Z0^. /\# O Yΐ rfi ^ ^ £)

WlltJlvJ ^iy W^ fc •**•> •'W* ™i) Uiy ui ^ ^ " -**-> ^ i^ ^ i ^ ^ > *^ij '^i) *^% ) *^i ^ *•* Λ i i v i t / ^ c> ĵ f>̂  ^

eΓ e S

For convenience we put T = ε° (x) ε° — ε1 (x) ε1 + ε2 (g) ε2. We have the

following

7^ /f ^ 7* \ ' (c^c iΊ (\t\ Ύ* I /v»̂  /^/^ ^ eft \

i

i

i

= ΔG,Afm e (ε°)2εA <g) G3A + G3A ® (ε°)2εA = Wo ,

* * 2 ^ ^
Σ ε'̂ i^i ® ε0^ e εW ® G*A + εW ® ε1^ + eW ® ε2£7 + εW ® εW

i

+ e W ® ε W = W2 ,

i ^ ^

Σ ε°^i ® ε2dic'ί e G3A ® εW + εΈ ® ε2iV + ε2£7 ® ε2N + εW ® ε2iV

+ εW ® εW = W4 ,

T Σ nt ® β€ e eW ® G 3 ! + εW ® ε2£7 + εWf® &A + εW ® ε1^

+ εW ® ε2^ = W5 ,

T Σ ei ® K € Ĝ A ® εW + ε2£7 ® εW + (PA ® εW + eW ® ε1^

+ ε2E ® εW = ΐF6 ,

21 Σ (ei7 ® e'ί") e G3-̂ - ® G3^- + GZA ® εx£7 + G3A ® ε2ί7 + ε1^ ® G3A

+ iE (g) G$A + ε1^ ® ε2ί; + ε2E ® ε1^ + ε2ί7 ® ε2ί7 = W7 ,

T Σ < ® < ' e εW ® εW + εW ® εW + εW ® εW = W% .
i

In the above we know the following.

( i ) Each term in Wo does not appear in Wu , W8. This im-

plies that

T Σ (e'Ci <8)iJi + Vi® ε% + nt ® e% + e ® w{

(ii) The term εW(x)ε2i? in T75 does not appear in Wj, •••,1̂ 4, W6,

• , ίF8. Since ε1 and ε2 are monomorphisms we have £!« nι® ^% — 0.
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(iii) The term £E®eW in W6 does not appear in Wu - ,Wδ,W7

and W8. By the same reason as above we have Σ * eι ® ni = 0.

(iv) The term ε2E ® ε*E in W7 does not appear in W ,̂ ,TFβ and

WB. This implies that Σ t < <g) < ' = 0.

(v) Wj does not appear in W2, W3, W4, , PP8. This implies that

Σ i (£l)2c* ® 2̂/< — 0 If w e take {ct} as a base of C we have d 2 ^ = 0

for each ί. So ^ e Λ7\ Similarly y[ e N.

By (i) ~ (v) above we may put

ΔQ*AX = Σ [Λty ® »< + a?{ (

where ai9 a't e A, xί9 xr

t e G2A, c<, ĉ  e C and %, ̂ , n", n"'N. Since

we have T Σ< b 1 ^ ® n£ + n\ ® εxĉ  + < ® < 7 ] = 0. It follows that

Σ

(iii) 2 Σ £ 2 < ® e^Γ - Σ έ<h°i ® ε ' ^ - Σ £ 2 ^ ® e 2 ^ = °

(in eW (X) εW) .

We take {ct} and {c } as bases of C. Then {djcj and {dicj} are bases of

N (Proposition 3.6). Take n" = ê Ct, then we have n< = w"' from (i)

above.

Put nt = n^/7 = e^cί', c r = Σ i α^cj, where atj e K for each i and y.

Then, by (ii) above and n" — dxCi we get n's — Σ« ^lAiCi. These ex-

pressions of nun'i9n" and ^ 7/ satisfy (iii) above.

Using

^ and % = < ' = ^ c ' = d x Σ

we have

Σ

Σ < <8> < ' =
i i

In consequence, writing newly c£ instead of c", for α? e E with <Z2# =

(meM) we have
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't + da (8) £% +

where ai9α e A , x u xf

t e (PA, ci9 c[e C, ΔMMm = 2]* (α* 0 ^ + m;® α{), d 2 ^

= /m< and d2̂ ^ = fm[ for each i.

We put E(f) = {fem)€ffA X M|d2^ = / m for some meM}, and

recall the case n=2 in (4.8). There exist two coalgebra maps ^o,^: Dx •=

G2A*M->&A.

PROPOSITION 5.6. The difference kernel Eλ for p0 and px in <g is just

Ker (UPo - Vpd, i.e., Ex = eιGA®E(f).

Proof of 5.6. Ker (UpQ - UpO = e'GAφEif) is obvious by the

definitions of p0 and px. Using ΔGiAx and ΔΛtMm, for (x,m)eE(f)

JDi(χ, m) = Σ [(e°eα4f 0) ® (xi9 mj + (^, mJO <g> (e°eα{, 0)

+ e% (8) (dxcj, 0) + (d1ci9 0) ® e1^ + (dλcu 0) ® (dj^, 0)] ,

where d2xt = /m<, c?2â  = / m i a n d ΔA*Mm = Σ< (αz ® m< + mj ® α{). This
implies that

^ίeΌA Θ E(f) C (ε^A Θ ^(/)) (8) (eΌA Θ

and therefore Eλ = ε!GA ® £7(/). q.e.d.
Put J^, = ΔDl I εxGA 0 E(J), then we have

^ί^c, 0) = Σ [e1^ ® (^i^ , 0) + to, 0) ® ε1

i
i

Λoo 0) ® (a;,, mt) + (as{, wj) ® (Aαt, 0)
i

+ ε1^ ® (dx<, 0) + (c^c, 0) ® e"ci

where J ^ C = Σ« »< ® vΊ D e f i n e ^*(/>: #(/) -• ̂ A ® ^(/) a n d ΔΈw E(f)
-»£•(/) ® GA by

Λ(/)(diC, 0) = Σ 2/i ® Wil/ί, 0) ,

^ ( / ) ( * , m) = Σ [εαί ® (*<, w-ί) + c« ® (diC , 0)]

Λ</)(<ϊιC, 0) = Σ (d.Vi, 0) ® y\ ,
i

Ar

Elf)(x, m) = Σ K«ί» TOί) ® ^ + (d,ct, 0) ® cί]
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then E(f) becomes a two sided GA-comodule by the coassociativity of

ΔEl. In consequence we have an exact sequence of ίC-modules:

M 0 ,(ef): o > A -^-> GA --U E(f)

where d^x — (dxx,ϋ) and φ(x,m) = m for xeGA and (x,m) eE(f). This

sequence (ef) satisfies the conditions for a two term extension of A by

M, which is called a standard two term extension of A by M.

Next, consider the commutative diagram

E(f) •> M

0 G2A
d2 G3A G*A

where ψ^x, m) = x. By the property of E(f) we know that

(5.7)
( =

PROPOSITION 5.8. If two coderivatίons of 2-cocycles f and f are

cohomologous, then (ef) ~ {ef

s).

Proof of 5.8. By our assumption there is a normal coderivation

g:M -> G^A such that / - f = d2g. Define ψ: E(f) -> E(f') by ψ(x,m)

= (x — gm,m) for (x,m) eE(f). Since cZ2(̂  — gm) = f'm (x — gm,m) e

E(f). So we have the commutative diagram

(β/):

0 GA
±~^ E(f)

We want to prove that the diagram is a morphism (ef) —> (β r ) . Note

that Δι

EifΊψ = J^/jίψ ! — flrp,0, which is defined by J G 2 ^ ! — ΔG2Agφ and

AQA*M9> where ψx: E(f) -* G2A such that ^x{x,m) = x for (x,m)eE(f).

By (5.7), ΔQ*Agφ = (eλ®gφ)Δι

E{f) + (gφ®ελ)Δr

E{f) and ΔQAΛVφ — (1

+ (^ (x) l ) J i ( / ) we have

x - gφ9φ))Δr

Eif) =

Similarly we have Δr

E(r)ψ = (ψ (g) q.e.d.
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Summarizing the above we get a map a: H2(M, A) -> Ex2(M, A) such

that a[f] — [(β/)], where [/] means the cohomology class containing / ,

and [(β)] the equivalence class of (e).

Second step: For a two term extension (β) of A by M we consider

the diagram:

(e): 0 > A τ ^ ϊ Xo ^ ^ Xi jzzhr* M > 0

0 > A τ z ^ z ^ GA

where ξQ, ξx and f 2 are if-module maps such that ξQφQ = 1^, ̂ ofo + fiPi = lχo>

9ifi + ?2̂ 2 = l^i and 2̂f2 = 1^. Since f0 e Horn (UXQ, UA) there is a unique

coalgebra map ψ0: Xo -> GA such that ηAψ0 (see (1.7)). Since oŷ ε = τ]Λψoφo

= 1^ we have ε = ψo^o (see (1.7)).

Let XQ + Xλ be the direct sum of Xo and Xλ as K-modules. We give

Xo + Xλ the structure of a coalgebra as follows. Define ΔXo+Xχ by

ΔχQ+Xl = ΔXo on Z o , JXo+Xl = J ^ + J ^ + (^ (g) 1)J^ on Xλ

Then we can easily check the coassociativity of ΔXQ+XI by the coassocia-

tivity of ΔχQy the properties of X1 and φx. If we define εXo+Xl(x + /̂)

εZo^ for x + 7/ e XQ + Xι then Xo + Xί is a coalgebra.

Take p' e Horn (C7(Z0 + -XΊ), ί/GA) such that ^(x + 1/) = Ψo^ofî  + Ψofil/

= &}AΨO% + ΨoξiΊJ- (Note: ψo9ofo = εfo = ε^ψo ) Then there is a unique

coalgebra map p: Z o + Xγ —> G2A such that ^ = ^G^ /o (see (1.7)).

PROPOSITION 5.9. Γfce eoalgebra map p is denoted by p(x + y) = e^α?

+ Λ^T/, where x + y e Xo + Xi and ^ : ZΊ —> G2A is α K-module map satisfy-

ing d.ψo = ψ l ίOl cmd 4ί?2̂ Ψi = (ε'ψo ® Ψi)Δι

Xl + ( ^ ® ε ^ ) J ^ + (cZ^0 ® ψ x)J^.

Proof of 5.9. Define 0° and θι: Z o -> Z o + Z x by 0°x = α + ^a? and

θιx = a; for a? e Z o . From the definition of Z o + Z x and the property of

<Pi we can prove that θ° and θ1 are coalgebra maps. Since G2A is the

cofree coalgebra on Z7GA

ηGA'pθ°X = ηGAp(x + φλx) = ̂ ( ^

By the universal property of G2A pθ° = ε°ψo Similarly we get ^ = ε

Thus
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p(x + φ,x) = eιψ0X + (ε° - ε 1 ) ^ = ε 1 ^ + ΨiPiίB ,

which implies that ψ^ = c^ψv Since /? is coalgebra map

ΔQ*A$I = 0> ® p)(ΔZo+Zl I Xd = (ε>o ® WZι

+ (fc ® e ^ o ) ^ + (diΨo ® Ψ i ) ^ . q e.cL

By (ii) of Definition 5.2 we know that for yeXi

Διxxv = Σ (poΛi ® 2/i + is* ® ΨA) ,
(5.10) *

^ i ^ = Σ (»ί ® Pb^ + ?>!«* ® 2 •) ,

where ai,a'iGA9yi9y'ieXι and s * , ^ e Z = (1 — ^o?o)^o This implies that

where tx = 1 - ε1^: G2A -* G2A. Put ψ, = tfa, then it follows that ψ1?>2

= cZiψo and

(5 11) J G M Ψ I = ( £ l ψ o ® ψ l ) d ' 1 + ( Ψ l ® e l ψ o ) J i l + ( d l Ψ o ® Ψ l ) J ^ x

- (ε°ψo ® Ψ i ) ^ + (Ψi ® e'Ψo)^ .

PROPOSITION 5.12. (1 ® d2ψι)Jι

Xlξ2 = (<p0 (g) dgψx^ωir αncί (dg-ψΊ

= W2Ψ1& ® 9o)^i, where ωι

M: M —• A ® M and ω^: M —> M ® A are

comodule structure maps of M as a two sided A-comodule.

Proof of 5.12. Recall that lZl = ^ft + ξ2φ2 and 2̂f2 = 1M (see the

above diagram). Assume meM and J^m = Σ * Ψoaί ® m i We put 2/ =

f2m (see (5.10)), then

Δι

Zlξ2m = J^i/ =

= Σ Pô < ® ξ2mi + Σi
ί i

where ^ = f2̂ * + Pî < f ° r some ^ e Z 0 . Since ψ ^ = dλψ0 we have

(1 (x) (̂ ψx) J^ f 2 = (1 ® ί̂ ψxXpb ® ξ2)ωι

M = (ψo ® djψxf 2)ω^ .

Similarly, we get (cZ2^ ® 1 ) 4 ^ = (daψxf2 ® φo)ωr

M. q.e.d.

PROPOSITION 5.13. Let us put f — d^ψΆ, ίfeβn / is α coderivation

2-cocycle.
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Proof of 5.13. It is obvious that f:M-*G3A. Put

ε1 ® ε1 + ε2 ® ε2. Using (5.11)

T^βwf i = (A ψ,

Since (1 ® ft)Δr

Xl = (ft ® 1)Δι

Xl we have

By Proposition 5.12 we have

= (ε°ε°ε (

i.e., / is a coderivation with d3f — 0. q.e.d.

In consequence we get a map β' from the set of all two term ex-

tensions of A by M to the set of all coderivations of 2-cocycles. By the

definitions of β' and (ef) we have β': (ef) •->• / .

(β):

PROPOSITION 5.14. Assume βf: (e) •-> / , then (e) ~ (ef).

Proof of 5.14. By our assumption there is the commutative diagram

ψθ φι ψ2
0 0

0 GA G2A
d*

G*A.

Define ω\X1-*E(J) by ωa; = (ψ,*,^) for xeXx. Since d^x = fφ%x

ωx e J5(/). So we have the commutative diagram

(e): O

0

ΪΌ ψl
->• i l / -> 0

Ψo

By the definition of άι

Έ(r), (5.11) and Δι

Mψ2 = (l®φ2)ΔXι we have Δ^ω =

Oh ® ω)J^. Similarly we get Δr

EU)ω = (ω ® ψo)^x, So (e) ~ (β/) q.e.d.

PROPOSITION 5.15. / / (ef,) then f and f are cohomologous.
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(e):

(e):

G'A

Proof of 5.15. Let us prove that if (ef) «- (e)^> (e r ) then / and / '

are cohomologous. With this fact and (5.14) all cases in our proposition

can be proved. Under our hypothesis is the commutative diagram

where ξ09ξu ξ2 are Z-module maps such that φoξo + $^ = lXo, ξ0φ0 = 1A =

ηΛε and φ2ξ2 = 1^. Define the coalgebra Xo + Xλ by the same way as in

the upper part of Proposition 5.9 and pf: U(X0 + XJ -* UA by p\x + y)

= ίŷ τα; + ηAτ'ξ{y for a? + /̂ e Xo + X19 then there is a unique coalgebra

map p: Xo + Xλ -» GA such that ηA p = p' By the same way as in the

proof of Proposition 5.9 we can prove that ρ(x + y) = τx + gy for x +

y e Xo + Z, where g: Xx —> GA is a K-module map satisfying gφx — τ' — τ

and ΔGAg = (τ®g)Δι

Xl + (g®τ)Δr

Xl + ((τ' - τ)®g)Δι

Xl = ( τ 7 ® ^ ) ^ + (flf®r)Jtie

Put χ = ψ X — ψxω — di^: Z x -^ G2A, then χ x̂ = 0. In this case, by a

straightforward calculation we have

(e° (x) ε° - ε1 (g)

ψ V - ψ i ω - dλg)]ΔXl + [(ψj

- τ) ® ψΊω - diτ' ®

® ε 1 ^ - r) - ε°g ®

Since (ε°(τ' - τ) ® ψ Ί ω ) ^ = (ε°g ® d1τ)Jj1 and

(dλτ
f ® ε ^ ) J ^ (refer 5.10) we have JG Mχ = ^ + (χ ® e ^ J ^ . Using
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χφ, = 0 we can prove that (1 <g) χ)άι

Zlξ2 = (y>0 ® χf 2)ωir and (χ <

(χ?2 ® <Po)o)rM (refer Proposition 5.12). J σ M χf = (ε°ε ® χf2)ω^ + (χξ2 ® e°β)ωi,

which implies that χf2 is a normal coderivation. Since d2χξ2 — f — f9f

and / ' are cohomologous. q.e.d.

With Propositions 5.14 and 5.15 we can define β: Ex2(M,A)-*H2(m,A)

by β[(e)][ = [/3'(e)]. In this case β[(ef)] = [/].

Third step: By the definitions of a and β we have

βa[f] = flCe,)] = [/] , i.e., j8α - l*.<jrfii> ,

ctβ[(e)\ - α^ίe) - /] - a[f] = [(ef)] = [(e)]

(see Proposition 5.14),

i.e., αr/3 = 1EXHM,A)> ^nd therefore we complete the proof of Theorem 5.4.

(Note that H\M, A) ^ H2(M9 A) (see 4.6).)

6. Interpretation of H\M,A).

The arguments in this section are analogous to those in the preced-

ing section. The detailed description will be omitted. In this section

we assume that A is a coalgebra and M a two sided A-comodule.

DEFINITION 6.1. By a {normal) coderivation 1-cocycle we mean a

normal coderivation /': M —> G2A such that d2f = 0. Two such cocycles

/ and / ' are cohomologous if there exists a coderivation g: M —> GA

such that f — f = dλg.

Assume / is a coderivation 1-cocycle. Since GM. = G2A — εxGA®G2A

coalgebra maps <o0 and pι: GA * M —> G ϊ i are defined by #, = the com-

position GA*M P r°3 e c t i o n

> GA - ^ G2A and Pι - (ε1,/) (see (4.8)). Put

E(f) = Ker (UPo - UPί)

= {(«, m) e GA * Λf | dγx = fm for some meM} .

Using the direct sum decompositions GA — εA 0 C(C = (1 — ε2ŷ )GA), G2A

= ε°εA 0 ειC 0 (PA and the monomorphism ^ | C (Proposition 3.5) we have

ΔQA*M(X> m) = Σ [( ε t t^ 0) ® («<>m^) + (χ't> m0 ® (eα{, 0)]

for (ίc, m) e E(f), where aj4, ̂  e GA, ΔMMm = Σ t (α« ® m< + m^ ® <), dί^ =

m< and d^ = mj. This just indicates that Z?(/) is a subcoalgebra of

GA*M. So we obtain an exact sequence of If-modules
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(ef): 0 >A^-

where ε'a = (εα, 0) and £)(#, M) — m for α e A , (#, m) e

DEFINITION 6.2. By an extension of A by M we mean an exact
sequence of X-modules:

(e) : o • A -^-> Z ~^-> M > 0

satisfying the conditions:

(i) Z is a coalgebra and ^0 a coalgebra map,

(ii) M is a two sided Z-comodule induced by <p0, and φ1 a two sided
Z-comodule map. That is,

Δι

M = (ψo ® Dωif , J5r = (1 ® ̂ )ωϊr ,

where ω^: ΛΓ -> A (x) M and ω^: M -> M (x) A are the comodule structure
maps of I as a two sided A-comodule.

The above sequence (ef) is an extension of A by M, which is called
a standard extension of A by M.

DEFINITION 6.3. For two extensions (β) and (eθ of A by M, if there
is an isomorphism ψ: Z —> X' of coalgebras satisfying the commutative
diagram

(e): 0 — » A ^ X ^ > M —> 0

(eθ: 0 > A ~ ^ > Z r -^-> M > o ,

then we say that (e) is isomorphic to O0> written (e) « (e;).
Given an extension (e) of A by M there is a coderivational 1-cocycle

/ such that (e) « (β/), where the standard extension (ef) corresponds to
/. In particular, for two standard extensions (ef) and (e$0 if / and f
are cohomologous then (ef) « (β^), and conversely if (β7) « (e'f) then / and
/ r are cohomologous.

Let us denote the set of all isomorphism classes of extensions of A
by M by Ex\M,A). Summarizing the above we have:

THEOREM 6.4. There is an one-to-one correspondence between H\M9A)
and Ex\M,A).
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