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1. Introduction. Let us consider the Cauchy problem
r p, + v . Vp = 0

p[v, + (v . V)v] + Vp = juAv + pf
divv = 0 (1.1 :ju)

P |,=o = Po(x)
„ v |,=0 = v()(x)

in QT = 1R3 x [0, T], where f(x, t), p(l(x) and v(l(x) are given, while the density p(x, t), the
velocity vector v(x, t) = (vl(\, t), v2(\, t), v3(\, t)) and the pressure p(x, t) are unknowns.
The viscosity coefficient (i is assumed to be nonnegative. In these equations, the pressure
p is automatically determined (up to a function of t) by p and v, namely, by solving the
equation

div(p-'Vp) = divdup"1 Av + f- (v . V)v). (1.2)

Thus we mention (p, v) when we talk about the solution of (1.1: ju).
The purpose of this paper is to establish the uniform convergence of the solution of

(1.1: n) with n > 0 to the solution of (1.1:0) as n -> 0. We wish to prove

THEOREM. Assume that

p»(x) — p e H3(IR3) for some positive constant p, (1.3)
inf p,)(x) = m > 0 and sup p()(x) = M <°°, (1-4)

v,,(x)e//3(R3) and divv(, = 0, (1.5)
f(x,f)eL2(0, T:H3(U3)) (1.6)

and
H^l. (1.7)

Then there exists T* e (0, T] independent of ;U such that the problem (1.1: jit) has a unique
solution (p, v) which satisfies

{p-p,y)e L"(0, T*: //3(!R3)) x L°°(0, T*: //3(IR3)) (1.8)

v s eL 2 (0 , r :H 3 (R 3 ) ) provided /u > 0. (1.9)

Moreover, let (p", v") 6e t/ie solution of (1.1:0) and (p*\ vM) r/ie solution of (1.1: ju) wif/j
^ > 0. 7/iert we have

where \\. \\k = \\. ||W*(K3).

suj)ij||(p
0-p'')(0||l+||(v0-v'')(0||l]->0 as /i (1.10)
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In the case that p = 1, we refer to Ebin and Marsden [2] and Ladyzhenskaya [4].

2. Preliminaries. In this section we obtain an a priori estimate for solutions of
(1.1 :/z). Let (p, v) be a sufficiently regular solution.

LEMMA 2.1. If we put

P = P~P (2.1)

and

H3+H*)ll3T<fc, (2-2)

then

sup ||p(.s)ll3 = ||po||3 + cW(r), (2.3)

where po = p0 — p and c is a positive constant depending only on imbedding theorems.

Proof. It follows from (1.1: ju), and (1.1: ju)4 that p satisfies the equation

Applying the operator Da( = (d/dxl)
a'(d/dx2)

a2(d/dx3)
a3) to (2.4),, multiplying the

result by Dap, integrating over R3 and adding in a with |a'|(=ar, + a2+ ^3) = 3, then
we have

|llp(0lli^f||v(0ll3llP(0lli (2.5)

Hence, by Young's inequality, it is easy to see that (2.3) holds.

LEMMA 2.2. Put

A = \ + Hpolli (2.6)

and

f \\lf \W)\\ldt. (2.7)

Then we have

W)ll§+ f WvMds + J \\yx(s)\\jds^c[A2B + A(A + B)yV(t) + (A + B)nt)2 + nt)%
A) A)

(2.8)

where c is a positive constant depending only on m, M and imbedding theorems.

Proof. We first note that

m^p(x,t)^M, (2.9)
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since we have the representation

p(x ,0 = Pi)(y(T,x,0|r-o), (2-10)

where y(r, x, t) is the solution of the Cauchy problem

(2.11)

(i) We multiply ( l . l : / i ) 2 by v and integrate over IR3. Taking (1.1:ju)i, (1.1:/*)3 and
(2.9) into account, we get

where we use the notation Dku = H]a]=kD
au. Multiplying by v, and integrating over R3

then gives

m||V'll(' + 2 l l | D v | l ( ' = M(l|v|lll|£>V|lll|V'llo+l|f|l()l|V'llo)

^c.dlvlll+HfllfO+ylWlg. (2.13)

Thus

/n||v,||?, + ^ | | |Dv| |5Sc2( | |v | |5+| | f | |g) . (2.14)

Here and hereafter cy are positive constants depending only on m, M and imbedding
theorems.

(ii) Apply the operator D" with |a| = 1 on each side of ( l . l : / i ) 2 , multiply the result
by D\ and integrate over U3. Then, similarly to (i), we get

^c4(| |Dp||4
2 + ||v||i + \\y\\4

2 + ||f||?) + 1 ||v,||g. (2.15)

If we multiply by D"v, and integrate over U3, then we have

^j||Dv||()
2 at

|f||()||Dv,||0+ ||Df||0||Dv,||0)

g+ ||Df||2) + 1 ||Dv,||2. (2.16)
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Therefore

(iii) Adding (2.

dt

c

14)

II /"j2<

~~ II U

to (2.

2 d

15),

SHIGEHARU ITOH

we get

92v||2^c8(||Dp||

|f]. (2.17)

(2.18)

Thus, noting that n ^ 1, we get

\l+ \\Dy\\l + fif \\D2y\\Us^c9[B + nt)l (2.19)

(iv) Making use of the operator Da with |a| = 2 in place of the operator Da with
|<x| = 1 and repeating the argument in (ii), we have

\ t + | | | | I + | | f | | !+ | | | | 2 )+ IMI5+ IMII+ I|f|l2+ l|v,||2) + y ||Dv,||g (2.20)

and

dt

(v) If we add (2.17) to (2.20), then we obtain

+ \\Dp\\i + ||v||5 + ||v||22 + ||f||2 + ||v,||2]. (2.22)

Hence, due to (2.3) and (2.19),

[ ||Z)v,||2^ + /i||D2v||2+||D2v||2 + M f \\D\\\Us
Jo Jo

^ cH[AB + (A + B)W(f) + W(02]. (2.23)

(vi) Applying the operator Da with |o| = 3 to (1.1: JL*)2, multiplying by Dav and
integrating over R3, then we have

~\\Vp~D\\\i+p\\D*n2
0

^ cl6(\\Dp\\4
2 + llvlla + ||v||i + ||f ||2 + ||v,||(

2 + ||Dv(||
2) + y ||D2v,||2. (2.24)
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(vii) Add (2.21) to (2.24). Then, due to (2.3), (2.19) and (2.23), we get

f \\D\\\Us + /i\\D\\\l + \\D\\\l + n f \\D\\\lds
A) ->o

^ cn[A2B + A(A + B)W(0 + (A + B)W(/)2 + V(f)3]. (2.25)

Consequently, it follows from (2.12), (2.19), (2.23) and (2.25) that (2.8) holds.

LEMMA 2.3. There exists T* = T*(c, c,A,B)e (0, T] such that

< P ( f ) S l for t^T*. (2.26)

Proof. From Lemma 2.1 and Lemma 2.2, we have a differential inequality

jty(t)^Ly(t)\ (2.27)

where y(t) = 1 + ̂ ( 0 and L = [ccA2(l + B)f. We conclude that

y(t) ^ (1 - 5L/)"1/5 provided / < (5L)"1, (2.28)

and thus

y(f) = 2 for / S f =31/160L. (2.29)

Because of the above lemmas, the following is easily proved.

PROPOSITION 2.4. There exists a positive constant c = c(c, c, A, B) such that

sut•up [l|p(Olli+Hv(Olli]+f IM|i* + 4 l|v,||!*sc. (2.30)
i'Sr* Jo J()

3. Proof of Theorem. We first prove the unique solvability of (1.1 :/*). We apply the
semi Galerkin method with the basis in //4((R3)n/ provided fi = 0 and H5(U3)r\J
provided |U>0, where / = {u e {Co(lR3)}3: divu = 0}. Our approach is completely
parallel with that of [1, Chapter 3] without any specific difficulty. To be brief, estimates of
the type (2.9) and (2.30) are true for the semi Galerkin approximations and these are
sufficient in order to pass to the limit. Hence we can verify the existence of a unique
solution of the problem (l.lifi) as well as the applicability of the inequalities (2.9) and
(2.30) to it. For the detail we refer to [1].

Next we prove (1.10), which is the main result in this paper. If we subtract (1.1 :ju)
with fi>0 from (1.1:0), then we get the following linear system for T = p° —p*\

T, + v".VT=-w.Vp'\

p"[w, + (v" . V)w] + Vq = -p"(w . V)v° + ( V 7 p > - MAV = F,

divw = 0, (3.1)
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From this, by proceeding in the same way used for getting a priori estimates, we have

^ i^. f llwC*)||l rfs (3.2)

and

fVll!<k, (3-3)

where K{ and K2 are positive constants depending only on sup H

sup llv^/)!!^, T*, m, M and imbedding theorems.

Let us estimate for the right hand side of (3.3). To begin with, by the usual
calculation, we get

H(P"(W . v K
|w(0lll. (3-4)

where Kj is the constant of the theorems of imbedding.
Next, from (1.1:0)2 and (3.2), we obtain

\\l + WAOWI+ llAOIIillflAOIlDr \Ws)\\lds, (3.5)
Jo

and thus it follows from Proposition 2.4 that

f \\F(s)\\2
2ds^K4(n+l \\*{s)\\lds) , (3.6)

where K4 = K4(K2, K3, T*, M, c).
Hence, if we put K = K}K4, then

( | " ) (3.7)

and, by Gronwall's inequality,

\\vr(t)\\2
2£Kp(Kexp(KT*)-l). (3.8)

Now, because of Lemma 2.3 and Proposition 2.4, we find that K and T* are
independent of ju, which completes the proof of the theorem.
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