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Abstract. We review nonlinear force-free field (NLFFF) modeling of magnetic fields in active
regions. The NLFFF model (in which the electric current density is parallel to the magnetic
field) is often adopted to describe the coronal magnetic field, and numerical solutions to the
model are constructed based on photospheric vector magnetogram boundary data. Comparative
tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular
associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling
is often applied, in particular to flare-productive active regions. We examine the results, and
discuss their reliability.
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1. Introduction
Sunspot magnetic fields power large scale solar activity, i.e. flares and coronal mass

ejections (CMEs), which can produce space weather storms (e.g., Baker et al. 2008).
Terrestrial space weather effects motivate the modeling of active region magnetic fields.
Accurate models may assist with understanding and quantifying processes of magnetic
energy storage and release, and may lead to improved event prediction.

A variety of models may be used to represent active region coronal magnetic fields.
Magneto-hydrodynamics (MHD) provides a time-dependent model for the field B, the
fluid velocity v, the fluid pressure p and the fluid density ρ. Numerical solution of the
MHD equations requires specification of initial values for the dependent variables, and
boundary conditions on the variables at all times. The process is computationally in-
tensive and requires detailed boundary conditions. The model is not generally applied
directly to solar data (but see e.g., Amari, Canou & Aly 2014). More often it is applied
to prescribed boundary and initial configurations which resemble solar configurations,
or else solar data are combined with synthetic boundary data in some way. Magneto-
hydrostatic modeling is a simpler, static approach, involving a boundary value problem
for B, p, and ρ. In principle this model may be useful for modeling from solar data, but
it has not been widely used to date (but see e.g., Gilchrist & Wheatland 2013; Wiegel-
mann, Petrie & Riley 2015). The nonlinear force free field (NLFFF) model is a static
model presenting a boundary value problem for the field B alone. Numerical solution of
this model is less computationally intensive than MHD, and it is often applied to solar
boundary data (photospheric vector magnetograms).

The NLFFF model has become popular, with dozens of papers a year presenting solu-
tions to the model for solar data, and interpreting and using the results (an ADS search
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for abstracts containing the words “nonlinear”, “force”, “free” and “solar” returned 40
refereed papers for 2012, 46 papers for 2013, and 44 papers for 2014). A basic problem
with NLFFF modeling is that the boundary data are in general inconsistent with the
model, as highlighted by the comparisons of results for NLFFF methods presented in
Schrijver et al. (2008), Metcalf et al. (2008), and DeRosa et al. (2009). This problem is
rarely discussed in new papers using the model. Recently DeRosa et al. (2015) revisited
the question of the reliability of NLFFF modeling in application to solar data, presenting
results for a number of different NLFFF codes applied to vector magnetograms prepared
with different spatial resolutions.†

This paper presents a brief review of NLFFF modeling, including the solar data used,
the details of the model and of the boundary conditions, and the problem of inconsistency
and its effects on methods of solution of the model. Strategies for assessing the reliability
of results are discussed.

2. NLFFF modeling
2.1. Vector magnetogram data

Vector magnetograms are maps of the photospheric vector magnetic field B = (Bx,By ,Bz )
in local cartesian heliographic coordinates, where z is the local radial direction. The field
values are constructed from observations of magnetically sensitive spectral lines formed
close to the photosphere (del Toro Iniesta 2003). Stokes Polarimeters measure polarisa-
tion profiles I(λ), Q(λ), U(λ), V (λ) as a function of wavelength λ across spectral lines,
for points within fields of view on the disk, or for the whole disk. The magnetic fields
parallel to, and perpendicular to, the line of sight are obtained from the polarisation
measurements by applying a radiative transfer model. This process is known as Stokes
inversion. The vector components of the fields are obtained after resolution of the intrin-
sic 180 degree ambiguity in the direction of the field perpendicular to the line of sight
(Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009). In principle vector magnetograms
provide boundary conditions for NLFFF modeling, as discussed below.

Vector magnetogram data are now routinely available. In particular satellite obser-
vations are provided by the Solar Optical Telescope Spectro-Polarimeter (SOT/SP) on
board Hinode (Tsuneta et al. 2008) and the Helioseismic & Magnetic Imager on the Solar
Dynamics Observatory satellite (SDO/HMI) (Scherrer et al. 2012).

2.2. The model and the boundary conditions
The NLFFF model for the coronal magnetic field (e.g., Wiegelmann & Sakurai 2012) is:

J × B = 0 and ∇ · B = 0 (2.1)

where J = μ−1
0 ∇× B is the electric current density, which is everywhere parallel to the

magnetic field. Introducing the force-free parameter α via

J = αB/μ0 , (2.2)

the equations may be rewritten as:

B · ∇α = 0 and ∇× B = αB. (2.3)

The boundary conditions for the problem in a half space z > 0 (e.g., Grad & Rubin 1958)
consist of the values of Bz at z = 0, together with the values of α at z = 0 over one

† The data presented in DeRosa et al. (2015) are available online, including NLFFF solution
cubes for the different methods. See the paper for details.
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polarity of Bz (i.e. the region where Bz > 0, here denoted P , or the region where Bz < 0,
here denoted N). Values of Jz may be prescribed instead of α, according to Eq. (2.2).

Some methods of solution of the force-free equations use as boundary conditions the
values of B over both polarities of Bz , i.e. over both P and N . This defines Jz over both
polarities using

Jz =
1
μ0

(
∂By

∂x
− ∂Bx

∂y

)
(2.4)

and is formally an over-prescription.
The methods of solution of Eqs. (2.3) applied to solar data are iterative. These in-

clude Grad-Rubin iteration (e.g., Grad & Rubin 1958; Amari, Boulmezaoud & Aly 2006;
Wheatland 2007), optimization (e.g., Wheatland, Sturrock & Roumeliotis 2000; Wiegel-
mann 2007) and the magnetofrictional method (e.g., Valori, Kliem & Keppens 2005).

In this paper we present NLFFF solutions calculated with a Grad-Rubin code (CFIT).
The Grad-Rubin method involves two steps at each iteration. First, currents are run
along the field lines of a given field, subject to the boundary conditions on α. Second,
the field due to this current configuration (and subject to the boundary conditions on
the field) is calculated. This provides a new field configuration for the next iteration.

The process of solution of the NLFFF model for given solar boundary data is often
referred to as NLFFF ‘reconstruction’, or ‘extrapolation’.

2.3. The problem of inconsistency and its effects

Studies comparing NLFFF reconstructions using different methods of solution applied to
given vector magnetograms have revealed basic problems (Schrijver et al. 2008; Metcalf
et al. 2008; DeRosa et al. 2009; DeRosa et al. 2015). The results may not be accurate
solutions to the NLFFF model, for a given solution method, and the results produced
by different methods may not agree with one another. In particular they may have
substantially different magnetic energies and magnetic free energies, and they may reveal
different field line structures.

The problems arise in part from inconsistency between the boundary data and the
model. Molodenskii (1969) identified a set of integral identities which must be met in a
boundary by a NLFFF, and these identities are generally only approximately satisfied
for photospheric vector magnetogram data (e.g., Metcalf et al. 1995; DeRosa et al. 2009).
The boundary field values are uncertain due to errors in measurements and field inference
(e.g., Leka et al. 2009), but the results also imply non-magnetic forces at the photospheric
level (e.g., Metcalf et al. 1995). The NLFFF model may provide a good approximation
to magnetic fields in the magnetically-dominated solar corona, at most locations and at
most times, but in the denser photosphere forces due to gas pressure, gravity and fluid
flows are important. The boundary field is not force free.

The influence of inconsistency on NLFFF modeling depends on the method of solution
of the equations. In the following we briefly describe the effects for two popular methods.

Grad-Rubin iteration
Grad-Rubin methods use the formally correct boundary conditions for the problem,

described in § 2.2. However, vector magnetograms permit calculation of α values over
both the P and the N polarities (e.g., via Eq. (2.4)). Hence the data provide two sets of
boundary conditions and allow calculation of two solutions (the P and the N solutions).
For inconsistent boundary data, the two solutions may be substantially different. Also,
a Grad-Rubin iteration sequence may not converge. In practice it is difficult to achieve
convergence for solar data, and approximate solutions are obtained by a process of trial
and error in which the boundary data are modified, e.g., by smoothing Bx and By values
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Figure 1. P and N solutions for AR10978 on 12 Dec 2007. The two panels show sets of field
lines traced from common starting positions (indicated by the asterisks), for the CFIT bin 4 P
and N solutions described in DeRosa et al. (2015).

before calculation of α values (e.g., Canou et al. 2009), or by ‘censoring’ α values, i.e.
assigning α = 0 in weak field regions (e.g., Wheatland & Leka 2011; Amari, Canou &
Aly 2014).

Figure 1 illustrates the effects. The figures shows two of the CFIT solutions discussed
in DeRosa et al. (2009), which are constructed for a vector magnetogram based on Hinode
SOT/SP data for active region AR10978 observed on 12 December 2007. The two panels
show the CFIT bin 4 P solution (left) and the CFIT bin 4 N solution (right). The
views look down vertically on the computational domain, and the red and blue in the
background indicates positive and negative values of the vertical field Bz . The blue and
purple curves are sets of field lines originating from sets of points in the lower boundary
(the starting positions are indicated by asterisks). The purple field lines appear similar
for the P and N solutions, but the blue field lines are qualitatively different. For these
solutions values of α are censored to achieve approximate convergence of the Grad-Rubin
iteration sequence. The free energies of the P and N solutions are similar: EP /EP,0 = 1.11
and EN /EN,0 = 1.10, where EP,0 and EN,0 are the reference potential field energies.

Optimization
Optimization (e.g., Wheatland, Sturrock & Roumeliotis 2000; Wiegelmann 2007) uses

values of B over both P and N as boundary conditions. In principle there is only one
result, but for inconsistent boundary conditions the result cannot be an accurate solution
to the model. The result may have J×B �= 0 and/or ∇·B �= 0. (The optimization method
uses initial conditions with explicit departure from the ‘solenoidal’ state ∇ ·B = 0. If an
accurate solution to the model is obtained, it is close to solenoidal.)

Preprocessing is often applied to vector magnetogram data prior to use of optimization
(Wiegelmann, Inhester & Sakurai 2006; Wiegelmann & Inhester 2010). In this procedure
the field boundary values are altered to better satisfy the Molodenskii (1969) conditions.
In practice preprocessing is found to improve the quality of NLFFF solutions based on
some metrics. However, the Molodenskii integrals represent necessary (but not sufficient)
conditions for the existence of a NLFFF, and preprocessed boundary conditions are in
general still inconsistent with the model (e.g., DeRosa et al. 2009).

2.4. Changes in the boundary conditions

As § 2.3 suggests, it is generally necessary to change the boundary values provided by a
vector magnetogram to achieve a satisfactory solution to the NLFFF model.
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Figure 2. Changes in the boundary conditions for the horizontal field of AR10978 (by compar-
ison with the vector magnetogram) for the CFIT bin 2 P solution (DeRosa et al. 2015). The
top panel shows the magnitude of the field, and the bottom panel shows the magnitude of the
change.

Figure 2 illustrates the size of the changes required for one of the solutions in DeRosa
et al. (2015). The figure shows the changes in the boundary values of the horizontal field
Bh =

√
B2

x + B2
y for the CFIT P solution at the bin 2 resolution. (The Grad-Rubin

method does not change the vertical component of the field.) The top panel shows the
magnitude of the horizontal field, and the bottom panel shows the magnitude of the
change in the horizontal field. The figure indicates that there are substantial changes
in Bh across the boundary region, and that the maximum change is comparable to the
maximum value of Bh . DeRosa et al. (2015) present a more detailed investigation of the
changes in the boundary field introduced by different solution methods, and a comparison
of the changes between methods.

2.5. Assessing the errors in solutions
In assessing the result of a NLFFF reconstruction, it is useful to consider two (related)
questions:
• Q1 – Does it represent what is on the Sun?
• Q2 – Is it an accurate solution to the model?
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Approaches to answer Q1 may include comparison of field line traces with EUV/X-ray
images, comparison with results obtained between NLFFF methods, or with other models
(e.g., MHD), and consideration of the changes in the boundary conditions required to
achieve a solution (see § 2.4).

Q2 is often addressed by calculating two specific metrics (Wheatland, Sturrock &
Roumeliotis 2000). The pointwise average of |∇·Bi | over grid points i provides a measure
of the solenoidal error, and a weighted average angle between Ji and Bi over grid points is
presented as an indicator of magnetic forces. However these ‘answers’ to Q2 are difficult
to interpret, and are unrelated to how the solutions are used. For example, NLFFF
solutions are often used to estimate magnetic energy or magnetic free energy, but these
metrics do not indicate whether the resulting energy estimates are reliable.

3. Recommendations
Based on the results in DeRosa et al. (2015), NLFFF modeling of coronal magnetic

fields for active regions remains challenging. Codes may produce solutions of varying
quality, and a range of results may be obtained for the same vector magnetogram.

Here we make two specific, simple recommendations for answering Q2 (checking the
quality of the solution to the model), based on the intended use of the solution.

First, if solutions are being used to estimate magnetic energy, we recommend using
the method of Valori et al. (2013) to calculate the non-solenoidal contributions to the
energy, following DeRosa et al. (2015). Valori et al. (2013) show how to decompose the
field into potential (p) and current carrying (c) components, each with solenoidal (s) and
non-solenoidal (ns) parts. The total magnetic energy E may be expressed as

E = Ep,s + Ep,ns + Ec,s + Ec,ns + Emix , (3.1)

where

Ep,s =
1

2μ0

∫
B2

p,s dV, Ep,ns =
1

2μ0

∫
B2

p,ns dV (3.2)

Ec,s =
1

2μ0

∫
B2

c,s dV, Ec,ns =
1

2μ0

∫
B2

c,ns dV, (3.3)

and

Emix =
1
μ0

∫
(Bp,s ·Bp,ns + Bc,s ·Bc,ns + Bp,s ·Bc,ns

+ Bc,s ·Bp,ns + Bp,ns ·Bc,ns + Bp,s ·Bc,s) dV.

(3.4)

For a solenoidal field E = Ep + Ec with Ep = Ep,s and Ec = Ec,s , and

Ep,ns = Ec,ns = Emix = 0. (3.5)

For a NLFFF solution it is necessary to check that Ep,ns , Ec,ns and |Emix | are small
compared with the magnetic free energy, which is the component Ec,ns . The results in
DeRosa et al. (2015) suggest that solutions obtained by the optimization method, in
particular, may fail this test.

Second, if solutions are being used to identify specific field structures, then we rec-
ommend tracing relevant field lines, and current streamlines (field lines of ∇× B) from
common starting points. If the field is force free, then the field lines and current stream-
lines should agree. This provides a stringent test because departures in the two paths add
up along the paths. In general the sets of field lines and current streamlines will not be
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Figure 3. Traces of field lines (black) and current streamlines (yellow) for three sets of common
starting points, for the CFIT bin 4 P solution for AR10978 described in DeRosa et al. (2015).

exactly coincident, but they should both reproduce structures of interest (e.g., ‘twisted
flux ropes’).

Figure 3 illustrates the second recommended test, for one of the CFIT solutions in
DeRosa et al. (2015), namely the P solution at the bin 4 resolution. The figure shows
three bundles of field lines (black curves), and corresponding current streamlines (yellow
curves). The three sets of curves do not agree exactly but are qualitatively similar. The
departures occur because the field is only approximately force free.

4. Summary
This paper presents a short review of nonlinear force-free field (NLFFF) modeling of

coronal magnetic fields in active regions. Coronal field modeling is often motivated by
solar activity, and the role of activity in space weather.

Vector magnetograms provide boundary values for coronal field ‘extrapolation’ based
on the nonlinear force-free field model, and this modeling approach has become quite
popular. However, studies suggest that the results may be unreliable. In particular, the
inconsistency of the solar data with the NLFFF model is the source of problems, which
depend in detail on the method of solution of the model.

We recommend two simple tests for NLFFF models, which assess the quality of the
solutions. The tests are chosen to match the use made of the NLFFF solutions.
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