
J. Fluid Mech. (2023), vol. 977, A41, doi:10.1017/jfm.2023.943

Derivation and simulation of a two-phase fluid
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To explore the impact of surface viscosity on coexisting fluid domains in biomembranes
we consider two-phase fluid deformable surfaces as model systems for biomembranes.
Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like
equations with bending forces. We derive this model using the Lagrange–d’Alembert
principle considering various dissipation mechanisms. The highly nonlinear model is
solved numerically to explore the tight interplay between surface evolution, surface
phase composition, surface curvature and surface hydrodynamics. It is demonstrated that
hydrodynamics can enhance bulging and furrow formation, which both can further develop
to pinch-offs. The numerical approach builds on a Taylor–Hood element for the surface
Navier–Stokes part, a semi-implicit approach for the Cahn–Hilliard part, higher-order
surface parametrizations, appropriate approximations of the geometric quantities, and
mesh redistribution. We demonstrate convergence properties that are known to be optimal
for simplified subproblems.
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1. Introduction

Coexisting fluid domains in biomembranes and in their model systems is an intensively
studied field of research. With the possibility to visualize coexisting lipid phases in
model membranes by high-resolution fluorescence imaging (Baumgart, Hess & Webb
2003) a strong correlation between domain composition and local membrane curvature
can be established. These findings have supported earlier membrane models (Jülicher &
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Lipowsky 1996; Jiang, Lookman & Saxena 2000; Kumar, Gompper & Lipowsky 2001)
and initiated a wealth of theoretical, numerical and experimental studies to understand
the relation between composition and curvature (Baumgart et al. 2003, 2005; Veatch &
Keller 2003; Veatch et al. 2007; Wang & Du 2008; Lowengrub, Rätz & Voigt 2009;
Elliott & Stinner 2010b; Elson et al. 2010; Garcke et al. 2016; Gera & Salac 2018;
Zimmermann et al. 2019). This relation has strong biological implications (McMahon
& Gallop 2005). We refer to Veatch & Keller (2003), Deserno (2015) and Lipowsky &
Dimova (2021) for reviews on the subject. While most studies address multicomponent
giant unilaminar vesicles and consider phase separation and coarsening on spherical
shapes, more recently multicomponent scaffolded lipid vesicles have been considered.
In these systems, non-spherical shapes are stabilized and the effect of spatially varying
curvature on phase separation and coarsening has been considered (Fonda et al. 2018,
2019; Rinaldin et al. 2020). These results demonstrate the strong influence of curvature on
the spatial arrangement of the lipid phases. On the other hand also the shape evolution is
considered. Coexisting fluid domains can lead to bulging and budding events (Baumgart
et al. 2003; Lowengrub et al. 2009; Elliott & Stinner 2010b), indicating also the strong
influence of composition on the evolving shape. Thus, the correlation between domain
composition and membrane curvature acts in both directions. These effects can essentially
be modelled by the Jülicher–Lipowsky model (Jülicher & Lipowsky 1996) or appropriate
phase field approximations of it (Lowengrub et al. 2009; Haußer et al. 2013). These
models essentially extend the classical Helfrich model to multiple components. Instead
of a simple L2-gradient flow of the Helfrich energy, with possible constraints, the model
allows for dissipation through the simultaneous evolution of the shape and the lipid phases
on the surface. Such models can be embedded in bulk flows and serve as interfacial
conditions (Sohn et al. 2010; Zhang & Wolgemuth 2022). However, all these studies
neglect the effect of surface viscosity. Surface viscosity has been shown to be a key
property of biomembranes and their model systems controlling remodelling and with
it, the coarsening process, see (Faizi, Dimova & Vlahovska 2022) for discussions and
measurements. Already for flat membranes, it has been shown that experimental results
on the coarsening rate of these fluid domains can only be quantitatively reproduced
by simulations if the fluid properties of the membrane are taken into account (Fan,
Han & Haataja 2010; Camlay & Brown 2011). Considering these effects on curved
surfaces involves several modelling and numerical subtleties, due to the increased coupling
between local curvature and surface fluid velocity. Although there are models in the
literature dealing with the coupling between surface flow on curved surfaces and the
surrounding bulk flow (Woodhouse & Goldstein 2012; Barrett, Garcke & Nürnberg 2015;
Reuther & Voigt 2016), they do not consider coexisting fluid domains. Furthermore, it has
been shown that the effect of the bulk fluid can be neglected if the Saffman–Delbrück
number (Saffman & Delbrück 1975), which defines a hydrodynamic length relating the
viscosity of the membrane and the surrounding bulk fluid, is large. In this case the
hydrodynamics is effectively two-dimensional (2-D) on spatial scales smaller than the
Saffman–Delbrück number (Henle & Levine 2010). We follow this simplification and
consider only surface two-phase flow problems. On stationary surfaces these problems
are addressed in Nitschke, Voigt & Wensch (2012), Ambrus et al. (2019), Olshanskii,
Palzhanov & Quaini (2022) and Bachini, Krause & Voigt (2023b) and essentially reveal an
enhanced coarsening rate due to hydrodynamic effects, similar to the situation in flat space
(Fan et al. 2010; Camlay & Brown 2011). To consider evolving surfaces under the influence
of surface viscosity requires models for so-called fluid deformable surfaces. Such models
have been established as model systems for biomembranes (Arroyo & DeSimone 2009;
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Torres-Sánchez, Millán & Arroyo 2019). They exhibit a solid–fluid duality, while they
store elastic energy when stretched or bent, as solid shells, they flow as viscous 2-D
fluids under in-plane shear. This duality has several consequences: it establishes a tight
interplay between tangential flow and surface deformation. In the presence of curvature,
any shape change is accompanied by a tangential flow and, vice versa, the surface
deforms due to tangential flow. Models describing this interplay between curvature and
surface flow have been introduced and numerically solved in Torres-Sánchez et al.
(2019), Reuther, Nitschke & Voigt (2020) and Krause & Voigt (2023). These numerical
approaches provide the basis to explore the impact of surface viscosity on the dynamics
of biomembranes. We here extend these models to two-phase flows by combining fluid
deformable surfaces with a phase field approximation of the Jülicher–Lipowsky model.
The model is systematically derived by a Lagrange–d’Alembert principle, accounting
for dissipation by domain coarsening, shape evolution and surface viscosity. We relate
the resulting model to known simplified models in the literature. We provide a detailed
description of the numerical approach, which uses surface finite elements (SFEM) (Dziuk
& Elliott 2013; Nestler, Nitschke & Voigt 2019) and builds on previous developments
for one-component fluid deformable surfaces (Krause & Voigt 2023) and surface
Navier–Stokes–Cahn–Hilliard-like models on stationary surfaces (Bachini et al. 2023b).
The algorithm is used to demonstrate the strong interplay between composition, curvature
and hydrodynamics and its implications for bulging and budding processes. Measuring
the essential material properties, surface viscosity and bending rigidity for biomembranes
is a challenging task, see (Faizi et al. 2022). Reported parameters vary by orders of
magnitude. We therefore are not considering a specific system but the general properties by
exploring the parameter space. Briefly, surface hydrodynamics enhances the onset of shape
deformations and possible resulting topological changes, which has strong biological
implications, e.g. in the case of endocytosis and exocytosis (Kaksonen & Roux 2018;
Al-Izzi, Sens & Turner 2020).

The paper is structured as follows. In § 2 we introduce the used notation necessary
to formulate the surface model, briefly describe the model derivation, formulate the
two-phase fluid deformable surface model and relate the equations to known simplified
models. Details are considered in the appendices. In § 3 we discuss the considered
numerical approach. In § 4 we provide all used parameters, consider convergence
studies and explore the parameter space and the implications of the coupling between
composition, shape and surface flow. In § 5 we draw conclusions.

2. Continuous model

We derive the full model for two-phase fluid deformable surfaces by applying the
Lagrange–d’Alembert principle. We first introduce the necessary notation, then motivate
the use of the Lagrange–d’Alembert principle, introduce all ingredients and derive the
model. Finally, we relate the model to known simplifications in the literature.

2.1. Notation
We consider a time dependent smooth and oriented surface S = S(t) without boundary.
Related to S , we denote the outward pointing surface normal ν, the surface projection
P = I − ν ⊗ ν, the shape operator B = −∇Pν and the mean curvature H = trB. Note
that, under these definitions the unit sphere has negative mean curvature H = −2. Let
φ be a continuously differentiable scalar field, u a continuously differentiable R3-vector
field, and σ a continuously differentiable R3×3-tensor field defined on S . We define
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the surface tangential gradient ∇P as in Jankuhn, Olshanskii & Reusken (2018) and the
componentwise surface gradient ∇C as in Nitschke, Sadik & Voigt (2022), namely

∇Pφ = P∇φe,

∇Pu = P∇ueP,

∇Cσ = ∇σ eP,

⎫⎪⎬⎪⎭ (2.1)

where φe, ue and σ e are arbitrary smooth extensions of φ, u and σ in the normal direction
and ∇ is the gradient of the embedding space R3. The fields ∇Pφ,∇Pu are purely
tangential vector and tensor fields, respectively. We define the corresponding divergence
operators for a vector field u and a tensor field σ by

divPu = tr(∇Pu),

divC(σP) = tr ∇C(σP),

}
(2.2)

where tr is the trace operator. The divergence of the tensor σ , divCσ , leads to a
non-tangential vector field even if σ is a tangential tensor field. Let ∇S be the gradient with
respect to the covariant derivative on S , as used in Reuther et al. (2020). This operator is
defined for scalar fields and tangential vector fields and relates to the tangential operators
by ∇Pφ = ∇Sφ and divPu = divS(Pu)− (u · ν)H, respectively. We further clarify the
relation between the above operators in Appendix A.

The surface S is given by a parametrization X . The material on the surface is described
by a material parametrization X𝔪, as in Nitschke & Voigt (2022). Both parametrizations
relate to each other by ∂tX𝔪 · ν = ∂tX · ν, which leads to a Lagrangian perspective
in normal direction. In tangential direction the surface and the material can move
independently. We define the material velocity by u := ∂tX𝔪 and the relative material
velocity by w := u − ∂tX . The relative material velocity is a pure tangential vector field.
Additional information and the relation to the time derivative used can be found in
Appendix B.6.

2.2. Model derivation by the Lagrange–d’Alembert principle
The Lagrange–d’Alembert principle has been explained in Marsden & Ratiu (2013).
The approach is a combination of the Lagrange and the Onsager variational principles.
The concept of the Lagrange principle has been introduced in Marsden & West (2001),
Marsden & Ratiu (2013) and Hairer et al. (2006) and it models the interplay of kinetic
and potential energies under total energy conservation. On the other side, the concept
of the Onsager variational principle models dissipative systems, where potential energy
decreases under a dissipation potential, e.g. L2-gradient flows. Within our context, the
Onsager principle is used in Torres-Sánchez et al. (2019) to derive fluid deformable
surfaces with the surface Stokes model.

We consider a density function φ that describes the two-phases on the surface S , e.g.
liquid-ordered and disordered phases, where one phase is represented by φ = 1, the other
one by φ = −1, and we assume a mixture of both if φ ∈ (−1, 1). We consider a conserved
evolution for φ with respect to the following energies.

The first is a Ginzburg–Landau energy modelling phase-separation on S ,

FGL =
∫
S
σ̃

(
ε

2
‖∇Sφ‖2 + 1

ε
W(φ)

)
dS, (2.3)

where σ̃ > 0 is a rescaled line tension with σ̃ = 3/(2
√

2)σ , σ the line tension in
the corresponding Jülicher–Lipowski model (Garcke et al. 2016; Elliott, Hatcher &
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Stinner 2022; Benes et al. 2023), ε > 0 is related to the diffuse interface width and
W(φ) = 1

4 (φ
2 − 1)2 is a double-well potential.

The second energy we consider accounts for bending properties. As in Fonda et al.
(2018) and Bachini et al. (2023b), we consider a diffuse interface approximation of the
Jülicher–Lipowski model (Jülicher & Lipowsky 1996),

FH =
∫
S

1
2
κ(φ)(H − H0(φ))

2dS, (2.4)

where κ(φ) is the bending stiffness and H0(φ) the spontaneous curvature. We neglect
additional contributions due to the Gaussian curvature of S . This is justified as long as
the Gaussian bending stiffness is independent on the phase φ and no topological changes
occur. To get a continuously differentiable dependency on φ we consider an interpolation
function as in Elliott & Stinner (2010b) and Bachini et al. (2023b),

f (φ) =

⎧⎪⎪⎨⎪⎪⎩
f1 if φ = 1,
f1 + f2

2
+ f1 − f2

4
φ(3 − φ2) if − 1 < φ < 1,

f2 if φ = −1,

(2.5)

for f ∈ {κ,H0} and f1, f2 the material parameter of κ or H0 in the separated phases.
Together, the energies FGL and FH define the potential energy F = FH + FGL of the
system.

We define the surface material velocity by u and the kinetic energy as in Reuther et al.
(2020) by

FK =
∫
S
ρ

2
‖u‖2dS, (2.6)

with ρ the surface density. For simplicity, we assume ρ to be constant. The Lagrangian
L = FK − F is defined as the difference between the kinetic and the potential energy.

We next consider the various sources of dissipation. As in Torres-Sánchez et al. (2019)
we define the dissipation potential of the viscous stress,

DV =
∫
S
η‖σ‖2, (2.7)

where η denotes the viscosity and σ (u) = 1
2 (∇Pu + (∇Pu)T) is the rate of deformation

tensor as considered in Jankuhn et al. (2018). For simplicity, we assume η to be constant.
In addition, we consider the friction with the surrounded material, which is modelled by

DR =
∫
S
γ

2
‖u‖2, (2.8)

where γ ≥ 0 is a friction coefficient, again assumed to be constant. The third component
of the dissipation potential is associated with the dissipation due to phase separation. We
assume the immobility potential of the phase field given by

Dφ =
∫
S

1
2m

∥∥φ̇∥∥2
H−1 , (2.9)

with m > 0 a resistance associated with φ̇ = ∂tφ + ∇wφ with respect to H−1 norm.
Thereby, φ̇ denotes the material time derivative of φ and ∇wφ = (∇Sφ,w), see
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Appendix B.6. The parameter m plays the role of a mobility. Here, we follow the approach
of Magaletti et al. (2013) and consider this parameter to be constant. For alternative
approaches, we refer to Abels (2009). We now define the dissipation potential by D =
DV + DR + Dφ .

Moreover, we add to L and D the following constraints. We here only assume local
inextensibility of the material as in Torres-Sánchez et al. (2019) and Reuther et al. (2020).
This is incorporated by the Lagrange-function p, which serves as the surface pressure and
is related to the surface tension. It enters in the constraint by

CIE = −
∫
S

p divPu. (2.10)

This constraint induces a conservation of surface area |S|. We neglect possible additional
constraints, e.g. on the enclosed volume.

With these ingredients, the Lagrange–d’Alembert principle can be applied. The
concept is introduced and used for rigid body models in Marsden & West (2001),
Udwadia & Kalaba (2002) and Izadi & Sanyal (2014). Here we consider this
principle for space-dependent functions, for which it provides an elegant way to derive
thermodynamically consistent models. It reads

0 = (ρ(∂tu + ∇wu)+ DXF + DuD + DuCIE,Y )+ (DφF + Dφ̇D, ψ)+ (DpCIE, q),
(2.11)

for all test functions Y ∈ TR3|S and ψ, q ∈ T0S . Here, the symbol D· denotes the
L2-gradient of the functional. See Appendix B for the explicit definitions and calculations.
The approach is broadly applicable and provides an alternative to other frameworks, such
as the Onsager principle. We obtain the following problem.

PROBLEM 2.1. Find (u, p, φ, μ) such that

∂tφ + ∇wφ = mΔSμ,

μ = σ̃

(
−εΔSφ + 1

ε
W ′(φ)

)
+ 1

2
κ ′(φ)(H − H0(φ))

2

− κ(φ)H′
0(φ)(H − H0(φ)),

ρ(∂tu + ∇wu) = −∇Sp − pHν + 2η divCσ − γu + bT + bN,

divPu = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.12)

with tangential and normal bending forces defined by

bT = μ∇Sφ,

bN = −
(

ΔS(κ(φ)(H − H0(φ)))+ κ(φ)(H − H0(φ))

×
(

‖B‖2 − 1
2
H(H − H0(φ))

))
ν

+ σ̃

(
ε

2
‖∇Sφ‖2 + 1

ε
W(φ)

)
Hν − σ̃ ε∇SφTB∇Sφν,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.13)

and w the relative material velocity as explained above.
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This problem provides a tight coupling between the phase field φ, the surface velocity
u, the surface pressure p and the geometry S . Exploring the main implications of these
couplings is one of the goals of this paper.

REMARK 2.1 (Thermodynamic consistency). We refer to Appendix B.5 to show that the
relation

d
dt
(FK + F) = −2D ≤ 0, (2.14)

holds for the model in Problem 2.1. This demonstrates thermodynamic consistency.

Considering a characteristic length and a characteristic velocity, Problem 2.1 can be
formulated in non-dimensional form, see Appendix C for details. Keeping the same
notation also in non-dimensional form, we obtain the following.

PROBLEM 2.2. Find (u, p, φ, μ) such that

∂tφ + ∇wφ = mΔSμ, (2.15)

μ = σ̃

(
−εΔSφ + 1

ε
W ′(φ)

)
+ 1

2
κ ′(φ) (H − H0(φ))

2

− κ(φ)H′
0(φ) (H − H0(φ)), (2.16)

∂tu + ∇wu = − ∇Sp − pHν + 2
Re

divCσ − γu + bT + bN, (2.17)

divPu = 0, (2.18)

where Re denotes the Reynolds number and bT and bN are defined as in Problem 2.1.

In this form, the problem is suitable for numerical approximation. However, before
addressing the model in its discrete form, we consider several model simplifications.

2.3. Model simplifications
The model in Problem 2.2 is a two-component fluid deformable surface model with
phase-dependent elasticity. For simplicity, we assume that the material parameters, such
as the density ρ, the viscosity η and the friction coefficient γ , are constant. It is
possible to extend the model and consider phase-dependent parameters by following
the approach described, for example, in Lowengrub & Truskinovsky (1998), Abels,
Garcke & Grün (2012), Aland & Voigt (2012) and Ten Eikelder et al. (2023). In
the following, we link our model to simplified models already discussed in the
literature.

2.3.1. One component fluid deformable surface
In the case of a single phase, the simplified model considers only surface hydrodynamics
and its interaction with the geometry due to bending. Explicitly, by considering φ ≡ const,

977 A41-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.943


E. Bachini, V. Krause, I. Nitschke and A. Voigt

the system simplifies to

∂tu + ∇w u = −∇Sp − pHν + 2
Re

divCσ − γu + bN,

divPu = 0,

⎫⎬⎭ (2.19)

where w = u − ∂tX as before, and the normal bending forces reduce to

bN = −κ(ΔSH + (H − H0)
(‖B‖2 − 1

2H(H − H0)
))

ν. (2.20)

Note that, bending stiffness and spontaneous curvature are now constant parameters. In the
case of H0 = 0 and γ = 0, this model has been introduced and simulated in Reuther et al.
(2020), Krause & Voigt (2023) and in the Stokes limit in Torres-Sánchez et al. (2019).
For further numerical and analytical approaches under additional symmetry assumptions
we refer to Al-Izzi et al. (2020), where a linear stability analysis of a tube geometry is
considered, and to Olshanskii (2023), where potential rotational symmetric equilibrium
configurations are addressed. For a comparison of different derivations of this model we
refer to Reuther & Voigt (2015, 2018a) and Brandner, Reusken & Schwering (2022b).

2.3.2. Two-component fluid on a stationary surface
If we assume a stationary surface S , i.e. u · ν = 0, the model in Problem 2.2 restricts to
a pure tangential problem. We follow the approach of the directional splitting as shown in
detail in Jankuhn et al. (2018) and used in Reuther et al. (2020). We note that uT = Pu
and uN = u · ν for the tangential and normal surface velocity, respectively. We project the
equations in the surface tangent space and this results in a surface two-phase flow problem,

∂tφ + ∇wφ = mΔSμ,

μ = σ̃

(
−εΔSφ + 1

ε
W ′(φ)

)
+ 1

2
κ ′(φ) (H − H0(φ))

2

− κ(φ)H′
0(φ) (H − H0(φ)),

P∂tuT + ∇wuT = −∇Sp + 2
Re

divSσ (uT)− γuT + μ∇Sφ,

divSuT = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.21)

where the relative material velocity simplifies to the Eulerian case w = uT . Because of
the tangentiality of the vector and tensor fields, all differential operators fall back to the
operators with respect to the covariant derivative. In the case of γ = 0, the model has been
introduced and discussed in Bachini et al. (2023b), where it is used to study the influence
of surface hydrodynamics on coarsening in multicomponent scaffolded lipid vesicles, see
Fonda et al. (2018), Fonda et al. (2019) and Rinaldin et al. (2020). Without the bending
terms, the system has already been addressed in Nitschke et al. (2012), Ambrus et al.
(2019) and Olshanskii et al. (2022).
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2.3.3. One component fluid on a stationary surface
By considering a single phase on a stationary surface, the system simplifies even further
and leads to the inextensible surface Navier–Stokes equations on a stationary surface,

P∂tuT + ∇wuT = −∇Sp + 2
Re

divSσ (uT)− γu,

divSu = 0,

⎫⎬⎭ (2.22)

where again w = uT . These equations have been solved numerically for simply connected
surfaces in Nitschke et al. (2012) and Reuther & Voigt (2015, 2018a) (and in the Stokes
limit in Olshanskii et al. (2018), Bonito, Demlow & Licht (2020) and Brandner & Reusken
(2020)), and for general surfaces in Nitschke, Reuther & Voigt (2017), Reusken (2018),
Fries (2018), Reuther et al. (2020), Reuther & Voigt (2018b) and Lederer, Lehrenfeld &
Schoeberl (2020) (and in the Stokes limit in Olshanskii & Yushutin (2019)).

2.3.4. Two-component surface without fluid behaviour
A larger literature exists for the evolution of two-component surfaces if surface
hydrodynamics is neglected. These models are related to the overdamped limit of
Problem 2.2. An explicit derivation is shown in Appendix D. The resulting model reads

∂tφ + ∇wφ = m̃ ΔSμ̃,

μ̃ = − ˜̃σεΔSφ +
˜̃σ
ε

W ′(φ),

+ 1
2
κ̃ ′(φ) (H − H0(φ))

2 − κ̃(φ)H′
0(φ) (H − H0(φ)),

uN = −p̃H + b̃N,

uT = − ∇S p̃ + μ̃∇Sφ,

−ΔS p̃ + p̃H2 = − divS(μ̃∇Sφ)+ bNH,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.23)

where b̃N = b̃N · ν. In this model, p̃ serves as a Lagrange function to ensure the local
inextensibility constraint. The model is similar to a model discussed in Haußer et al.
(2013), see Appendix D for a detailed comparison. If the constraint on local inextensibility
is dropped and only a global area constraint is considered, the model further simplifies.
See Appendix D for the relations with the models considered in Wang & Du (2008) and
Elliott & Stinner (2010a), which are derived by only considering variations in the normal
direction. One essential difference is the tangential velocity component μ̃∇Sφ, which is
not present in these models. We consider the model in Elliott & Stinner (2010a) but with
an additional local inextensibility constraint for a qualitative comparison to highlight the
differences of the model derivation and the importance of surface hydrodynamics on the
evolution of two-component membranes.

3. Numerical discretization

We consider a SFEM (Dziuk & Elliott 2013; Nestler et al. 2019) to solve the highly
nonlinear set of geometric and surface partial differential equations (PDEs) in Problem 2.2.
The approach uses higher-order surface discretizations, mesh regularization, a
Taylor–Hood element for the surface Navier–Stokes equations and established approaches
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E. Bachini, V. Krause, I. Nitschke and A. Voigt

in flat space to split the Navier–Stokes–Cahn–Hilliard-like problem. The discretization on
the surface addresses numerical analysis results for vector-valued surface PDEs ensuring
convergence of surface vector-Laplace and surface Stokes problems on stationary surfaces
(Hansbo, Larson & Larsson 2020; Hardering & Praetorius 2022) and reproduces the
same expected optimal order of convergences for the full two-component fluid deformable
surface model.

3.1. Mesh movement
By following the work in Krause & Voigt (2023), we combine the system in Problem 2.2
with a mesh redistribution approach introduced in detail in Barrett, Garcke & Nürnberg
(2008). We consider the initial surface given X (0) = X 0 and an additional equation for
the time evolution of the parametrization

∂t X · ν = u · ν, (3.1)

Hν = ΔCX . (3.2)

This approach generates a tangential mesh movement that maintains the shape regularity
and additionally provides an implicit representation of the mean curvature H.

3.2. Surface approximation
We assume that the smooth surface S is approximated by a discrete kth-order
approximation Sh. Let S lin

h be a piecewise linear reference surface given by shape regular
triangulation Th

lin = {Ti}NT
i=1. We define X as bijective map X : S lin

h → S such that
S = ∪NT

i=1X (Ti). The construction of such maps is discussed in Praetorius & Stenger
(2020) and Brandner et al. (2022a). We get a kth-order approximation of X by the
kth-order interpolation Sk

h = Ik
h(X ), which defines a higher-order triangulation such that

Sk
h = ∪NT

i=1X k
h(Ti). We use each geometrical quantity like the normal vector νh, the shape

operator Bh and the inner products (·, ·)h with respect the Sk
h where we will drop the index

k in the following. We denote the size of the grid by h, i.e. the longest edge of the mesh.

3.3. Discrete function spaces and weak formulation
We define the discrete function spaces for scalar function by

Vke(Sh) = {ψ ∈ C0(Sh)|ψ |T ∈ Pke(T)}, (3.3)

with Pke the space polynomials, where we set the element order as ke = k. We define
V k(Sh) = [Vk(Sh)]3 as space of discrete vector fields. We discretize uh,X h ∈ V 2(Sh),
Hh, φh, μh ∈ V2(Sh) and ph ∈ V1(Sh). This corresponds to a Taylor–Hood element for
the pair of velocity and pressure. The resulting weak formulation reads

(∂tφh + ∇whφh, ψh)h = −m(∇Sμ,∇Sψh)h, (3.4)
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A two-phase fluid deformable surface model

(μh, ξh) = σ̃ ε(∇Sφh,∇Sξh)h − σ̃

ε
(W ′(φh), ξh)h

+ 1
2
(κ ′(φh) (Hh − H0(φh))

2 , ξh)h

− (
κ(φh)H′

0(φh) (Hh − H0(φh)) , ξh
)

h , (3.5)

(∂tuh + ∇whuh, vh)h = ( ph, divPvh)h − 2
Re
(σ h,∇Pvh)h + (bT + bN − γuh, vh)h, (3.6)

(divPuh, qh)h = 0, (3.7)

(∂tX h · νh, hh)h = (uh · νh, hh)h, (3.8)

(Hhνh,Z h)h = −(∇CX h,∇CZ h)h, (3.9)

for all (ψh, ξh, vh, qh, hh,Z h) ∈ [Vk × Vk × V k × Vk−1 × Vk × V k](Sh).

3.4. Discrete model
Following the strategy in Bachini et al. (2023b), we separate the surface phase
field equations (3.4)–(3.5) and surface Navier–Stokes equations (3.6)–(3.7) by an
operator-splitting approach. In 2-D and three-dimensional (3-D) settings such splitting
approaches are common strategies for Navier–Stokes–Cahn–Hilliard systems, and have
been shown to be robust and fast converging, see, for example, Demont et al. (2022)
for a detailed analysis. Similar properties have been found in Bachini et al. (2023b) on
surfaces. In contrast to Bachini et al. (2023b), where the surface was stationary, here the
surface evolves and we adapt the numerical schemes used in Krause & Voigt (2023) for
one-component systems.

Let {tn}N
i be time interval discretization, with tn = nτ and τ > 0 be the time steps.

We first solve the surface phase field problem (3.4)–(3.5), and then solve the surface
Navier–Stokes (3.6) and (3.7), together with (3.8)–(3.9) for mesh regularization. The inner
product (· , ·)h is approximated by a quadrature rule with an order that is chosen high
enough such that test and trial functions and area elements are well integrated. We denote
the time discrete surface by Sn−1

h = Sh(tn−1).
The equations are discretized in time by a semi-implicit Euler scheme where the

nonlinear terms are chosen explicitly apart from the double well potential. As is common
for Cahn–Hilliard equations, we linearize the derivative of the double-well potential by a
Taylor expansion of order one.

PROBLEM 3.1 (Discrete surface Cahn–Hilliard problem). Find (φh, μh) ∈ [Vh ×
Vh](Sn−1

h ) such that

1
τ

(
φn

h, ψh

)
h + (∇wn−1 φ

n
h, ψh

)
h = 1

τ

(
φn−1

h , ψh

)
h − m

(∇Sμn
h, ∇Sψh

)
h,(

μn
h, ξh

)
h = ε

(∇Sφn
h, ∇Sξh

)
h + 1

ε

(−2(φn−1
h )3 + (

3(φn−1
h )2 − 1

)
φn

h, ξh

)
h

+ 1
2

(
κ ′(φn−1

h )
(
Hn−1

h − H0(φ)(φ
n−1
h )

)2
, ξh

)
h

−(
κ(φn−1

h )H0(φ)
′(φn−1

h )
(
Hn−1

h − H0(φ)(φ
n−1
h )

)
, ξh

)
h,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.10)

for all (ψh, ξh) ∈ [Vh × Vh](Sn−1
h ).
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This approach can be related to analysed schemes for the Cahn–Hilliard and
Navier–Stokes–Cahn–Hilliard equations with explicit treatment of the double-well
potential and additional stabilization terms, for example, Shen & Yang (2010a,b). These
methods and more an advanced scalar auxiliary variable (SAV) approaches, for example,
Zhu et al. (2019), have been shown to be unconditionally energy-stable in 2-D and 3-D
settings.

The surface Navier–Stokes equations and the mesh redistribution are considered
together. Moreover, we define a discrete surface update variable Y n

h = X n
h − X n−1

h ,
which is considered as unknown instead of the surface parametrization X n. For time
discretization, we again consider a semi-implicit Euler scheme following the strategy
presented in Barrett et al. (2008) and Krause & Voigt (2023). We obtain the following
discrete problem.

PROBLEM 3.2 (Discrete surface Navier–Stokes and surface update problem). Find
(uh, ph,Hh,Y h) ∈ [V h × Vh × Vh × V h](Sn−1

h ) such that

1
τ

(
un

h, vh

)
h + (∇wn−1

h
un

h, vh

)
h = (

pn
h, divPvh

)
h − 2

Re

(
(σ (un

h), ∇Pvh

)
h

+ (
μn

h ∇Sφn
h , vh

)
h

+ (∇S
(
κ(φn)(Hh − H0(φ

n))
)
, ∇S(vh · νh)

)
h

− (
κ(φn)(Hh − H0(φ

n))Bn−1, vh · νh
)

h

+ 1
τ

(
un−1

h , vh

)
h − (

γun
h, vh

)
h,(

divPun
h, qh

)
h = 0,

1
τ

(
Y n

h · νh, hh

)
h = (

un
h · νh, hh

)
h,(

Hn
hνh, Z h

)
h + (

κ(φn
h)∇CY n

h, ∇CZ h

)
h = −(

κ(φn
h)∇CX n−1

h , ∇CZ h

)
h,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.11)

for all (vh, qh, hh, Zh) ∈ [V h × Vh × Vh × V h](Sn−1
h ), where Bn−1 = (‖Bh‖2 −

1
2 trBh(trBh − H0(φ

n))). (We note a typing error in Krause & Voigt (2023), which has
been confirmed by the authors.)

The solutions of the discrete problems above are intermediate solutions with respect to
the old surface Sn−1

h . For each variable ψ̂ ∈ Vh(Sn−1
h ), we define the lift ψ ∈ Vh(Sn

h ) by
the evaluation with respect to the linear reference geometry where ψ(X n

h) = ψ̂(X n−1
h ).

This corresponds to a nodal interpolation with respect to the degrees of freedom. We
consider the following steps in each time step:

(i) compute (φ̂h, μ̂h) ∈ [Vh × Vh](Sn−1
h ) as intermediate solution of Problem 3.1;

(ii) compute (ûh, p̂, Ĥh, Ŷ h) ∈ [V h × Vh × Vh × V h](Sn−1
h ) as intermediate solution of

Problem 3.2;
(iii) compute the new surface Sn

h by updating its parametrization X n
h = X n−1

h + Y n
h;

(iv) lift the intermediate solutions on the new surface to get (φh, μh) ∈ [Vh × Vh](Sn
h )

and (uh, p,Hh,Y h) ∈ [V h × Vh × Vh × V h](Sn
h ).
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A two-phase fluid deformable surface model

As numerical analysis results for the overall scheme are missing we justify the
considered approach, essentially to perform just one iteration within each time step and
the linearization of the nonlinear terms by comparing with an iterative Euler scheme. In
this scheme we iterate Problems 3.1 and 3.2 within each time step until convergence and
update all unknowns in each iteration. This can be considered as a fully implicit scheme.
Similar fully implicit approaches for Navier–Stokes–Cahn–Hilliard equations have been
considered in 2-D and 3-D settings, for example, Khanwale et al. (2020, 2023), and
as the approaches mentioned above can be shown to be unconditionally energy stable.
We compare the fully implicit iterative Euler scheme with our semi-implicit scheme for
selected simulations, see Appendix E. The results are almost identical and indicate a
reduction of computing time, which makes the following numerical studies to explore
the complex interplay between surface phase composition, surface curvature and surface
hydrodynamics feasible.

3.5. Implementational aspects
The discrete systems are implemented within the finite element toolbox AMDiS (Vey
& Voigt 2007; Witkowski et al. 2015) based on DUNE (Alkämper et al. 2014; Sander
2020). The surface approximation is done by the Dune–CurvedGrid library developed
in Praetorius & Stenger (2020). For a straightforward mesh parallelization and multiple
processor computation we used the PETSc library and solved the linear system by using
a direct solver. Due to the nature of the equations, which lack a maximum principle, we
allow φh ∈ R and extend all material parameters constantly for φh < −1 and φh > 1.

The SFEM approach discussed in § 3.2 does not support topological changes of the
domain. Such changes can occur due to pinch offs associated with budding events or the
formation of furrows. The pinch offs are characterized by a negative Gaussian curvature K.
We use this property as an indicator to define our simulated time interval [0, T], where the
final simulation time T is defined by T = inf{t > 0|K(t) < K0} where K0 < 0 is a chosen
lower bound. If this criterion is not met, we consider T = ∞ and solve until an equilibrium
configuration is reached. Numerical methods which are able to handle topological changes,
or at least able to recover after such an event in a meaningful physical state, require an
implicit description of the surface. Candidates are trace finite element methods (Jankuhn &
Reusken 2020), cut finite element methods, level-set methods or diffuse interface methods
(Nestler et al. 2018). However, these methods are computationally more expensive and
currently not applicable for the considered problem. A comparison between SFEM and
trace finite element methods for Stokes flow on stationary surfaces shows a factor of
102–103 lower errors for SFEM for comparable mesh sizes, depending on the considered
error measure (Brandner et al. 2022a). Applications of cut finite element methods and
level set methods for this problem class are not known and the first detailed numerical
investigations for diffuse interface methods for vector-valued surface PDEs show strong
limitations for the required accuracy for the reconstructed geometric terms (Nestler &
Voigt 2023a). These results are supported in a benchmark problem for vector-valued
diffusion on surfaces with large curvature (Bachini et al. 2023a). This motivates the use of
SFEM and the needs to consider simulations only before a potential topological change.

4. Numerical results

4.1. Considered parameters and initial conditions
Let S be the unit sphere with radius R = 1. The velocity field is initialized by u0 = 0
and we define two different initial configurations for the phase field. The first one is
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φ0(x) = tanh(x0/
√

2) that defines a symmetric and equal distributed phase field where
the phases are separated. The second one defines a random initial condition: φ1 =
min{max{φ̂1,−1}, 1}, where φ̂ is given by Gaussian random field,

φ̂1(x) = −1.0 +
N∑

i=0

exp
(−β

2
‖x − xi‖2) ∀x ∈ S, (4.1)

where {xi}N
0 ⊂ S and β = 100. This allows us to create a reproducible random initial

condition. Both configurations consider an equal distributed phase field. We vary the
Reynolds number Re and the bending stiffness κ but set H0 = γ = 0. Other parameters are
set to ε = 0.02, m = 0.001 and σ = 1.0 (σ̃ = 3

2

√
2), which provides a good compromise

between computational effort and physical accuracy. Numerical parameters are such that
h3 ∼ τ . This relation results from the properties of the discretization scheme, which can
be expected to be first order in time and third order in space, which will be computationally
confirmed below.

4.2. Convergence study
Due to the tight coupling between the phase field φ, the surface velocity u, the surface
pressure p and the geometry S we expect the numerical solution to sensitively depend on
the approximations. Therefore, we start by considering a convergence study. Due to a lack
of analytical solutions for the full problem, we compute a numerical solution with a fine
discretization and study convergence with respect to this solution. In addition, we address
general properties of the solution.

We compute the errors with respect to the L2 norm in space and the L∞ norm in time.
The norms are calculated with respect to the linear reference geometry S lin

h , where the
evaluation of the norms on different surfaces S,Sh,S lin

h leads to equivalent norms with
the same order of convergence (Demlow 2009). We define the following errors:

eX = ‖X h − X‖L∞(L2(S lin
h )),

eu = ‖uh(X h)− u(X )‖L∞(L2(S lin
h )),

eφ = ‖φh(X h)− φ(X )‖L∞(L2(S lin
h )),

eA = |‖Sh(t)| − |Sh(0)||L∞,

edivP = ‖ divPuh‖L∞(L2(Sh))
,

eF = |(FKh + Fh)− (FK + F)|L∞,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.2)

with discrete solutions X h,uh, φh with varying h and X ,u, φ the discrete reference
solutions with the finest mesh size. Additionally, we measure the area conservation error
eA, the local inextensibility error edivP and the error of the total energy eF , where again FK
and F denote the discrete reference solution on the finest mesh size. The simulations are
done for the random initial condition φ1 with Re = 1.0 and κ1 = κ2 = κ = 0.02.

The results are shown in figure 1. They indicate third-order convergence for the surface
error eX and the error of the phase field eφ , which corresponds to the results in Praetorius
& Stenger (2020) and Demlow (2009) for simple mean curvature flow and scalar-valued
surface PDEs. The order of convergence for the phase field eφ also agrees with the one
obtained for the corresponding problem on stationary surfaces considered in Bachini
et al. (2023b). For the error of the velocity field eu the results indicate second-order
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Figure 1. Convergence study for two-phase fluid deformable surfaces with respect to the mesh size h3 ∼ τ

for X h,uh, φh (a–c); and error for area A, divergence divPuh and total energy FK + F (d–f ).

convergence in accordance with the results in Krause & Voigt (2023) for one-component
fluid deformable surfaces. In Brandner et al. (2022a), third-order convergence of eu is
shown for the tangential flow of the surface Stokes equations on stationary surfaces.
However, this requires a higher-order approximation of the normal vector (Hansbo et al.
2020; Hardering & Praetorius 2022), which is not fulfilled in our approach. Furthermore, it
remains open if this increased order also emerges for the surface Navier–Stokes equations
and on evolving surfaces. For the area conservation error eA and the inextensibility error
edivP we get second-order convergence with respect to h. Both are related to each other.
While eA = 0, the same order for edivP has been obtained in Bachini et al. (2023b) for a
stationary surface. The convergence error of the total energy indicates third order. This
might be due to the dominating effect of Ginzburg–Landau energy as the expected order
for the underlying Helfrich model would be lower (Dziuk 2008). However, overall we see
experimentally the expected optimal order of convergence for the full problem.

4.3. Phase separation, bulging and induced flow
To demonstrate the strong interplay between composition, curvature and hydrodynamics
we consider φ1 as an initial condition. The other parameters are Re = 1.0 and either
κ1 = κ2 = κ = 0.02 or κ1 = 0.02 and κ2 = 0.5. In the last case, the red coloured phase
has a lower bending stiffness and is therefore expected to be guided to or initiate regions
with higher mean curvature, while the blue coloured phase has a larger bending stiffness
and can be expected to prefer regions of lower mean curvature. The evolution is shown
in figure 2(a,b), respectively. Both cases show the composition and the tangential velocity
for selected time instances. In both cases red and blue islands form and a wavy interface
between larger red and blue regions is established. Some coarsening events can be spotted
and the wavy interface flattens over time. However, the main evolution is in the shape,
which strongly deforms and forms bulges. Especially for circular islands the interface
length is reduced by bulging leading to strong deformation from the sphere. These shapes
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φ

Pu

φ

φ

Pu

||Pu||

0 1 0 0.15 0.30–1

(a)

(b)

Figure 2. (a,b) Snapshots of the relaxation of the two-component fluid deformable surface with random initial
condition φ1 and Re = 1.0 for t = 0, 0.3, 0.8, 1.1 (from left to right), with constant bending stiffness κ1 =
κ2 = κ = 0.02 in (a) and phase-depended bending stiffness κ1 = 0.02 and κ2 = 0.5 in (b). In (b) the red
coloured phase is less stiff than the blue coloured phase. Here, in each of (a,b), is shown the (top) phase field
φ; (bottom) tangential velocity Pu. The flow is visualized by a LIC (Line Integral Convolution) filter and colour
coding represents the magnitude. Corresponding movies are provided in the Supplementary data available at
https://doi.org/10.1017/jfm.2023.943.

change, but also the coarsening events induce flow. The simulations are only shown for
a relatively short period of time and are terminated before a potential topological change
would happen. Differences between figure 2(a) and figure 2(b) are also visible. While in
figure 2(a) the red and blue phases evolve similarly, in figure 2(b) the blue phase, the one
associated with a larger bending stiffness, forms less curved regions. Especially, islands
of this phase do not bulge out. Instead, they become relatively flat. The behaviour of the
simulation shown in figure 2 is quantified in figure 3 by different energies. In the current
setting, the evolution is dominated by FGL, which is reduced by coarsening but also by
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Figure 3. (a,b) The energies FK , FGL, FH and FK + F over time where (a) corresponds to figure 2(a) and
(b) corresponds to figure 2(b). The time instances are highlighted in the plots. (c) Averaged mean curvature
H̄1,2 for the different phases with respect to the simulations done in figure 2(a,b), the colour corresponds to
the coloured phases.

bulging, which is associated with an increase in FH . Hydrodynamics seems to play a
minor role in the evolution. Here FK is one to two orders of magnitude lower than FGL.
The strong increase of FK and FH at the beginning is associated with the increased driving
force resulting from the phase-dependent bending stiffness. The spatial average over the
mean curvature for the red and the blue phase, i.e.

H̄1 =
∫

{φ<0}
H and H̄2 =

∫
{φ>0}

H, (4.3a,b)

is shown in figure 3(c). The deviation between H̄1 and H̄2 for the setting of figure 2(a)
results from asymmetries in the initial condition. For the setting of figure 2(b), these
quantities show strong differences between the different phases. The blue phase on average
forms flat regions, while the red phase forms strongly curved bulges.

4.4. Variation of parameters
We now explore the influence of the parameters in more detail. To reduce the number of
parameters we only consider the situation of a constant bending stiffness κ1 = κ2 = κ , set
κ = {0.02, 0.1, 0.5}, and vary the Reynolds number with Re = {0.1, 1, 3}. We consider
both initial conditions φ0 and φ1. The behaviour is demonstrated for the symmetric initial
phase field φ0 in figure 4 and for the random initial phase field φ1 in figure 5. We only show
the final configuration, this is either the equilibrium configuration or the configuration
at the critical time T before a potential pinch-off. A table with critical final times is
presented in table 1. In the first case (φ0) the final configuration is mainly determined
by the interplay of the Helfrich energy FH and the Ginsburg–Landau energy FGL. For
κ = 0.5, FH dominates. Any deformation of the initial sphere requires us to increase the
Helfrich energy. Only small deformations are possible. The interface length, and thus
FGL, is reduced by deforming the sphere to an ellipsoid-like shape with the interface
placed along the short axis. Further reduction of the interface length either requires to
increase the mean curvature at the tips of the long axis of this shape or to form a furrow
alone the interface. Both effects strongly increase FH . This is only realized for settings
with lower κ and eventually will lead to a pinch-off. Hydrodynamics seems to have no
significant effect in these evolutions. However, a closer look at the consider critical times
T in table 1 shows the opposite. While the final configurations look similar, the time
to reach these configurations is strongly influenced by hydrodynamics. For low bending
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Re/κ κ = 0.5 κ = 0.1 κ = 0.02

Re = 3

Re = 1

Re = 0.1

φ

0 1–1

Figure 4. Final configuration obtained for different parameters and initial condition φ0. Either the simulation
reaches the equilibrium configuration or the criteria for a potential pinch-off is reached. The corresponding
critical times T are shown in table 1.

stiffness, κ = {0.1, 0.02}, the critical time is drastically reduced if the Reynolds number
Re is increased.

For the random initial condition φ1 the results are shown in figure 5. Here, we have an
interplay between coarsening, shape deformation, bulging and furrow formation. For large
bending stiffness κ = 0.5, where strong shape deformations are suppressed, the same final
configuration as in figure 4 is reached, meaning an ellipsoidal-like shape with the interface
placed along the short axis. This changes for lower κ . For κ = 0.1, we observe partial
coarsening, bulging of islands and the formation of a furrow, which eventually leads to a
pinch-off. The configurations also change with hydrodynamics. For Re = 3 the potential
pinch-off happens earlier. Several islands are still present in the red as well as the blue
phase. Decreasing Re also leads to possible pinch-offs but at a later coarsening state. There
are fewer islands present. While it is known in flat space that hydrodynamics can enhance
coarsening and this is also demonstrated on stationary surfaces (Bachini et al. 2023b),
these results indicate that this also holds on evolving surfaces and that hydrodynamics
enhances furrow formation and potential pinch-off. This is confirmed in table 1, which
again shows a drastic reduction of the critical time T . For κ = 0.02 the evolution is
dominated by bulging. As discussed in the previous section bulging is associated with
large local absolute mean curvature values but allows us to reduce the interface length.
The critical time results from potential pinch-offs of the bulges. Coarsening is only a
minor effect. Again hydrodynamic drastically enhances the evolution. Increasing Re again
drastically reduces the time for potential pinch-off, see table 1.
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Re/κ κ = 0.5 κ = 0.1 κ = 0.02

Re = 3

Re = 1

Re = 0.1

φ

0 1–1

Figure 5. Final configuration obtained for different parameters and initial condition φ1. Either the simulation
reaches the equilibrium configuration or the criteria for a potential pinch-off is reached. The corresponding
critical times T are shown in table 1.

(a) Re/κ 0.5 0.1 0.02 (b) Re/κ 0.5 0.1 0.02
3 ∞ 5.6 1.9 3 ∞ 9.1 0.5
1 ∞ 10.7 5.3 1 ∞ 20.0 1.1

0.1 ∞ 87.0 42.0 0.1 ∞ 170.5 9.8

Table 1. Critical times T for the different Reynolds numbers Re and bending stiffness κ for the symmetric
initial value φ0 in (a) and the random initial value φ1 in (b).

We also would like to comment on the axisymmetric ellipsoidal-like configurations
reached for κ = 0.5. With friction γ > 0 these configurations would be characterized by
zero tangential velocity Pu = 0 and they would be independent on the initial condition
and the Reynolds number Re. This equilibrium state coincides with the corresponding
result for the reduced model without hydrodynamics, see Appendix D. However, without
friction γ = 0 the dissipation potential in the reached axisymmetric state is invariant under
surface rigid body motion. Such configurations have been explored for one-component
fluid deformable surfaces (Reuther et al. 2020; Krause & Voigt 2023; Nestler & Voigt
2023b; Olshanskii 2023). Indeed the shown configurations in figures 4 and 5 for κ = 0.5
undergo slight rigid body motions and as the resulting forces interact with the shape and
the phase composition also slightly differ. This result can be viewed as an extension of the
phenomenon of rotating equilibrium states from one-component to two-component fluid
deformable surfaces. However, as discussed in Nestler & Voigt (2023b) any perturbation
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in shape or velocity that destroys the axisymmetric configurations leads to dissipation and
we therefore can expect for t → ∞ to reach the mentioned equilibrium state with Pu = 0.

However, the main focus of this paper is on the dynamics. One could ask about
the behaviour if the Reynolds number Re is further reduced. This can be considered
in the Stokes limit. This limit cannot be directly derived by the Lagrange–d’Alembert
principle and requires some further thoughts on the fluid–solid duality of the fluid
deformable surface model, which will be explored in future research. However, we can
already remark that the dynamics for two-phase fluid deformable surfaces, also for low
Re, strongly differ from previous models neglecting surface viscosity. The derivation by
the Lagrange–d’Alembert principle accounts for normal and tangential variations, which
differs from various previous approaches, see, for example, Elliott & Stinner (2010a).
Qualitative differences already result from the tangential flow induced by the phase
boundary, see Appendix D for corresponding results of the model proposed in Elliott
& Stinner (2010a) with additional local inextensibility constraint. These differences are
further enhanced by hydrodynamics.

5. Conclusions

While the literature on coexisting fluid domains in model systems for biomembranes
and their dynamics is rich, the influence of surface viscosity has not been discussed
in this context. We have filled this gap and derived a thermodynamically consistent
model that accounts for surface hydrodynamics. The derivation of the model by a
Lagrange–d’Alembert principle is applicable in general. Simplifications of the derived
two-phase fluid deformable surface model lead to known models in the literature, and this
further confirms the validity of the approach.

By combining numerical approaches for fluid deformable surfaces (Krause & Voigt
2023) and two-phase flow models on stationary surfaces (Bachini et al. 2023b), we
obtain a numerical approach for the full model, which is demonstrated to converge with
expected optimal order. This provides the basis for a detailed investigation of the strong
interplay of surface phase composition, surface curvature and surface hydrodynamics.
Depending on the material parameters, the line tension σ , the Reynolds number Re and
the bending stiffness κ , the evolution is dominated by coarsening or shape evolution. Both
phenomena are shown to be strongly enhanced by hydrodynamics. In situations where the
line tension and the bending stiffness are compatible, the interface length is reduced by
the formation of a furrow or the formation of bulges. Both potentially lead to pinch-offs.
The enhanced evolution towards such topological changes driven by hydrodynamics has
various biological implications. In the context of a furrow formation and its subsequent
shrinkage, this can be associated with cell division (Mietke et al. 2019); in the context of
bulges with pinch-offs, this can be associated with endocytosis and exocytosis (Kaksonen
& Roux 2018; Al-Izzi et al. 2020). While quantitative comparisons with experimental
data in these contexts require further studies, the mathematical model and the numerical
algorithm to solve it with the required accuracy are provided.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.943.
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Appendix A. Symbols, definitions and geometric notation

We define the surface differential operators as used in § 2, pointing out the differences if
they are applied to scalar, vector or tensor quantities.

A.1. Scalar fields
Let f ∈ T0S be a scalar field with arbitrary smooth extension f e, i.e. f e|S = f . The
componentwise, tangential or covariant derivative is given by

∇C f = ∇P f = ∇S f = (Pe∇f e)|S = P(∇f e)|S . (A1)

An alternative definition of the same operators without considering the extension f e is
given by

∇C f = ∇P f = ∇S f = gij∂j f ∂iX = (gij∂j f ∂iXA)eA, (A2)

where gij are the contravariant/inverse components of the metric tensor on S obtained by
a parametrization X .

A.2. Vector fields
Let u = uT + uNν ∈ TR3|S be a vector field with arbitrary smooth extension ue, i.e.
ue|S = u. We define the componentwise and tangential derivatives, respectively, by

∇Cu = ((Pe∇)ue)|S = (∇ue)|SP (componentwise derivative), (A3)

∇Pu = (Pe(∇ue)Pe)|S = P(∇ue)|SP (tangential derivative). (A4)

A covariant derivative is uniquely defined for pure tangential vector fields (i.e. uN = 0) by

∇SuT = gjk(∂kui
T + Γ i

klu
l
T
)
∂iX ⊗ ∂jX , (A5)

where Γ ··· are the Christoffel symbols determined by the metric tensor. The relation to the
tangential and componentwise derivatives is given by

∇Pu = gikgjl (∂lu, ∂kX ) ∂iX ⊗ ∂jX = P ∇Cu = ∇SuT − uNB, (A6)

∇Cu = eA ⊗ ∇SuA = gij(∂ju)⊗ ∂iX = ∇SuT − uNB + ν ⊗ (∇SuN + BuT) . (A7)

By definition, the covariant and tangential derivatives of vector fields are purely tangential
operators but the componentwise derivative contains normal components too. We define
the corresponding divergence operators by

divSuT = tr ∇SuT = ∂iui
T + Γ i

ikuk
T , (A8)

divCu = divPu = tr ∇Cu = tr ∇Pu = divSuT − uNH. (A9)
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A.3. Tensor fields
Let σ ∈ T2R3|S be a tensor field with arbitrary smooth extension σ e, i.e. σ e|S = σ . The
definition of the componentwise, tangential or covariant derivative is possible for arbitrary
tensor fields but we will show only the definitions of the operators used in this paper. To
do so, we define the componentwise derivative by

∇Cσ = ((Pe∇)σ e)|S = (∇σ e)|SP (A10)

= eA ⊗ eB ⊗ ∇SσAB = gij(∂jσ )⊗ ∂iX . (A11)

The covariant divergence for the pure tangential tensor field ε = PσP ∈ T2S is defined
by

divSε = (∂jε
ij + Γ i

jkε
kj + Γ

j
jkε

ik)∂iX . (A12)

We define a componentwise divergence for right side tangential tensor field σP by

divC(σP) = tr ∇C(σP) = (
eB,∇S [σP]AB)

eA

= divS(PσP)− νσB + ((σ ,B)+ divS(νσP)) ν. (A13)

The reason for defining only this restricted version of the componentwise divergence is that
tr ◦∇C would not be the adjoint operator of ∇C and thus the integration by parts formula
(A15) would no longer hold in general.

A.4. Integration by parts formulae
An integration by parts formulae can be derived for the differential operators above. The
following uses the global inner product neglecting the boundary terms. For all tangential
tensor fields ε = PσP ∈ T2S and vectors fields u ∈ TR3|S , the following relations hold:

(σ ,∇Pu) = (ε,∇Pu) = (ε,∇Cu) = −(divCε,u), (A14)

(σP,∇Cu) = −(divC(σP),u). (A15)

These relations follow from (A7) and (A13). For all f ∈ T0S and u ∈ TR3|S , we have

( f , divPu) = ( f , divCu) = −(divC( f P),u) = −(∇S f + fHν,u), (A16)

which follows from (A14), (A1), (A13) and metric compatibility ∇SP = 0.

A.5. Laplace operators
For scalar fields, we define a Laplace operator by the Laplace–Beltrami operator ΔS ,

ΔS f = divS∇S f = divP∇P f = divC∇C f = gij(∂i∂j f − Γ k
ij ∂k f ), (A17)

and the componentwise Laplace operator for vector fields u = uAeA by

ΔCu = divC∇Cu = (ΔSuA)eA, (A18)

where uA are the Cartesian components with respect to the Cartesian basis vectors eA.
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Appendix B. The Lagrange–d’Alembert principle for the full model

B.1. General procedure
For state variables X (parametrization of S) and φ ∈ T0S (phase field), and
process variables u ∈ TR3|S (material velocity) and φ̇ ∈ T0S (phase field rate), the
Lagrange–d’Alembert principle generally reads (see Marsden & Ratiu (2013))(
δA
δX
,Y

)
+

(
δA
δφ
,ψ

)
=

∫ t1

t0

(
δD
δu
,Y

)
+

(
δD
δφ̇
, ψ

)
∀Y ∈ TR

3|S , ψ ∈ T0S,

(B1)

where D is the dissipation potential and A = ∫ t1
t0
L is the action functional, in which the

Lagrangian is defined by L = FK − F , with kinetic energy FK = ∫
S(ρ/2) ‖u‖2, potential

energy F and time interval [t0, t1].
In a first step, we localize (B1) in time. Assuming that the potential energy F depends

only on state variables, we only have to consider the kinetic energy FK for this purpose.
Note that time integration commutes with spatial variations in a non-relativistic setting.
For instance, the following holds ((δ/δX )

∫ t1
t0
FK,Y ) = ∫ t1

t0
(δFK/δX ,Y ). In contrast,

spatial integration does clearly not commute with spatial variation. From Nitschke et al.
(2022), we adopt the identity(

δ

δX

∫
S

f ,Y
)

=
∫
S

ðY f + f divPY ∀f ∈ T0S, Y ∈ TR
3|S , (B2)

where ðY : T0S → T0S is the deformation derivative in direction of Y , i.e.

ðY f := d
dε

∣∣∣∣
ε=0

( f |X+εY ) ∀f ∈ T0S, Y ∈ TR
3|S . (B3)

We assume a variational mass conservation, i.e.

0 =
(
δ

δX

∫
U
ρ,Y

)
=

∫
U

ðYρ + ρ divPY ∀U ⊆ S, Y ∈ TR
3|S , (B4)

valid for mass density ρ ∈ T0S . Since the subset U ⊆ S is arbitrary, ðYρ = −ρ divPY
holds locally. In addition, we assume temporal mass conservation, ρ̇ = −ρ divPu, and
vanishing variation directions at times t0 and t1, i.e. Y |t0 = Y |t1 = 0. The fundamental
theorem of calculus, temporal integration by parts, transport formula and ðY u = Ẏ
Cartesian-componentwise together yields(

δ

δX

∫ t1

t0
FK,Y

)
=

∫ t1

t0

(
δFK

δX
,Y

)
=

∫ t1

t0

(
ρu, Ẏ

) +
∫
S

‖u‖2

2
(ðYρ + ρ divPY )

=
∫ t1

t0

d
dt
(ρu,Y )− (ρu̇,Y )− 1

2

∫
S
(ρ̇ + ρ divPu) (u,Y )

= −
∫ t1

t0
(ρu̇,Y .) (B5)

Finally, the temporal localized version of the Lagrange–d’Alembert principle (B1) reads

0 = (ρu̇ + DXF + DuD,Y )+ (
DφF + Dφ̇D, ψ

) ∀Y ∈ TR
3|S , ψ ∈ T0S, (B6)

where the negative generalized applied forces DXF ,DuD ∈ TR3|S and DφF ,Dφ̇D ∈
T0S are given as L2-gradients, i.e. (DXF ,Y ) = (δF/δX ,Y ) and (DuD,Y ) =
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(δD/δu,Y ) for all virtual displacements Y ∈ TR3|S , as well as (DφF , ψ) = (δF/δφ,ψ)
and (Dφ̇D, ψ) = (δD/δφ̇, ψ) for all virtual displacements ψ ∈ T0S .

Next, in § B.2, we calculate the negative Lagrangian forces DXF and DφF , and the
negative dissipative forces DuD and Dφ̇D in § B.3, according to the potential energy
F and the dissipation potential D given in this paper. Moreover, we implement local
inextensibility of the material by the Lagrange-multiplier technique in § B.4. Eventually,
the strong formulation of (B6) and a tangential-normal splitting of the Lagrangian force to
bT := −PDXF and bN := −(ν,DXF)ν leads to the full model given in Problem 2.1. Note
that, in our derivations, we assume a priori independence between the phase field φ and
the surface given by the parametrization X . Therefore, ðYφ = 0 is valid for all Y ∈ TR3|S
(see Nitschke et al. (2022) for more details), where this a priori condition is referred
to the scalar gauge of surface independence. In contrast to L2-gradient flow techniques,
here this assumption is not necessary to determine (B6), since all terms containing ðYφ
would vanish anyway. However, taken the generalized applied forces individually would
comprises terms of the undetermined quantity ðYφ in a weak sense. Consequently, we
would have to choose ðYφ = 0 to give these forces a determined meaning.

B.2. Lagrangian forces
In this section we consider the potential energy F = FGL + FH , which is composed
by the Ginzburg–Landau energy FGL = σ̃

∫
S(ε/2)‖∇Sφ‖2 + (1/ε)W(φ) (2.3) and the

Helfrich energy FH = ∫
S

1
2κ(φ)(H − H0(φ))

2 (2.4). Without much mathematical effort,
computing the negative generalized applied forces DφFGL,DφFH ∈ T0S gives

DφFGL = σ̃
( − εΔSφ + 1

ε
W ′(φ)

)
,

DφFH = 1
2
κ ′(φ)(H − H0(φ))

2 − κ(φ)(H − H0(φ))H′
0(φ).

⎫⎪⎪⎬⎪⎪⎭ (B7)

To derive the Ginzburg–Landau force −DXFGL, we use that ðY gij = −([∇PY ]ij +
[∇PY ]ji) is valid for gij = (∂iX , ∂jX ) (Nitschke et al. 2022). Moreover, the relation
ðY∂iφ = 0 holds, according to the assumption ðYφ = 0. This results in the following:

ðY ‖∇Sφ‖2 = ðY

(
gij∂iφ∂jφ

)
= − (∇Sφ ⊗ ∇Sφ,∇PY + (∇PY )T

)
= −2 (∇Sφ ⊗ ∇Sφ,∇PY ) , (B8)

by symmetry of the outer product. With (B2) and (A9), we obtain(
δFGL

δX
,Y

)
= σ̃

∫
S

−ε (∇Sφ ⊗ ∇Sφ,∇PY )+
(
ε

2
‖∇Sφ‖2 + 1

ε
W(φ)

)
divPY

= −σ̃
(
ε∇Sφ ⊗ ∇Sφ −

(
ε

2
‖∇Sφ‖2 + 1

ε
W(φ)

)
P,∇PY

)
. (B9)

Eventually, integration by parts (A14) yields

DXFGL = σ̃ divC

(
ε

(
∇Sφ ⊗ ∇Sφ − ‖∇Sφ‖2

2
P

)
− 1
ε

W(φ)P
)

∈ TR
3|S . (B10)

In terms of stress, this means that the Ginzburg–Landau energy induces a trace-free
and symmetric tangential stress for phase separations and a volumetric stress for the
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double-well potential. To separate the induced tangential and normal forces, we use metric
compatibility ∇SP = 0 and surface divergence (A13). This results in

PDXFGL = σ̃ divS
(
ε

(
∇Sφ ⊗ ∇Sφ − ‖∇Sφ‖2

2
P

)
− 1
ε

W(φ)P
)

= σ̃

(
εΔSφ − 1

ε
W ′(φ)

)
∇Sφ = −(DφFGL)∇Sφ ∈ TS, (B11)

νDXFGL = σ̃

(
ε

(
∇Sφ ⊗ ∇Sφ − ‖∇Sφ‖2

2
P

)
− 1
ε

W(φ)P,B
)

= σ̃ ε(∇Sφ)B∇Sφ − σ̃H
(
ε

2
‖∇Sφ‖2 + 1

ε
W(φ)

)
∈ T0S. (B12)

To calculate the Helfrich force −DXFH we need the deformation derivative of the
mean curvature. From Nitschke et al. (2022), we already know the tangential part of
the deformation derivative of the shape operator. Explicitly, P(ðYB)P = ∇S(ν ∇CY )−
B∇PY , where ðYB is to be read Cartesian-componentwise. Since tr and ðY commute in
this way, we obtain ðYH = divS(ν ∇CY )− (B,∇PY ). With (B2) and integration by parts
for the covariant divergence, we obtain

(
δFH

δX
,Y

)
=

∫
S
κ(φ)(H − H0(φ))

(
ðYH + 1

2
(H − H0(φ)) divPY

)
= −

(
ν ⊗ ∇S(κ(φ)(H − H0(φ)))+ κ(φ)(H − H0(φ))

×
(
B − H − H0(φ)

2
P

)
,∇CY

)
, (B13)

and then

DXFH = divC

(
κ(φ)(H − H0(φ))

(
B − H − H0(φ)

2
P

)
+ ν ⊗ ∇S(κ(φ)(H − H0(φ))

)
, (B14)

by integration by parts (A15). In terms of stress, we get an orthogonal decomposition of
a trace-free and symmetric tangential stress tensor, a volumetric stress tensor scaled by
H0(φ), and an additional stress tensor operating in the normal-tangential space ν ⊗ TS .
Using (A13), metric compatibility ∇SP = 0, the fact that B is curl-free and thus divSB =
∇SH, and ∇S f (φ) = f ′(φ)∇Sφ for f ∈ {κ,H0}, the results in the tangential and normal
Helfrich forces are

PDXFH = (
κ(φ)(H − H0(φ))H′

0(φ)− 1
2κ

′(φ)(H − H0(φ))
2)∇Sφ

= −(DφFH)∇Sφ ∈ TS, (B15)

977 A41-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.943


E. Bachini, V. Krause, I. Nitschke and A. Voigt

νDXFH = ΔS (κ(φ)(H − H0(φ)))+ κ(φ)(H − H0(φ))

(
‖B‖2 − H

2
(H − H0(φ))

)
.

(B16)

B.3. Dissipative forces
In this section we consider the dissipation potential D = DV + DR + Dφ , where DV =∫
S(η/4)

∥∥∇Pu + (∇Pu)T
∥∥2 is the viscous stress, DR = ∫

S(γ /2)‖u‖2 the friction with
surrounding material, and Dφ = (1/2m)|φ̇|2H−1 the (H−1)-immobility potential. Since the
viscous stress potential does not depend on φ̇, we get

Dφ̇DV = 0. (B17)

Variation with respect to u gives (δDV/δu,Y ) = η(∇Pu + (∇Pu)T,∇PY ) by symmetry.
Therefore, by applying integration by parts (A14) we obtain the negative viscous force,

DuDV = −η divC
(∇Pu + (∇Pu)T

) ∈ TR
3|S , (B18)

containing twice the tangential strain rate tensor. The friction potential does not depend
on φ̇. Therefore, we have

Dφ̇DR = 0, (B19)

DuDR = γu ∈ TR
3|S . (B20)

We approach the immobility potential by defining a scalar field ϕ[ f ] ∈ T0S implicitly so
that it solves the equation ΔSϕ[ f ] = f ∈ T0S . Due to this, we can write the immobility

potential in a L2-manner by Dφ = 1
2m

∫
S

∥∥∇Sϕ[φ̇]
∥∥2. Since ϕ[ f ] is linear in f , this yields(

δDφ
δφ̇

, ψ

)
= 1

m
(∇Sϕ[φ̇],∇Sϕ[ψ]) = − 1

m
(ϕ[φ̇],ΔSϕ[ψ]) = − 1

m
(ϕ[φ̇], ψ). (B21)

By considering ðYφ = 0, we get the dissipative forces

Dφ̇Dφ = − 1
m
ϕ[φ̇], (with ΔSϕ[φ̇] = φ̇), (B22)

DuDφ = 0. (B23)

Note that for all sufficient smooth f ∈ T0S and m /= 0 the equation Dφ̇Dφ + f = 0 implies
φ̇ = mΔS f .

B.4. Implementation of local inextensibility
The Lagrange–d’Alembert principle (B6) holds by assuming mass conservation 0 = ρ̇ +
ρ divPu. If we also want to set ρ̇ = 0, or equivalently divPu = 0, we have to constrain the
solution space of (B6). We obtain this constraint by the Lagrange multiplier technique,
where the Lagrange function CIE = − ∫

S p divPu has to be included appropriately into
the variation process. The Lagrange multiplier p ∈ T0S yields a new degree of freedom,
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which we associate formally to a process variable, since its purpose is to constrain the
process variable u. Therefore, we obtain additional negative applied forces

DpCIE = − divPu ∈ T0S, (B24)

DuCIE = divC( pP) = ∇Sp + pHν ∈ TR
3|S , (B25)

by (DpCIE, q) := (δCIE/δp, q) and (DuCIE,Y ) := (δCIE/δu,Y ), with virtual
displacements q ∈ T0S and Y ∈ TR3|S and integration by parts (A16). We do not consider
a variation with respect to φ̇, since this would result in Dφ̇CIE = 0 anyway. Including this
into (B6) gives

0 = (ρu̇ + DXF + DuD + DuCIE,Y )+ (
DφF + Dφ̇D, ψ

) + (
DpCIE, q

)
, (B26)

for all Y ∈ TR3|S and ψ, q ∈ T0S . Mutual independence of the virtual displacements
leads to the strong formulation,

ρu̇ = − (divC( pP)+ DXFGL + DXFH + DuDV + DuDR) , (B27)

φ̇ = mΔS
(
DφFGL + DφFH

)
, (B28)

0 = divPu, (B29)

recalling the calculations in §§ B.2 and B.3. Since (B27) and (B29) constitute the
inextensible Navier–Stokes equations with some additional forces, it is justified to call
the Lagrange multiplier p, the pressure.

B.5. Total energy rate
In this section we investigate the total energy rate (d/dt)(FK + F) comprising the sum
of the kinetic energy FK and the potential energy F = FGL + FH . For (B27)–(B29) to
be thermodynamically consistent, it is necessary that the total energy rate only depends
on the dissipation potential D = DV + DR + Dφ , since this is the only mechanism that
allows energy exchange with the surrounding of S , and the total energy FK + F must not
increase with time.

Using (B27)–(B29), including ρ̇ = 0, and applying the chain rule yields

d
dt
(FK + F) = (ρu̇ + DXF ,u)+ (

DφF , φ̇
)

= − (divC( pP)+ DuDV + DuDR,u)− 1
M

∣∣φ̇∣∣2
H−1 . (B30)

Integration by parts (A16) and (A15), DuDV (B18) and DuDR (B20) results in

(divC( pP),u) = − ( p, divPu) = 0,

(DuDV ,u) = η
(∇Pu + (∇Pu)T,∇Pu

) = η

2

∫
S

∥∥∇Pu + (∇Pu)T
∥∥2
,

(DuDR,u) = γ

∫
S

‖u‖2.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B31)

As a consequence, we finally obtain

d
dt
(FK + F) = −2D ≤ 0, (B32)

which satisfies our requirements above.
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B.6. Material time derivative
In this section we explain the material time derivative in details. Following the description
in Nitschke & Voigt (2022) for scalar fields φ ∈ T0S , the material derivative can be written
as

φ̇ = ∂tφ + ∇wφ, (B33)

where w ∈ T1S is the so-called relative velocity. To be able to evaluate both
summands on the right-hand side, we use the two different parametrizations X :
(t, y1, y2) �→ X (t, y1, y2) ∈ S(t) and X𝔪 : (t, y1

𝔪, y2
𝔪) �→ X𝔪(t, y1

𝔪, y2
𝔪) ∈ S(t). Both

parametrizations describe the same moving surface, where X𝔪 describe the material,
i.e. the map X𝔪|( y1

𝔪,y2
𝔪)

: [t0, t1] → R3 details the path of a single material particle in
time. In contrast, X is arbitrary as long as it depicts the same moving surface. This
means that X acts as an observer of S . With this clarified, the scalar field φ can be
represented by evaluating φ(t, y1, y2) as well as φ̃(t, x(t)), where x(t) = X (t, y1, y2) or
( y1, y2) = X |−1

t (x(t)), respectively. To make it clear, φ and φ̃ are the very same scalar
field from a physical point of view, only the mathematical representation differs. Partial
derivatives depend on the mathematical description of their argument, contrary to total
derivatives, for example. Hence, we have to be careful when evaluating the first summand
in (B33). This partial time derivative reads

∂tφ(t, y1, y2) = d
dτ

∣∣∣∣
τ=0

φ(t + τ, y1, y2) = d
dτ

∣∣∣∣
τ=0

φ̃(t + τ,X (t + τ, y1, y2)) , (B34)

or in terms of a differential quotient,

∂̃tφ(t, x(t)) = (∂tφ(t, y1, y2))|
( y1,y2)=X |−1

t (x(t))

= 1
τ

(
φ̃(t + τ, x(t + τ))− φ̃(t, x(t))

) + O(τ ), (B35)

with respect to global coordinates x(t) ∈ S(t), where ∂̃tφ is equal to ∂tφ due to the relation
x(t) = X (t, y1, y2). As a consequence, ∂tφ is well defined and can be discretize in time
with respect to global coordinates. Since ∂tφ represents only the observer rate of φ, the
second summand in (B33) represents the correction to obtain the material rate. The relative
velocity is given by w = u − υ, where u is the material velocity and υ the observer
velocity. In local observer coordinates, they are given by

u(t, y1, y2) = ∂tX𝔪(t,X𝔪|−1
t (X (t, y1, y2))), υ(t, y1, y2) = ∂tX (t, y1, y2). (B36a,b)

As a consequence, we have

ũ(t, x(t)) = u(t, y1, y2)|
( y1,y2)=X |−1

t (x(t)) = (∂tx𝔪(t))|x𝔪(t)=x(t),

υ̃(t, x(t)) = υ(t, y1, y2)|
( y1,y2)=X |−1

t (x(t)) = ∂tx(t),

⎫⎬⎭ (B37)

where the relation between global and material local coordinates is given by x𝔪(t) =
X𝔪(t, y1

𝔪, y2
𝔪) or ( y1

𝔪, y2
𝔪) = X𝔪|−1

t (x𝔪(t)), respectively. Note that for geometrical
reasons, (υ, ν) = (u, ν) holds. Due to this, the relative velocity is a tangential vector field,
i.e. w = u − υ ∈ T1S , and therefore ∇wφ = (∇Sφ,w) is valid. Putting all together, we
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can write the material derivative (B33) for ˜̇φ(t, x(t)) = φ̇(t, y1, y2)|
( y1,y2)=X |−1

t (x(t)) as

˜̇φ(t, x(t)) = 1
τ

(
φ̃(t + τ, x(t + τ))− φ̃(t, x(t))

)
+ ( ∇S φ̃(t, x(t)), ũ(t, x(t))− 1

τ
(x(t + τ)− x(t))

) + O(τ ) (B38)

in terms of global coordinates and differential quotients. This representation is very
suitable to implement flow equations on a surface grid that does not necessarily have
to follow the material flow. Here, x(t) is given by the surface grid coordinates and the
material velocity ũ is part of the solution defined on these grid coordinates. To simplify
the notation in all the other sections, we do not make use of the tilde, since all the field
quantities with or without the tilde are exactly the same fields. They differ only within the
argument formulation, which is not used in any case outside of this section. Note that we
can also apply (B33), or (B38), respectively, for the material acceleration u̇ with respect to
a Cartesian frame eI . Since ėI = 0, the relation u̇ = u̇IeI holds, for u = uIeI .

There are other representations of the material derivative (B33). For instance Dziuk &
Elliott (2013) stated

ˆ̇φ(t, x𝔪(t)) = ∂tφ̂(t, x𝔪(t))+ (∇φ̂, û(t, x𝔪(t))
)
, (B39)

when rewritten in our notation (in Dziuk & Elliott (2013), the authors use a function
G(t, ·) : S(0) → S(t). But we can define this map by G(t, x𝔪(0)) := x𝔪(t) implicitly),
where φ̂(t, x𝔪(t)) = φ(t, y1, y2) for ( y1, y2) = X |−1

t (x𝔪(t)) and û(t, x𝔪(t)) = ∂tx𝔪(t).
As already mentioned in Dziuk & Elliott (2013), both summands on the right-hand side
are not defined on a geometrically non-stationary surface, if considered individually.
For the partial time derivative we have to evaluate φ̂(t + τ, x𝔪(t)) for a small time
step τ . However, φ̂|t+τ is only defined at future locations x𝔪(t + τ) ∈ S(t + τ) and
not at the current S(t) if no further assumptions are considered. The same applies to
the second summand, which depends on the normal derivative (∇φ̂, ν) if the material
velocity û comprises a normal velocity. Such a normal derivative cannot be obtained
without considering its extensions outside of the surface. One might be tempted to
interpret (B39) as a fully Eulerian perspective, since (∂tφ̂)|x𝔪(t)=X (t,y1,y2) = ∂tφ is valid
for ∂tX = 0. However, a fully Eulerian surface observer does not exist if the surface
comprises a flow in the normal direction. Any normal part of the surface motion has to
be treated in a Lagrangian perspective at least. In general, (B39) is equal to (B33), since
(∂tφ̂)|x𝔪(t)=X (t,y1,y2) = ∂tφ − (∇φ,υ) holds formally in arbitrary observer coordinates.

Appendix C. Non-dimensionalization
In order to non-dimensionalize the model in Problem 2.1, we write the rescaled variables
by using the symbol ·̂. We define the rescaled parametrization X = X̂L, the velocity
u = ûU, the mean curvature H = Ĥ/L, the phase field φ = φ̂ and the chemical potential
μ = ρμ̂U2 for the characteristic length L and a characteristic velocity U, which defines
a rescaled time t = L/Ut̂. According to the parametrization, we rescale the gradient of
the embedded space by ∇ = ∇̂/L. This rescales the surface operators accordingly, for
example, the material time derivative reads (∂t + ∇w) = U/L(∂t̂ + ∇̂ŵ). We introduce
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the rescaled material functions, κ̂(φ) = κ(φ)/(ρU2L2), Ĥ0(φ) = H0(φ)L, and Ŵ(φ) =
1/L2W(φ); and the rescaled material parameters Re = ρLU/η, denoting the Reynolds
number, m̂ = ρmU/L, σ̂ = σ̃/(ρU2L2), and γ̂ = γL/(ρU). Considering the rescaled
variables and replacing the material functions and parameters into the model, we obtain
the following non-dimensional system:

∂t̂φ̂ + ∇̂ŵφ = m̂Δ̂S μ̂,

μ̂ = −σ̂ εΔ̂Sφ + σ̃

ε
Ŵ ′(φ̂)+ κ̂ ′

2
(φ̂)

(
Ĥ − Ĥ0(φ)

)2 − κ̂(φ̂)Ĥ′
0(φ̂)

(
Ĥ − Ĥ0(φ̂)

)
,

∂t̂û + ∇̂ŵû = −∇̂Sp − pĤν + 2
Re

ˆdivCσ̂ − γ̂ û + b̂T + b̂N,

dîvPû = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C1)

where b̂T and b̂N correspond to the rescaled tangential and normal bending terms,
respectively. In the main sections of the paper, we drop the symbol ·̂ for better readability.

Material parameters for surface viscosity and bending rigidity of biomembranes made
of typical lipids are reported in Faizi et al. (2022). They range from 100–106 nPa s m
for the surface viscosity and 101–102 kBT for the bending rigidity. The value for the
surface viscosity and surface density corresponds to η = η3Dξ and ρ = ρ3Dξ where ξ is
the surface thickness and η3D and ρ3D are the material viscosity and density, respectively.
Using appropriate values for L, U and ξ these quantities can be related to the considered
parameter range.

Appendix D. Derivation of the overdamped limit model

We consider the overdamped limit of the model in Problem 2.2. We define the rescaled
parameters δ = 1/γ , ˜̃σ = δσ̃ , κ̃ = δκ and m̃ = m/δ, and the rescaled variables p̃ = δp
and μ̃ = δμ. Substituting these parameters and variables into the model, we get

∂tφ + ∇wφ = m̃ΔSμ̃,

μ̃ = ˜̃σ
(

−εΔSφ + 1
ε

W ′(φ)
)

+ 1
2
κ̃ ′(φ) (H − H0(φ))

2

− κ̃(φ)H′
0(φ) (H − H0(φ)),

δ∂tu + δ∇w u = −∇S p̃ − p̃Hν + 2δ
Re

divPσ − u + b̃T + b̃N,

divPu = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D1)

where b̃T and b̃N are the tangential and normal forces with respect to the rescaled variables
and w = u − ∂tX as before. The overdamped limit is then obtained by considering δ ↘ 0,
and it reads

∂tφ + ∇wφ = m̃ΔSμ̃, (D2)

μ̃ = ˜̃σ
(

−εΔSφ + 1
ε

W ′(φ)
)

+ 1
2
κ̃ ′(φ) (H − H0(φ))

2

− κ̃(φ)H′
0(φ) (H − H0(φ)) , (D3)
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u = − ∇S p̃ − p̃Hν + b̃T + b̃N, (D4)

divPu = 0. (D5)

Considering uT = Pu and uN = u · ν, (D4) can be split into a tangential and a normal
part. Substituting these terms in (D5) and using the definitions for b̃T and b̃N we obtain

∂tφ + ∇wφ = m̃ΔSμ̃,

μ̃ = ˜̃σ
(

−εΔSφ + 1
ε

W ′(φ)
)

+ 1
2
κ̃ ′(φ) (H − H0(φ))

2

− κ̃(φ)H′
0(φ) (H − H0(φ)),

uN = −p̃H + b̃N,

uT = − ∇S p̃ + μ̃∇Sφ,

−ΔS p̃ + p̃H2 = − divS(μ̃∇Sφ)+ b̃NH,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D6)

where b̃N is given by

b̃N = b̃N · ν

= −ΔS(κ(φ)(H − H0(φ)))− κ(φ)(H − H0(φ))
(‖B‖2 − 1

2
H(H − H0(φ))

)
+ ˜̃σ (ε

2
‖ ∇Sφ‖2 + 1

ε
W(φ)

)
H − ˜̃σε∇SφTB∇Sφ. (D7)

This model is closely related to a model discussed in Haußer et al. (2013). To perform the
comparison, we recall that the total time derivative of the potential energy considered in
§ B.5 is given by

d
dt
F = (φ̇,DφF)+ (u,DXF). (D8)

In Haußer et al. (2013), the material derivative φ̇ is reduced to the partial time derivative
∂tφ, and this leads to the differences noted between the models.

More commonly used models reduce the local inextensibility constraint and only
consider a global area constraint∫

S
divPudS =

∫
S

divSuT − uNHdS = −
∫
S

uNH dS = 0, (D9)

which can be realized by

p̃ =

∫
S

uNH dS∫
S
H dS

. (D10)
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Figure 6. (a) Snapshots of the relaxation of the two-component elastic surface (without
hydrodynamics) (D12), with random initial condition φ1 for t = 0, 0.3, 0.8, 1.1, with constant bending
stiffness κ1 = κ2 = κ = 0.02 and H0 = 0. The phase field φ is visualized. The time instances correspond to
the simulation of the full model shown in figure 2(a). (b) Reached equilibrium configuration for the same
configuration as in (a) but with κ = 0.5. (c) Energy over time for the Ginsburg–Landau energy FGL, the
Helfrich energy FH and total energy FT , corresponding to (a). The black dashed line shows the total energy
of the simulation in figure 2(a) for comparison.

In this case p̃ and uT are independent. The corresponding system reads

∂tφ + ∇wφ = m̃ΔSμ̃,

μ̃ = ˜̃σ
(

−εΔSφ + 1
ε

W ′(φ)
)

+ 1
2
κ̃ ′(φ) (H − H0(φ))

2

− κ̃(φ)H′
0(φ) (H − H0(φ)),

uN = −p̃H + b̃N,

uT = μ̃∇Sφ,

p̃ =

∫
S

b̃NH dS∫
S
H dS

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D11)

with w = uT + uNν − ∂tX . This system has also been considered in Haußer et al. (2013)
and shows the same conceptional differences discussed above.

All these derivations contain the tangential velocity component μ̃∇Sφ. In other
previous non-hydrodynamic models this term is not present Elliott & Stinner (2010a) as
only variations in normal direction are considered. The model in Elliott & Stinner (2010a)
but with phase-dependent spontaneous curvature H0(φ), phase-dependent bending
rigidity κ̃(φ) and local inextensibility constraint instead of a penalization approach to
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φ

0 1–1

(a)

(b)

(c)

Figure 7. Snapshots of the relaxation of the two-component fluid deformable surface with random initial
condition φ1 and Re = 1.0 for t = 0, 0.3, 0.8, 1.1 (from left to right), with constant bending stiffness κ1 = κ2 =
κ = 0.02 and H0 = γ = 0. (a) Semi-implicit Euler scheme (identical with figure 2a). (b,c) Corresponding
results for the fully implicit iterative Euler scheme for two different time steps τ . (a) Semi-implicit Euler
scheme τ = 0.005, (b) iterative Euler scheme τ = 0.005 and (c) iterative Euler scheme τ = 0.02.

enforce the global area constraint reads

∂tφ + ∇wφ = m̃ΔSμ̃,

μ̃ = ˜̃σ
(

−εΔSφ + 1
ε

W ′(φ)
)

+ 1
2
κ̃ ′(φ) (H − H0(φ))

2

− κ̃(φ)H′
0(φ) (H − H0(φ)),

uN = −p̃H + b̃N,

uT = − ∇Sp,

−ΔS p̃ + p̃H2 = b̃NH,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D12)

with w = uT + uNν − ∂tX and b̃N as above. This system is solved numerically using the
same parameter setting as considered for figure 2(a). The results are shown in figure 6.
The missing tangential transport of the interface leads to qualitative different results. The
evolution strongly depends on the initial configuration and mostly deforms large patches.
The characteristic bulges in figure 2(a) formed to locally reduce the interface length are
not present. Also, the evolution is slower as demonstrated by the plots of the energies
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in figure 6. The same setting but with κ = 0.5 converges to a similar configuration as the
corresponding equilibrium configurations shown in figure 5.

Appendix E. Numerical justification of the considered discretization approach

To further justify the considered numerical discretization we compare the results from
figure 2(a) with a fully implicit iterative Euler scheme. In this scheme, we iterate Problems
3.1 and 3.2 within each time step until convergence and update all unknowns in each
iteration. We indicate convergence by ‖S i − S i−1‖ + ‖ui − ui−1‖ + ‖φi − φi−1‖ < δ for
δ = 10−4 and ·i the quantities at iteration i. Figure 7 shows the phase field variable φ and
the shape as in figure 2(a) together with the corresponding time instances for the fully
implicit iterative Euler scheme for different time steps.

By using the same time step (comparing figure 2a with figure 2b) we obtain visually
almost identical results. A more quantitative comparison provides the first pinch-off at
time t = 1.1 for the scheme considered in the paper and at t = 0.9 for the iterative
Euler scheme. On average the iterative Euler scheme requires four iterations to reach
convergence. This reduction by a factor of four, with the same time step, makes the
detailed investigations in this paper feasible. The fully implicit iterative Euler scheme
can be assumed to be unconditionally energy stable. Increasing the time step by a factor
of four indeed leads to qualitatively similar results, see figure 7(c), but also to more
iterations to reach convergence (approximately seven). Further increasing the time step
further increases the number of iterations or even leads to qualitatively different results.
The considered scheme and time step thus not only turns out to be the most efficient
it also respects an upper bound on the time step to achieve the desired accuracy. With
additional results on the numerical analysis of such highly coupled surface equations
further improvement on the numerical scheme is certainly possible.
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