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Abstract. A fast multigrid method to calculate the linear force-free 
field for a prescribed photospheric flux distribution is outlined. This is 
used to examine an idealized model of a filament channel. The magnetic 
fields, for a number of different field strengths and positions, are calcu
lated and the height up to which field lines connect along the channel is 
examined. This is shown to strongly depend on the value of the helicity 
of the system. A possible explanation, in terms of the global helicity 
of the system, is suggested for the dextral/sinistral hemispheric pattern 
observed in filament channels. 

1. Introduction 

Two of the prerequisites for the formation of solar prominences are that, first, 
an initial arcade structure must have already been formed above the polarity 
inversion line (PIL) and, second, that there must be a substantial component 
of the magnetic field along the PIL (Martin et al. 1994). Such a configura
tion is described as a filament channel. The overall magnetic field topology of 
these structures can be examined by the construction of force-free equilibria for 
given magnetic flux distributions at the photosphere. Such models, using the 
linear force-free approximation, are developed below allowing the global nature 
of filament channels to be explored. 

2. Linear Force-Free Fields and the Numerical Method 

In general a force-free equilibrium can be described by the equation 

(V x B) x B = 0, 

where B is the magnetic field. This may be rewritten as 

V x B = a B , (1) 

where a is a function of space and, in some sense, measures the helicity of the 
system. If a = 0 then the resulting equilibrium is current-free (or potential). 
If a = constant the equilibrium is linear force-free, and if a is a true function 
of space it is nonlinear force-free. The linear force-free field retains much of 
the detail of the nonlinear solution while being far easier to calculate. This 
approximation allows a substantially more realistic representation of the true 
equilibrium field than the current-free case. 
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It must, however, be pointed out that the magnetic field may only be locally 
modelled by linear force-free equilibria, over regions of space where a is constant. 
Indeed, the linear solution is dependent on the size of the domain within which 
it is calculated. A number of theorems reguarding linear force-free fields are 
well established (Berger 1985): 1. For a given size of domain and boundary 
conditions a series of resonance points occur, as a is increased/decreased from 
zero, where the helicity and magnetic energy go to infinity. 2. For a given helicity 
(a) the linear force-free field is the lowest energy equilibrium compatible with 
the fixed boundary conditions. 3. All solutions with a less than the value of the 
first resonance point are linearly stable to ideal MHD modes. 

Here the linear force-free equation is solved numerically by the method of 
Finn et al. (1994) rewriting (1) as 

V2A = aV X A, (2) 

where 

B = V x A. 

The numerical box is a cube with normalized dimensions — l < a ; , j / < l , 0 < z < 
2 and has a resolution of up to 1293 grid points. For a given vertical component 
of magnetic field prescribed on the base of the box (the photosphere) a Poisson 
equation is solved, on the base, to give the values of A on that face. The elliptic 
equation (2) is then solved directly within the three-dimensional domain. The 
boundary conditions on the faces, other than the photospheric base, are that 
the normal component of magnetic field vanishes and V • A = 0. The second 
of these guarantees that when (2) is solved with the given boundary conditions 
V • A = 0 everywhere within the computational domain. 

If classical iterative methods (such as SOR.) are used to solve the equations, 
convergence towards the solution quickly saturates once short wavelength errors 
are smoothed. In fact, the number of iterations to gain a given accuracy scales 
Hke the square of the number of grid points. Thus, doubling the resolution 
requires 64 times the number of iterations. 

Here linear multigrid methods (Longbottom et al. 1998) are used to speed 
up the rate of convergence of the classical scheme. Multigrid methods smooth all 
wavelength errors simultaneously so convergence does not saturate. The number 
of iterations to gain a given accuracy scales independently of the grid size. 

3. Results 

In trying to model a filament channel an idealized flux distribution is used. 
This consists of two elongated regions of equal and opposite flux emerging from 
the photosphere, forming the overlying arcade, together with two concentrated 
regions of flux at either end of the arcade, representing an underlying component 
of the field directed along the length filament channel. This geometry together 
with a typical calculated field is shown in Figure 1. Ratios of concentrated to 
elongated flux per unit area between 2 and 24 have been taken, with ratios a/b 
of separation of concentrated to elongated flux regions of 1 or 2. 
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Figure 1. (a) The flux distribution on the photospheric base, (b) 
Field lines for the case a/b = 2, flux ratio — 12, a = —2. 

For each case the linear force-free field between the the first (positive and 
negative) values of the resonant a have been calculated. An examination of 
the field line topology then gives distinct regions of field line connectivity. The 
separatrix surface enclosing all field lines that connect the two concentrated 
sources can be calculated. The maximum separatrix height (always along the 
line rising vertically from the centre of the base) as a function of a, is plotted 
in Figure 2. 
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Figure 2. The height of the separatrix surface for (a) a/b = 1 and 
(b) a/b = 2. 

The results for a/b = 1 are shown in Figure 2a. This represents the case 
where the concentrated flux sources are separated by the width of the filament 
channel. With increasing height, the curves represent flux ratios of 2, 4, 8,12,16, 
20 and 24. The curves for large a and height are due to the boundary conditions 
on the top and sides of the computational domain and do not represent physically 
relevant solutions. For this flux distribution a value of helicity (a) may always 
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be found for which field lines will connect the two concentrated flux sources, 
forming a component of field along the channel. 

For the potential case (a = 0) considered by MacKay and Priest (1998) 
this would not be the case. Only when the concentrated flux becomes large with 
respect to the arcade flux do field lines connect the two concentrated sources. 

Figure 2b shows the equivalent results for the case a/b — 2 (the concentrated 
flux sources are separated towards the ends of the filament channel). The curves 
from left to right represent flux ratios of 8, 12, 16, 20 and 24. Again the curves 
for large a and height are due to the top and side boundary conditions. In most 
cases for a given a, there is now both a lower and upper bound to the separatrix 
surface giving a closed volume above the photospheric boundary within which 
field lines connect the concentrated sources along the filament channel. It can 
also be noted that, as the concentrated sources are now further separated, greater 
strengths are required to connect them. 

A plot of the field lines for the case a/b = 2, flux ratio = 12, a = —2 is 
shown in Figure lb. Field lines connecting the two concentrated sources are 
shown solid and those connecting the arcade dashed. It is interesting to note 
that this represents a dextral filament channel which is preferentially observed in 
the northern hemisphere. Figure 2b shows that this topology (Figure la) has a 
bias towards negative values of a. Similarly sinistral filament channels (observed 
preferentially in the southern hemisphere) show a bias towards positive values 
of a. This agrees with the corresponding hemispheric variation of a observed by 
Pevtsov et al. (1995). For further details see MacKay and Longbottom (1998). 

4. Conclusions 

This paper outlines a method for the fast generation of linear force-free equilibria 
for a given magnetic flux distribution at the photospheric boundary. This has 
been used to model the global topology of a filament channel. It is shown 
that both the strong component of field along the channel and dextral/sinistral 
hemispheric pattern can be reproduced by the appropriate choice of helicity, this 
choice agreeing with the observed hemispheric pattern of helicity. 
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