ON OZAKI CLOSE-TO-CONVEX FUNCTIONS

VASUDEVARAO ALLU ${ }^{\boxtimes}$, DEREK K. THOMAS and NIKOLA TUNESKI

(Received 4 July 2018; accepted 30 July 2018; first published online 20 September 2018)

Abstract

Let f be analytic in $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and given by $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. We give sharp bounds for the initial coefficients of the Taylor expansion of such functions in the class of strongly Ozaki close-to-convex functions, and of the initial coefficients of the inverse function, together with some growth estimates.

2010 Mathematics subject classification: primary 30C45; secondary 30C55.
Keywords and phrases: analytic, univalent, strongly close-to-convex functions, coefficient estimates.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions f analytic in the unit disc $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ with Taylor series

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent (that is, one-to-one) functions. A function $f \in \mathcal{A}$ is called starlike (with respect to the origin) if $f(\mathbb{D})$ is starlike with respect to the origin and convex if $f(\mathbb{D})$ is convex. Let $\mathcal{S}^{*}(\alpha)$ and $C(\alpha)$ denote respectively the classes of starlike and convex functions of order α for $0 \leq \alpha<1$ in \mathcal{S}. It is well known that a function $f \in \mathcal{A}$ belongs to $\mathcal{S}^{*}(\alpha)$ if and only if $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\alpha$ for $z \in \mathbb{D}$, and $f \in \mathcal{C}(\alpha)$ if and only if $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\alpha$. Similarly, a function $f \in \mathcal{A}$ belongs to \mathcal{K}, the class of close-to-convex functions, if and only if there exists $g \in \mathcal{S}^{*}$ such that $\operatorname{Re}\left[e^{i \tau}\left(z f^{\prime}(z) / g(z)\right)\right]>0$ for $z \in \mathbb{D}$ and $\tau \in(-\pi / 2, \pi / 2)$. Thus, $\mathcal{C} \subset \mathcal{S}^{*} \subset \mathcal{K} \subset \mathcal{S}$. When $\tau=0$, the resulting subclass of close-to-convex functions is denoted by \mathcal{K}_{0}.

Although the class \mathcal{K} was first formally introduced by Kaplan [5] in 1952, already in 1941 Ozaki [9] considered functions in \mathcal{A} satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\frac{1}{2} \quad(z \in \mathbb{D}) \tag{1.2}
\end{equation*}
$$

It follows from the original definition of Kaplan [5] that functions satisfying (1.2) are close-to-convex and therefore members of \mathcal{S}.

[^0]Kargar and Ebadian [6] considered the following generalisation to (1.2).
Definition 1.1. Let $f \in \mathcal{A}$ be locally univalent for $z \in \mathbb{D}$ and let $-1 / 2<\lambda \leq 1$. Then $f \in \mathcal{F}(\lambda)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{1}{2}-\lambda \quad(z \in \mathbb{D}) \tag{1.3}
\end{equation*}
$$

Clearly, when $-1 / 2<\lambda \leq 1 / 2$, functions defined by (1.3) provide a subset of C, with $\mathcal{F}(1 / 2)=C$, and, since $1 / 2-\lambda \geq-1 / 2$ when $\lambda \leq 1$, functions in $\mathcal{F}(\lambda)$ are close-to-convex when $1 / 2 \leq \lambda \leq 1$. We shall call members of $f \in \mathcal{F}(\lambda)$ when $1 / 2 \leq \lambda \leq 1$ Ozaki close-to-convex functions and denote this class by $\mathcal{F}_{O}(\lambda)$.

For $0<\beta \leq 1$, the classes $\mathcal{S}^{* *}(\beta)$ of strongly starlike functions and $C^{* *}(\beta)$ of strongly convex functions are defined for $f \in \mathcal{A}$ and $z \in \mathbb{D}$, respectively, by

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\beta \pi}{2}
$$

and

$$
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\beta \pi}{2} .
$$

Functions in $\mathcal{S}^{* *}(\beta)$ and $C^{* *}(\beta)$ are more difficult to deal with than those in \mathcal{S}^{*} and C, and relatively few exact coefficient bounds are known. Sharp bounds are known only for functionals involving the coefficients a_{2}, a_{3} and a_{4} (see [1-3] and [17]).

Even more elusive are sharp bounds for the class $\mathcal{K}^{* *}(\beta)$ of strongly close-to-convex functions, defined for $f \in \mathcal{A}$ and $z \in \mathbb{D}$, by

$$
\left|\arg \frac{z f^{\prime}(z)}{g(z)}\right|<\frac{\beta \pi}{2}
$$

where $0<\beta \leq 1$ and $g \in \mathcal{S}^{*}$. It is a relatively simple exercise to obtain sharp bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ when $f \in \mathcal{K}^{* *}(\beta)$, but finding sharp bounds for $\left|a_{4}\right|$ appears to be a more difficult problem.

We note that in contrast to the definition of \mathcal{K}, the definition of $\mathcal{F}(\lambda)$ does not involve an independent starlike function g, but, as was shown in [11], members of $\mathcal{F}(1)$ have coefficients which grow at the same rate as those in \mathcal{K}, that is, $O(n)$ as $n \rightarrow \infty$.

We make the following definition, which extends (1.3), the special case with $\beta=1$. Definition 1.2. Let $f \in \mathcal{A}$ for $z \in \mathbb{D}$, with $0<\beta \leq 1$ and $1 / 2 \leq \lambda \leq 1$. Then f is called strongly Ozaki close-to-convex if and only if

$$
\begin{equation*}
\left|\arg \left(\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)\right|<\frac{\beta \pi}{2} \quad(z \in \mathbb{D}) \tag{1.4}
\end{equation*}
$$

We denote this class of functions by $\mathcal{F}_{O}(\lambda, \beta)$.
The primary object of this paper is to obtain sharp bounds for the coefficients $\left|a_{2}\right|$, $\left|a_{3}\right|$ and $\left|a_{4}\right|$, and the corresponding inverse coefficients, for strongly Ozaki close-toconvex functions, thus providing sharp inequalities for the fourth coefficient of a class of strongly close-to-convex functions. We also give some distortion theorems.

2. Lemmas

We will use the following lemmas (see, for example, [1]) for functions $p \in \mathcal{P}$, the class of functions with positive real part in \mathbb{D}, given by

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

Lemma 2.1. If $p \in \mathcal{P}$, then $\left|p_{n}\right| \leq 2$ for $n \geq 1$ and

$$
\left|p_{2}-\frac{\mu}{2} p_{1}^{2}\right| \leq \max \{2,2|\mu-1|\}= \begin{cases}2, & 0 \leq \mu \leq 2 \\ 2|\mu-1|, & \text { elsewhere }\end{cases}
$$

Also,

$$
\left|p_{2}-\frac{1}{2} p_{1}^{2}\right| \leq 2-\frac{1}{2}\left|p_{1}^{2}\right| .
$$

Lemma 2.2. Let $p \in \mathcal{P}$. If $0 \leq B \leq 1$ and $B(2 B-1) \leq D \leq B$, then

$$
\left|p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}\right| \leq 2
$$

Lemma 2.3. If $p \in \mathcal{P}$, then

$$
\left|p_{3}-(\mu+1) p_{1} p_{2}+\mu p_{1}^{3}\right| \leq \max \{2,2|2 \mu-1|\}= \begin{cases}2, & 0 \leq \mu \leq 1 \\ 2|2 \mu-1|, & \text { elsewhere }\end{cases}
$$

We will also use the following result from the theory of differential subordination (see [8]).

Lemma 2.4. Let $\Omega \subset \mathbb{C}$ and suppose that the function $\psi: \mathbb{C}^{2} \times \mathbb{D} \rightarrow \mathbb{C}$ satisfies $\psi(i x, y ; z) \notin \Omega$ for all $x \in \mathbb{R}, y \leq-n\left(1+x^{2}\right) / 2$ and $z \in \mathbb{D}$. If p is analytic in $\mathbb{D}, p(0)=1$ and $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathbb{D}$, then $\operatorname{Re} p(z)>0$ for $z \in \mathbb{D}$.

The following result (see [12] and [4, page 67]) is often useful and we will need it in Theorem 3.4.

Lemma 2.5. Suppose that $f \in \mathcal{S}$ and that $z=r e^{i \theta} \in \mathbb{D}$. If

$$
m^{\prime}(r) \leq\left|f^{\prime}(z)\right| \leq M^{\prime}(r)
$$

where $m^{\prime}(r)$ and $M^{\prime}(r)$ are real-valued functions of r in $[0,1)$, then

$$
\int_{0}^{r} m^{\prime}(t) d t \leq|f(z)| \leq \int_{0}^{r} M^{\prime}(r) d t
$$

Although functions in $\mathcal{F}(\lambda)$ are close-to-convex when $1 / 2 \leq \lambda \leq 1$, Ponnusamy et al. [11] gave an example to show that when $\lambda=1$, they are not necessarily starlike. On the other hand, we will show in this paper that when the second coefficient of the Taylor expansion for $f(z)$ is zero, functions in $\mathcal{F}(1)$ are starlike of order $1 / 2$, that is, $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>1 / 2$.

In the next section, we consider the class $\mathcal{F}(\lambda)$, that is, when $-1 / 2 \leq \lambda \leq 1$. The following sections will be concerned with Ozaki close-to-convex functions, that is, when $1 / 2 \leq \lambda \leq 1$.

3. The class $\mathcal{F}(\boldsymbol{\lambda})$

Theorem 3.1. Let \mathcal{A}_{n} be the set of functions in \mathcal{A} given by

$$
f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots .
$$

If $f \in \mathcal{F}(\lambda)$ for $-1 / 2 \leq \lambda \leq 1,0 \leq \alpha<1, n \in \mathbb{N}$ and $\widehat{\lambda}=\lambda(\alpha, n)=\min \left\{\lambda_{*}(\alpha, n), 1\right\}$, where

$$
\lambda_{*}(\alpha, n)= \begin{cases}\frac{1}{2}-\alpha+\frac{n}{2} \cdot \frac{1-\alpha}{\alpha}, & \alpha \geq \frac{1}{2} \\ \frac{1}{2}-\alpha+\frac{n}{2} \cdot \frac{\alpha}{1-\alpha}, & \alpha<\frac{1}{2}\end{cases}
$$

then $\mathcal{A}_{n} \cap \mathcal{F}(\widehat{\lambda}) \subset \mathcal{S}^{*}(\alpha)$.
Proof. First note that $-1 / 2<\widehat{\lambda} \leq 1$. Next, let $f \in \mathcal{A}_{n} \cap \mathcal{F}(\widehat{\lambda})$ and consider the function

$$
p(z)=\frac{1}{1-\alpha}\left[\frac{z f^{\prime}(z)}{f(z)}-\alpha\right],
$$

which is analytic in \mathbb{D} with $p(0)=1$. For this function, with

$$
\psi(r, s)=\frac{s(1-\alpha)}{(1-\alpha) r+\alpha}+(1-\alpha) r+\alpha \quad \text { and } \quad \Omega=\left\{\omega: \operatorname{Re} \omega>\frac{1}{2}-\widehat{\lambda}\right\}
$$

we have

$$
\psi\left(p(z), z p^{\prime}(z)\right)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \in \Omega \quad(z \in \mathbb{D})
$$

Therefore, in view of Lemma 2.4, in order to prove that $f \in \mathcal{S}^{*}(\alpha)$ it is enough to show that $\psi(i x, y ; z) \notin \Omega$, that is,

$$
\operatorname{Re} \psi(i x, y ; z)=\frac{y \alpha(1-\alpha)}{(1-\alpha)^{2} x^{2}+\alpha^{2}}+\alpha \leq \frac{1}{2}-\widehat{\lambda}
$$

or, equivalently,

$$
\begin{equation*}
y \leq\left(\frac{1}{2}-\widehat{\lambda}-\alpha\right)\left(\frac{\alpha}{1-\alpha}+\frac{1-\alpha}{\alpha} \cdot x^{2}\right) \tag{3.1}
\end{equation*}
$$

for all $x \in \mathbb{R}, y \leq-n\left(1+x^{2}\right) / 2$ and $z \in \mathbb{D}$. This happens only when

$$
-\frac{n}{2}\left(1+x^{2}\right) \leq\left(\frac{1}{2}-\widehat{\lambda}-\alpha\right)\left(\frac{\alpha}{1-\alpha}+\frac{1-\alpha}{\alpha} \cdot x^{2}\right),
$$

that is, when

$$
\left(\frac{1}{2}-\widehat{\lambda}-\alpha\right) \frac{\alpha}{1-\alpha}+\frac{n}{2}+\left[\left(\frac{1}{2}-\widehat{\lambda}-\alpha\right) \frac{1-\alpha}{\alpha}+\frac{n}{2}\right] x^{2} \geq 0
$$

for all $x \in \mathbb{R}$. The last inequality holds if and only if

$$
\left(\frac{1}{2}-\hat{\lambda}-\alpha\right) \frac{\alpha}{1-\alpha}+\frac{n}{2} \geq 0
$$

and

$$
\left(\frac{1}{2}-\widehat{\lambda}-\alpha\right) \frac{1-\alpha}{\alpha}+\frac{n}{2} \geq 0 .
$$

Finally, it easy to verify that $\hat{\lambda}$ satisfies the two inequalities above.

By specifying values of α and n in Theorem 3.1, we deduce the following results.
Corollary 3.2.
(i) $\quad \mathcal{C}=\mathcal{F}(1 / 2) \subset \mathcal{S}^{*} \quad($ since $\widehat{\lambda}=\lambda(0,1)=1 / 2)$;
(ii) $\mathcal{A}_{n} \cap \mathcal{F}(\widehat{\lambda}) \subset \mathcal{S}^{*}(1 / 2) \quad$ for $\widehat{\lambda}=\min \{n / 2,1\}$;
(iii) $\mathcal{C}=\mathcal{F}(1 / 2) \subset \mathcal{S}^{*}(1 / 2) \quad$ (taking $n=1$ in (ii));
(iv) $\mathcal{A}_{2} \cap \mathcal{F}(1) \subset \mathcal{S}^{*}(1 / 2) \quad$ (taking $n=2$ in (ii)).

We note that (iii) is the well-known Marx-Strohhäcker theorem [13] and that (iv) corresponds to [8, Theorem 2.6i, page 68].
3.1. Coefficients. In [11], Ponnusamy et al. gave sharp coefficient bounds and some distortion theorems for $f \in \mathcal{F}(1)$. It was also shown that every partial sum (or section) $s_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}$ of a function $f \in \mathcal{F}(1)$ given by (1.1) belongs to C in the disc $|z|<1 / 6$ and that this radius is the best possible. We extend the coefficient result by finding sharp bounds for the coefficients of the Ozaki close-to-convex functions $\mathcal{F}_{O}(\lambda)$.

Theorem 3.3. Let $f \in \mathcal{F}_{O}(\lambda)$ be given by (1.1). Then, for $n \geq 2$,

$$
\left|a_{n}\right| \leq \frac{1}{n!} \prod_{k=2}^{n}(k+2 \lambda-1) .
$$

The inequality is sharp when $f(z)=f_{\lambda}(z)=(1 / 2 \lambda)\left(\left(1 /(1-z)^{2 \lambda}\right)-1\right)$.
Proof. Write

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=1+\sum_{n=1}^{\infty} c_{n} z^{n}:=h(z)
$$

and let

$$
p(z)=\frac{2}{1+2 \lambda}\left[h(z)-\frac{1}{2}+\lambda\right]=1+\sum_{n=1}^{\infty} p_{n} z^{n} .
$$

Then $\operatorname{Re} p(z)>0$ for $z \in \mathbb{D}, \operatorname{Re} h(z)>1 / 2-\lambda$ and $\left|p_{n}\right| \leq 2$ for $n \geq 1$ and, since $c_{n}=(1 / 2+\lambda) p_{n}$, we have $\left|c_{n}\right| \leq 1+2 \lambda$ for $n \geq 1$.

For each integer n, the coefficients a_{n} are polynomials with positive coefficients in c_{n}, so $\left|a_{n}\right|$ will be less than or equal to the result of replacing $\left|c_{n}\right|$ by $1+2 \lambda$. Thus, by the principle of majorisation (see, for example, [7]),

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \ll \frac{1+2 \lambda z}{1-z}
$$

and

$$
f(z) \ll \frac{1}{2 \lambda}\left(\frac{1}{(1-z)^{2 \lambda}}-1\right):=z+\sum_{n=2}^{\infty} d_{n} z^{n} .
$$

Therefore,

$$
\left|a_{n}\right| \leq d_{n}=\frac{1}{n!} \prod_{k=2}^{n}(k+2 \lambda-1)
$$

which is (3.1).
3.2. Distortion theorems. We next give distortion results for functions $f \in \mathcal{F}_{O}(\lambda)$.

Theorem 3.4. Let $f \in \mathcal{F}_{O}(\lambda)$. Then, for $z=r e^{i \theta} \in \mathbb{D}$,

$$
\begin{aligned}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| & \leq \frac{(1+2 \lambda) r}{1-r}, \\
\frac{1}{(1+r)^{1+2 \lambda}} \leq\left|f^{\prime}(z)\right| & \leq \frac{1}{(1-r)^{1+2 \lambda}}, \\
\frac{1}{2 \lambda}\left(\frac{1}{(1+r)^{2 \lambda}}-1\right) \leq|f(z)| & \leq \frac{1}{2 \lambda}\left(\frac{1}{(1-r)^{2 \lambda}}-1\right) .
\end{aligned}
$$

Proof. From (1.3),

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\left(\frac{1}{2}+\lambda\right) p(z)+\frac{1}{2}-\lambda \tag{3.2}
\end{equation*}
$$

Thus,

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{1+2 \lambda z}{1-z}
$$

and so

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{(1+2 \lambda) z}{1-z}
$$

Hence,

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{(1+2 \lambda) \omega(z)}{1-\omega(z)}
$$

where $|\omega(z)| \leq|z|$. The first inequality in the theorem now follows.
To prove the inequalities for $\left|f^{\prime}(z)\right|$, we use a result of Suffridge [14, Theorem 3], which states that if F is convex and $z G^{\prime}(z)<z F^{\prime}(z)$, then $G(z)<F(z)$. Using this result, we integrate (3.2) to obtain

$$
f^{\prime}(z)<\frac{1}{(1-z)^{1+2 \lambda}}
$$

The inequalities for $\left|f^{\prime}(z)\right|$ now follow in the same way.
An application of Lemma 2.5 gives the bounds for $|f(z)|$.
3.3. Growth and area estimates. For $f \in \mathcal{S}, z=r e^{i \theta} \in \mathbb{D}$, let $M(r)=\max _{|z|=r}|f(z)|$, $C(r)$ be the curve $f(|z|=r), L(r)$ the length of $C(r)$ and $A(r)$ the area enclosed by $C(r)$. A long-standing problem for functions in \mathcal{K} is whether $M(r)$ can be replaced by $\sqrt{A(r)}$ in the growth estimate $L(r)=O(M(r) \log (1 /(1-r)))$ as $r \rightarrow 1$, a result already known for functions in \mathcal{S}^{*}. Similarly, replacing $M(r)$ by $\sqrt{A(r)}$ in the known estimate $n a_{n}=O(M((n+1) / n))$ as $n \rightarrow \infty$ for functions in \mathcal{K} remains an open question [15, 16].

Since the definition of Ozaki close-to-convex functions does not include an independent starlike function, it is relatively easy to show that both these growth estimates can be improved when $f \in \mathcal{F}_{O}(\lambda)$, as follows.

Theorem 3.5. Let $f \in \mathcal{F}_{O}(\lambda)$ be given by (1.1), with $M(r), L(r)$ and $A(r)$ defined as above. Then

$$
L(r)=O\left(\sqrt{A(r)} \log \frac{1}{1-r}\right) \quad \text { as } r \rightarrow 1
$$

and

$$
n a_{n}=O(\sqrt{A((n+1) / n)}) \quad \text { as } n \rightarrow \infty .
$$

Proof. For $z=r e^{i \theta}$,

$$
L(r)=\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta \leq \int_{0}^{r} \int_{0}^{2 \pi}\left|z f^{\prime \prime}(z)+f^{\prime}(z)\right| d \theta d \rho
$$

where now $z=\rho e^{i \theta}$. Thus, from (3.2),

$$
\begin{aligned}
L(r) & \leq\left(\frac{1}{2}+\lambda\right) \int_{0}^{r} \int_{0}^{2 \pi}\left|f^{\prime}(z) p(z)\right| d \theta d \rho+\left(\lambda-\frac{1}{2}\right) \int_{0}^{r} \int_{0}^{2 \pi}\left|f^{\prime}(z)\right| d \theta d \rho \\
& =\left(\frac{1}{2}+\lambda\right) I_{1}(r)+\left(\lambda-\frac{1}{2}\right) I_{2}(r), \quad \text { say. }
\end{aligned}
$$

We first deal with $I_{1}(r)$. The Cauchy-Schwarz inequality gives

$$
\begin{aligned}
I_{1}(r) & \leq\left(\int_{0}^{r} \int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{2} d \theta d \rho\right)^{1 / 2}\left(\int_{0}^{r} \int_{0}^{2 \pi}|p(z)|^{2} d \theta d \rho\right)^{1 / 2} \\
& =O\left(\sqrt{A(r)} \log \frac{1}{1-r}\right) \quad \text { as } r \rightarrow 1,
\end{aligned}
$$

since the first integral is $\sqrt{A(r)}$ and since $\int_{0}^{2 \pi}|p(z)|^{2} d \theta \leq 2 \pi\left(1+3 r^{2}\right) /\left(1-r^{2}\right)$ when $p \in \mathcal{P}$ (see, for example, [10]). Applying the Cauchy-Schwarz inequality to $I_{2}(r)$ gives $\sqrt{A(r)}$, which therefore establishes the first estimate in Theorem 3.4.

For the second estimate, we use Cauchy's theorem to write, with $z=r e^{i \theta}$,

$$
n^{2} a_{n}=\frac{1}{2 \pi r^{n}} \int_{0}^{2 \pi} z\left(z f^{\prime}(z)\right)^{\prime} e^{-i n \theta} d \theta
$$

and so

$$
\begin{aligned}
n^{2}\left|a_{n}\right| & \leq \frac{1+2 \lambda}{4 \pi r^{n-1}} \int_{0}^{2 \pi}\left|f^{\prime}(z) p(z)\right| d \theta+\frac{2 \lambda-1}{4 \pi r^{n-1}} \int_{0}^{2 \pi}\left|f^{\prime}(z)\right| d \theta \\
& =\frac{1+2 \lambda}{4 \pi r^{n-1}} J_{1}(r)+\frac{2 \lambda-1}{4 \pi r^{n-1}} J_{2}(r), \quad \text { say. }
\end{aligned}
$$

For $J_{1}(r)$, the Cauchy-Schwarz inequality and Parseval's theorem give

$$
\begin{aligned}
J_{1}(r) & \leq\left(\int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{2} d \theta\right)^{1 / 2}\left(\int_{0}^{2 \pi}|p(z)|^{2} d \theta\right)^{1 / 2} \\
& =\left(2 \pi \sum_{k=1}^{\infty} k^{2}\left|a_{k}\right|^{2} r^{2 k-2}\right)^{1 / 2}\left(\int_{0}^{2 \pi}|p(z)|^{2} d \theta\right)^{1 / 2} \\
& \leq\left(2 \pi \sum_{k=1}^{\infty} k\left|a_{k}\right|^{2} r^{k}\left(\max k r^{k-2}\right)\right)^{1 / 2}\left(\int_{0}^{2 \pi}|p(z)|^{2} d \theta\right)^{1 / 2} \\
& \leq 2 \pi\left(\frac{A(\sqrt{r})}{e r^{2}(1-r)}\right)^{1 / 2}\left(\frac{1+3 r^{2}}{1-r^{2}}\right)^{1 / 2},
\end{aligned}
$$

since $k r^{k-2} \leq 1 /\left(e r^{2}(1-r)\right)$, again using $\int_{0}^{2 \pi}|p(z)|^{2} d \theta \leq 2 \pi\left(1+3 r^{2}\right) /\left(1-r^{2}\right)$.
Finally, we note that

$$
J_{2}(r)=\int_{0}^{2 \pi}\left|f^{\prime}(z)\right| d \theta \leq \sqrt{2 \pi}\left(\int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{2} d \theta\right)^{1 / 2}
$$

which is the first expression above. Noting that $A(\sqrt{r})=O(A(r))$ as $r \rightarrow 1$, and choosing $r=(n+1) / n$ in the estimates for $J_{1}(r)$ and $J_{2}(r)$, the second estimate in Theorem 3.4 follows.

4. The initial coefficients of functions in $\mathcal{F}_{O}(\lambda, \alpha)$

From (1.4), we can write

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\left(\frac{1}{2}+\lambda\right) p(z)^{\beta}+\frac{1}{2}-\lambda
$$

and so, by equating coefficients,

$$
\begin{align*}
a_{2}= & \frac{\beta}{4}(1+2 \lambda) p_{1}, \\
a_{3}= & \frac{\beta}{12}(1+2 \lambda)\left(p_{2}-\frac{1}{2}(1-2 \beta-2 \beta \lambda) p_{1}^{2}\right), \tag{4.1}\\
a_{4}= & \frac{\beta}{24}(1+2 \lambda)\left(p_{3}-\frac{1}{4}(4-7 \beta-6 \beta \lambda) p_{1} p_{2}\right. \\
& \left.\quad+\frac{1}{24}\left(8-21 \beta+16 \beta^{2}-18 \beta \lambda+30 \beta^{2} \lambda+12 \beta^{2} \lambda^{2}\right) p_{1}^{3}\right) .
\end{align*}
$$

We now obtain sharp bounds for the coefficients a_{2}, a_{3} and a_{4}.

Theorem 4.1. Let $f \in \mathcal{F}_{O}(\lambda, \beta)$ and suppose that f is given by (1.1) for $z \in \mathbb{D}$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{\beta}{2}(1+2 \lambda), \quad\left|a_{3}\right| \leq \begin{cases}\frac{\beta}{6}(1+2 \lambda), & 0<\beta \leq \frac{1}{2(1+\lambda)}, \\
\frac{\beta^{2}}{3}(1+\lambda)(1+2 \lambda), & \frac{1}{2(1+\lambda)} \leq \beta \leq 1,\end{cases} \\
\left|a_{4}\right| \leq \begin{cases}\frac{\beta}{12}(1+2 \lambda), & 0<\beta \leq \sqrt{\frac{2}{8+15 \lambda+6 \lambda^{2}}}, \\
\frac{\beta}{36}(1+2 \lambda)\left(1+8 \beta^{2}+15 \beta^{2} \lambda+6 \beta^{2} \lambda^{2}\right), & \sqrt{\frac{2}{8+15 \lambda+6 \lambda^{2}} \leq \beta \leq 1 .}\end{cases}
\end{gathered}
$$

All the inequalities are sharp.
Proof. The inequality for $\left|a_{2}\right|$ is trivial, since $\left|p_{1}\right| \leq 2$, and is sharp when $p_{1}=2$.
For a_{3}, we note that since $0 \leq 1-2 \beta-2 \beta \lambda \leq 2$ when $0<\beta \leq 1 /(2(1+\lambda)$), and $1-2 \beta-2 \beta \lambda<0$ when $1 /(2(1+\lambda))<\beta \leq 1$, the inequalities for $\left|a_{3}\right|$ follow on applying Lemma 2.1. The first inequality for a_{3} is sharp when $p_{1}=0$ and $p_{2}=2$, and the second is sharp when $p_{1}=2$ and $p_{2}=2$.

For a_{4}, we will use Lemma 2.2. In the expression for a_{4} in (4.1), let

$$
B=(4-7 \beta-6 \beta \lambda) / 8 \quad \text { and } \quad D=\left(8-21 \beta+16 \beta^{2}-18 \beta \lambda+30 \beta^{2} \lambda+12 \beta^{2} \lambda^{2}\right) / 24
$$

so that $0 \leq B \leq 1$ and $B(2 B-1) \leq D \leq B$ when $0<\beta \leq \sqrt{2 /\left(8+15 \lambda+6 \lambda^{2}\right)}$. Thus, applying Lemma 2.2 gives the first inequality for $\left|a_{4}\right|$. Next, write

$$
a_{4}=\frac{1}{24} \beta(1+2 \lambda)\left[p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}+(D-B) p_{1}^{3}\right]
$$

and note that $D-B \geq 0$ when $\sqrt{2 /\left(8+15 \lambda+6 \lambda^{2}\right)} \leq \beta \leq 4 /(7+6 \lambda)$. Thus, applying Lemma 2.2 in the case $D=B$ gives the second bound for $\left|a_{4}\right|$, provided $\sqrt{2 /\left(8+15 \lambda+6 \lambda^{2}\right)} \leq \beta \leq 4 /(7+6 \lambda)$. Finally, noting that the coefficients of $p_{1} p_{2}$ and p_{1}^{3} in the expression for a_{4} in (4.1) are positive when $4 /(7+6 \lambda) \leq \beta \leq 1$, and using the inequalities $\left|p_{n}\right| \leq 2$ for $n=1,2$ and 3 , gives the second inequality for $\left|a_{4}\right|$ in this interval. The first inequality for a_{4} is sharp when $p_{1}=0$, and the second is sharp when $p_{1}=p_{2}=p_{3}=2$.

5. Inverse coefficients of functions in $\mathcal{F}_{o}(\lambda, \beta)$

For any univalent function f, there exists an inverse function f^{-1} defined on some disc $|\omega|<r_{0}(f)$ with Taylor expansion

$$
\begin{equation*}
f^{-1}(\omega)=\omega+A_{2} \omega^{2}+A_{3} \omega^{3}+A_{4} \omega^{4}+\cdots . \tag{5.1}
\end{equation*}
$$

Since $\mathcal{F}_{O}(\lambda, \beta) \subset \mathcal{S}$, inverse coefficients exist for functions $f \in \mathcal{F}_{O}(\lambda, \beta)$. It is an easy exercise to show from (5.1) that

$$
\begin{aligned}
& A_{2}=-a_{2}, \\
& A_{3}=2 a_{2}^{2}-a_{3}, \\
& A_{4}=-5 a_{2}^{3}+5 a_{2} a_{3}-a_{4},
\end{aligned}
$$

which, on substituting from (4.1), produces

$$
\begin{align*}
A_{2}= & -\frac{\beta}{4}(1+2 \lambda) p_{1}, \\
A_{3}= & -\frac{\beta}{12}(1+2 \lambda)\left(p_{2}-\frac{1}{2}(1+\beta+4 \beta \lambda) p_{1}^{2}\right), \tag{5.2}\\
A_{4}= & -\frac{\beta}{24}(1+2 \lambda)\left(p_{3}-\frac{1}{4}(4+3 \beta+14 \beta \lambda) p_{1} p_{2}\right. \\
& \left.+\frac{1}{24}\left(8+9 \beta+\beta^{2}+42 \beta \lambda+30 \beta^{2} \lambda+72 \beta^{2} \lambda^{2}\right) p_{1}^{3}\right) .
\end{align*}
$$

We can now prove the following result.
Theorem 5.1. Let $f \in \mathcal{F}_{O}(\lambda, \beta)$, with inverse function f^{-1} given by (5.1). Then

$$
\begin{gathered}
\left|A_{2}\right| \leq \frac{\beta}{2}(1+2 \lambda), \quad\left|A_{3}\right| \leq \begin{cases}\frac{\beta}{6}(1+2 \lambda), & 0<\beta \leq \frac{1}{1+4 \lambda}, \\
\frac{\beta^{2}}{6}(1+2 \lambda)(1+4 \lambda), & \frac{1}{1+4 \lambda} \leq \beta \leq 1,\end{cases} \\
\left|A_{4}\right| \leq \begin{cases}\frac{\beta}{12}(1+2 \lambda), & 0<\beta \leq 2 \sqrt{\frac{1}{1+30 \lambda+72 \lambda^{2}}}, \\
\frac{\beta}{72}(1+2 \lambda)\left(2+\beta^{2}+30 \beta^{2} \lambda+72 \beta^{2} \lambda^{2}\right), & 2 \sqrt{\frac{1}{1+30 \lambda+72 \lambda^{2}}} \leq \beta \leq 1 .\end{cases}
\end{gathered}
$$

All the inequalities are sharp.
Proof. The inequality for $\left|A_{2}\right|$ is obvious and is sharp when $p_{1}=2$.
For A_{3},

$$
\left|A_{3}\right| \leq \frac{\beta}{12}(1+2 \lambda)\left|p_{2}-\frac{1}{2}(1+\beta+4 \beta \lambda) p_{1}^{2}\right|
$$

and an application of Lemma 2.1 easily gives the inequalities for $\left|A_{3}\right|$, the first of which is sharp when $p_{1}=0$ and $p_{2}=2$, and the second when $p_{1}=2$ and $p_{2}=2$.

For A_{4}, from (5.2),

$$
\begin{aligned}
A_{4}=- & \frac{\beta}{24}(1+2 \lambda)\left[p_{3}-\frac{1}{4}(4+3 \beta+14 \beta \lambda) p_{1} p_{2}\right. \\
& \left.+\frac{1}{24}\left(8+9 \beta+\beta^{2}+42 \beta \lambda+30 \beta^{2} \lambda+72 \beta^{2} \lambda^{2}\right) p_{1}^{3}\right] .
\end{aligned}
$$

We will use Lemma 2.2 with

$$
B=\frac{1}{8}(4+3 \beta+14 \beta \lambda) \quad \text { and } \quad D=\frac{1}{24}\left(8+9 \beta+\beta^{2}+42 \beta \lambda+30 \beta^{2} \lambda+72 \beta^{2} \lambda^{2}\right)
$$

Thus, $0 \leq B \leq 1$ when either

$$
0<\beta \leq \frac{4}{17} \quad \text { and } \quad \frac{1}{2} \leq \lambda \leq 1, \quad \text { or } \quad \frac{4}{17}<\beta \leq \frac{2}{5} \quad \text { and } \quad \frac{1}{2} \leq \lambda \leq \frac{4-3 \beta}{14 \beta}
$$

Since $1 / 2 \leq \lambda \leq(4-3 \beta) /(14 \beta)$ when $1 / 2 \leq \lambda \leq 1$ and $4 / 17 \leq \beta \leq 4 /(3+14 \lambda)$, it follows that $0 \leq B \leq 1$ is satisfied when $0<\beta \leq 4 /(3+14 \lambda)$. Also, $B(2 B-1) \leq D \leq B$ when $1 / 2 \leq \lambda \leq 1$ and $0<\beta \leq 2 \sqrt{1 /\left(1+30 \lambda+72 \lambda^{2}\right)}$. Since

$$
2 \sqrt{1 /\left(1+30 \lambda+72 \lambda^{2}\right)} \leq 4 /(3+14 \lambda) \quad \text { when } 1 / 2 \leq \lambda \leq 1
$$

we can apply Lemma 2.2 to obtain the first inequality in Theorem 5.1 over the range $0<\beta \leq 2 \sqrt{1 /\left(1+30 \lambda+72 \lambda^{2}\right)}$.

We next consider the interval $2 \sqrt{1 /\left(1+30 \lambda+72 \lambda^{2}\right)} \leq \beta \leq 4 /(3+14 \lambda)$. Write

$$
\begin{equation*}
A_{4}=-\frac{\beta}{24}(1+2 \lambda)\left[p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}+(D-B) p_{1}^{3}\right] \tag{5.3}
\end{equation*}
$$

Note that $D-B \geq 0$ when $2 \sqrt{1 /\left(1+30 \lambda+72 \lambda^{2}\right)} \leq \beta \leq 1$. Since $0 \leq B \leq 1$ is satisfied when $0<\beta \leq 4 /(3+14 \lambda)$, applying Lemma 2.2 to (5.3) in the case $B=D$ gives the second inequality in Theorem 5.1 when $2 \sqrt{1 /\left(1+30 \lambda+72 \lambda^{2}\right)} \leq \beta \leq 4 /(3+14 \lambda)$.

Thus, we are left with the interval $4 /(3+14 \lambda)<\beta \leq 1$. We use Lemma 2.3 with $\mu=\beta(3+14 \lambda) / 4$, so that

$$
\begin{aligned}
A_{4}=- & \frac{\beta}{24}(1+2 \lambda)\left[p_{3}-(\mu+1) p_{1} p_{2}+\mu p_{1}^{3}\right. \\
& \left.+\frac{1}{24}\left(8-9 \beta+\alpha^{2}-42 \beta \lambda+30 \beta^{2} \lambda+72 \beta^{2} \lambda^{2}\right) p_{1}^{3}\right]
\end{aligned}
$$

Note that $8-9 \beta+\beta^{2}-42 \beta \lambda+30 \beta^{2} \lambda+72 \beta^{2} \lambda^{2} \geq 0$, when $1 / 2 \leq \lambda \leq 1$ and $0<\beta \leq 1$. Also $\mu>1$ when $4 /(3+14 \lambda)<\beta \leq 1$, and $2 \mu-1 \geq 0$ when $2 /(3+14 \lambda) \leq \beta \leq 1$ (which contains the interval $4 /(3+14 \lambda)<\beta \leq 1)$. So applying Lemma 2.3 gives the second inequality for $\left|A_{4}\right|$ when $4 /(3+14 \lambda)<\beta \leq 1$.

The first inequality for A_{4} is sharp when $p_{1}=0$, and the second is sharp when $p_{1}=2, p_{2}=2$ and $p_{3}=2$.

References

[1] R. M. Ali, 'Coefficients of the inverse of strongly starlike functions', Bull. Malays. Math. Sci. Soc. (2) 26 (2003), 63-71.
[2] R. M. Ali and V. Singh, 'On the fourth and fifth coefficients of strongly starlike functions', Results Math. 29(3-4) (1996), 197-202.
[3] D. A. Brannan, J. Clunie and W. E. Kirwan, 'Coefficient estimates for a class of star-like functions', Canad. J. Math. 22 (1970), 476-485.
[4] A. W. Goodman, Univalent Functions, Vol. I (Mariner, Tampa, FL, 1983).
[5] W. Kaplan, 'Close-to-convex schlicht functions’, Michigan Math. J. 1 (1952), 169-186.
[6] R. Kargar and A. Ebadian, 'Ozaki's conditions for general integral operator', Sahand Commun. Math. Anal. (SCMA) 5(1) (2017), 61-67.
[7] F. R. Keogh and S. S. Miller, 'On the coefficients of Bazilevič functions', Proc. Amer. Math. Soc. 30 (1971), 492-496.
[8] S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225 (Marcel Dekker, New York, 2000).
[9] S. Ozaki, 'On the theory of multivalent functions', Sci. Rep. Tokyo Bunrika Daigaku 4 (1941), 455-486.
[10] C. Pommerenke, 'On starlike and close-to-convex functions', Proc. Lond. Math. Soc. (3) 13(3) (1963), 290-304.
[11] S. Ponnusamy, S. K. Sahoo and H. Yanagihari, 'Radius of convexity of partial sums in the close-to-convex family', Nonlinear Anal. 95 (2014), 219-228.
[12] I. I. Privalov, 'Sur les fonctions qui donnent la représentation conforme biunivoque', Rec. Math. Soc. Moscou 31 (1924), 350-365; Russian translation Mat. Sb. 31(3-4) (1924), 350-365.
[13] E. Strohhäcker, 'Beiträge zur Theorie der schlichten Funktionen', Math. Z. 37(1) (1933), 356-380.
[14] T. J. Suffridge, 'Some special classes of conformal mappings', in: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2 (ed. R. Kühnau) (Elsevier, Amsterdam, 2005), 309-338.
[15] D. K. Thomas, 'On starlike and close-to-convex univalent functions', J. Lond. Math. Soc. (2) 42 (1967), 427-435.
[16] D. K. Thomas, 'A note on starlike functions', J. Lond. Math. Soc. (2) 43 (1968), 703-706.
[17] D. K. Thomas and S. S. Verma, 'Invariance of the coefficients of strongly convex functions', Bull. Aust. Math. Soc. 95 (2017), 436-445.

VASUDEVARAO ALLU, NFA-18, IIT Campus,
Indian Institute of Technology Kharagpur, Kharagpur-721 302,
West Bengal, India
e-mail: alluvasudevarao@gmail.com
DEREK K. THOMAS, Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
e-mail: d.k.thomas@swansea.ac.uk
NIKOLA TUNESKI, Faculty of Mechanical Engineering,
Ss. Cyril and Methodius University in Skopje, Karpos 2 bb, 1000 Skopje, Republic of Macedonia
e-mail: nikola.tuneski@mf.edu.mk

[^0]: (C) 2018 Australian Mathematical Publishing Association Inc.

