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Abstract

Let f be analytic in D = {z ∈ C : |z| < 1} and given by f (z) = z +
∑∞

n=2 anzn. We give sharp bounds for the
initial coefficients of the Taylor expansion of such functions in the class of strongly Ozaki close-to-convex
functions, and of the initial coefficients of the inverse function, together with some growth estimates.
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1. Introduction and definitions

LetA denote the class of functions f analytic in the unit disc D := {z ∈ C : |z| < 1} with
Taylor series

f (z) = z +

∞∑
n=2

anzn. (1.1)

Let S be the subclass of A consisting of univalent (that is, one-to-one) functions.
A function f ∈ A is called starlike (with respect to the origin) if f (D) is starlike
with respect to the origin and convex if f (D) is convex. Let S∗(α) and C(α) denote
respectively the classes of starlike and convex functions of order α for 0 ≤ α < 1 inS. It
is well known that a function f ∈ A belongs toS∗(α) if and only if Re (z f ′(z)/ f (z)) > α
for z ∈ D, and f ∈ C(α) if and only if Re(1 + z f ′′(z)/ f ′(z)) > α. Similarly, a function
f ∈ A belongs to K , the class of close-to-convex functions, if and only if there
exists g ∈ S∗ such that Re [eiτ(z f ′(z)/g(z))] > 0 for z ∈ D and τ ∈ (−π/2, π/2). Thus,
C ⊂ S∗ ⊂ K ⊂ S. When τ = 0, the resulting subclass of close-to-convex functions is
denoted by K0.

Although the class K was first formally introduced by Kaplan [5] in 1952, already
in 1941 Ozaki [9] considered functions inA satisfying the condition

Re
(
1 +

z f ′′(z)
f ′(z)

)
> −

1
2

(z ∈ D). (1.2)

It follows from the original definition of Kaplan [5] that functions satisfying (1.2) are
close-to-convex and therefore members of S.
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Kargar and Ebadian [6] considered the following generalisation to (1.2).

Definition 1.1. Let f ∈ A be locally univalent for z ∈ D and let −1/2 < λ ≤ 1. Then
f ∈ F (λ) if and only if

Re
(
1 +

z f ′′(z)
f ′(z)

)
>

1
2
− λ (z ∈ D). (1.3)

Clearly, when −1/2 < λ ≤ 1/2, functions defined by (1.3) provide a subset of C,
with F (1/2) = C, and, since 1/2 − λ ≥ −1/2 when λ ≤ 1, functions in F (λ) are close-
to-convex when 1/2 ≤ λ ≤ 1. We shall call members of f ∈ F (λ) when 1/2 ≤ λ ≤ 1
Ozaki close-to-convex functions and denote this class by FO(λ).

For 0 < β ≤ 1, the classesS∗∗(β) of strongly starlike functions andC∗∗(β) of strongly
convex functions are defined for f ∈ A and z ∈ D, respectively, by∣∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣∣ < βπ

2
and ∣∣∣∣∣arg

(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣∣ < βπ

2
.

Functions in S∗∗(β) and C∗∗(β) are more difficult to deal with than those in S∗ and C,
and relatively few exact coefficient bounds are known. Sharp bounds are known only
for functionals involving the coefficients a2, a3 and a4 (see [1–3] and [17]).

Even more elusive are sharp bounds for the classK∗∗(β) of strongly close-to-convex
functions, defined for f ∈ A and z ∈ D, by∣∣∣∣∣arg

z f ′(z)
g(z)

∣∣∣∣∣ < βπ

2
,

where 0 < β ≤ 1 and g ∈ S∗. It is a relatively simple exercise to obtain sharp bounds for
the coefficients |a2| and |a3| when f ∈ K∗∗(β), but finding sharp bounds for |a4| appears
to be a more difficult problem.

We note that in contrast to the definition of K , the definition of F (λ) does not
involve an independent starlike function g, but, as was shown in [11], members of
F (1) have coefficients which grow at the same rate as those in K , that is, O(n) as
n→∞.

We make the following definition, which extends (1.3), the special case with β = 1.

Definition 1.2. Let f ∈ A for z ∈ D, with 0 < β ≤ 1 and 1/2 ≤ λ ≤ 1. Then f is called
strongly Ozaki close-to-convex if and only if∣∣∣∣∣arg

(2λ − 1
2λ + 1

+
2

2λ + 1

(
1 +

z f ′′(z)
f ′(z)

))∣∣∣∣∣ < βπ

2
(z ∈ D). (1.4)

We denote this class of functions by FO(λ, β).

The primary object of this paper is to obtain sharp bounds for the coefficients |a2|,
|a3| and |a4|, and the corresponding inverse coefficients, for strongly Ozaki close-to-
convex functions, thus providing sharp inequalities for the fourth coefficient of a class
of strongly close-to-convex functions. We also give some distortion theorems.
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2. Lemmas

We will use the following lemmas (see, for example, [1]) for functions p ∈ P, the
class of functions with positive real part in D, given by

p(z) = 1 +

∞∑
n=1

pnzn.

Lemma 2.1. If p ∈ P, then |pn| ≤ 2 for n ≥ 1 and∣∣∣∣∣p2 −
µ

2
p2

1

∣∣∣∣∣ ≤ max{2, 2|µ − 1|} =
{

2, 0 ≤ µ ≤ 2,
2|µ − 1|, elsewhere.

Also,
|p2 −

1
2 p2

1| ≤ 2 − 1
2 |p

2
1|.

Lemma 2.2. Let p ∈ P. If 0 ≤ B ≤ 1 and B(2B − 1) ≤ D ≤ B, then

|p3 − 2Bp1 p2 + Dp3
1| ≤ 2.

Lemma 2.3. If p ∈ P, then

|p3 − (µ + 1)p1 p2 + µp3
1| ≤ max{2, 2|2µ − 1|} =

{
2, 0 ≤ µ ≤ 1,
2|2µ − 1|, elsewhere.

We will also use the following result from the theory of differential subordination
(see [8]).

Lemma 2.4. Let Ω ⊂ C and suppose that the function ψ : C2 × D → C satisfies
ψ(ix, y; z) < Ω for all x ∈ R, y ≤ −n(1 + x2)/2 and z ∈ D. If p is analytic in D, p(0) = 1
and ψ(p(z), zp′(z); z) ∈ Ω for all z ∈ D, then Re p(z) > 0 for z ∈ D.

The following result (see [12] and [4, page 67]) is often useful and we will need it
in Theorem 3.4.

Lemma 2.5. Suppose that f ∈ S and that z = reiθ ∈ D. If

m′(r) ≤ | f ′(z)| ≤ M′(r),

where m′(r) and M′(r) are real-valued functions of r in [0, 1), then∫ r

0
m′(t) dt ≤ | f (z)| ≤

∫ r

0
M′(r) dt.

Although functions in F (λ) are close-to-convex when 1/2 ≤ λ ≤ 1, Ponnusamy
et al. [11] gave an example to show that when λ = 1, they are not necessarily starlike.
On the other hand, we will show in this paper that when the second coefficient of the
Taylor expansion for f (z) is zero, functions in F (1) are starlike of order 1/2, that is,
Re(z f ′(z)/ f (z)) > 1/2.

In the next section, we consider the class F (λ), that is, when −1/2 ≤ λ ≤ 1. The
following sections will be concerned with Ozaki close-to-convex functions, that is,
when 1/2 ≤ λ ≤ 1.
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3. The class F (λ)
Theorem 3.1. LetAn be the set of functions inA given by

f (z) = z + an+1zn+1 + an+2zn+2 + · · · .

If f ∈ F (λ) for −1/2 ≤ λ ≤ 1, 0 ≤ α < 1, n ∈ N and λ̂ = λ(α, n) = min{λ∗(α, n), 1},
where

λ∗(α, n) =


1
2
− α +

n
2
·

1 − α
α

, α ≥
1
2
,

1
2
− α +

n
2
·

α

1 − α
, α <

1
2
,

thenAn ∩ F (̂λ) ⊂ S∗(α).

Proof. First note that −1/2 < λ̂ ≤ 1. Next, let f ∈ An ∩ F (̂λ) and consider the function

p(z) =
1

1 − α

[z f ′(z)
f (z)

− α
]
,

which is analytic in D with p(0) = 1. For this function, with

ψ(r, s) =
s(1 − α)

(1 − α)r + α
+ (1 − α)r + α and Ω =

{
ω : Reω >

1
2
− λ̂

}
,

we have
ψ(p(z), zp′(z)) = 1 +

z f ′′(z)
f ′(z)

∈ Ω (z ∈ D).

Therefore, in view of Lemma 2.4, in order to prove that f ∈ S∗(α) it is enough to show
that ψ(ix, y; z) < Ω, that is,

Reψ(ix, y; z) =
yα(1 − α)

(1 − α)2x2 + α2 + α ≤
1
2
− λ̂

or, equivalently,

y ≤
(1
2
− λ̂ − α

)(
α

1 − α
+

1 − α
α
· x2

)
(3.1)

for all x ∈ R, y ≤ −n(1 + x2)/2 and z ∈ D. This happens only when

−
n
2

(1 + x2) ≤
(1
2
− λ̂ − α

)(
α

1 − α
+

1 − α
α
· x2

)
,

that is, when (1
2
− λ̂ − α

)
α

1 − α
+

n
2

+

[(1
2
− λ̂ − α

)1 − α
α

+
n
2

]
x2 ≥ 0

for all x ∈ R. The last inequality holds if and only if(1
2
− λ̂ − α

)
α

1 − α
+

n
2
≥ 0

and (1
2
− λ̂ − α

)1 − α
α

+
n
2
≥ 0.

Finally, it easy to verify that λ̂ satisfies the two inequalities above. �
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By specifying values of α and n in Theorem 3.1, we deduce the following results.

Corollary 3.2.

(i) C = F (1/2) ⊂ S∗ (since λ̂ = λ(0, 1) = 1/2);
(ii) An ∩ F (̂λ) ⊂ S∗(1/2) for λ̂ = min{n/2, 1};
(iii) C = F (1/2) ⊂ S∗(1/2) (taking n = 1 in (ii));
(iv) A2 ∩ F (1) ⊂ S∗(1/2) (taking n = 2 in (ii)).

We note that (iii) is the well-known Marx–Strohhäcker theorem [13] and that (iv)
corresponds to [8, Theorem 2.6i, page 68].

3.1. Coefficients. In [11], Ponnusamy et al. gave sharp coefficient bounds and some
distortion theorems for f ∈ F (1). It was also shown that every partial sum (or section)
sn(z) = z +

∑n
k=2 akzk of a function f ∈ F (1) given by (1.1) belongs to C in the disc

|z| < 1/6 and that this radius is the best possible. We extend the coefficient result by
finding sharp bounds for the coefficients of the Ozaki close-to-convex functions FO(λ).

Theorem 3.3. Let f ∈ FO(λ) be given by (1.1). Then, for n ≥ 2,

|an| ≤
1
n!

n∏
k=2

(k + 2λ − 1).

The inequality is sharp when f (z) = fλ(z) = (1/2λ)((1/(1 − z)2λ) − 1).

Proof. Write

1 +
z f ′′(z)
f ′(z)

= 1 +

∞∑
n=1

cnzn := h(z)

and let

p(z) =
2

1 + 2λ

[
h(z) −

1
2

+ λ
]

= 1 +

∞∑
n=1

pnzn.

Then Re p(z) > 0 for z ∈ D, Re h(z) > 1/2 − λ and |pn| ≤ 2 for n ≥ 1 and, since
cn = (1/2 + λ)pn, we have |cn| ≤ 1 + 2λ for n ≥ 1.

For each integer n, the coefficients an are polynomials with positive coefficients in
cn, so |an| will be less than or equal to the result of replacing |cn| by 1 + 2λ. Thus, by
the principle of majorisation (see, for example, [7]),

1 +
z f ′′(z)
f ′(z)

�
1 + 2λz

1 − z
and

f (z)�
1

2λ

( 1
(1 − z)2λ − 1

)
:= z +

∞∑
n=2

dnzn.

Therefore,

|an| ≤ dn =
1
n!

n∏
k=2

(k + 2λ − 1),

which is (3.1). �

https://doi.org/10.1017/S0004972718000989 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000989


94 V. Allu, D. K. Thomas and N. Tuneski [6]

3.2. Distortion theorems. We next give distortion results for functions f ∈ FO(λ).

Theorem 3.4. Let f ∈ FO(λ). Then, for z = reiθ ∈ D,∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣ ≤ (1 + 2λ)r
1 − r

,

1
(1 + r)1+2λ ≤ | f

′(z)| ≤
1

(1 − r)1+2λ ,

1
2λ

( 1
(1 + r)2λ − 1

)
≤ | f (z)| ≤

1
2λ

( 1
(1 − r)2λ − 1

)
.

Proof. From (1.3),

1 +
z f ′′(z)
f ′(z)

=

(1
2

+ λ
)
p(z) +

1
2
− λ. (3.2)

Thus,

1 +
z f ′′(z)
f ′(z)

≺
1 + 2λz

1 − z

and so
z f ′′(z)
f ′(z)

≺
(1 + 2λ)z

1 − z
.

Hence,
z f ′′(z)
f ′(z)

=
(1 + 2λ)ω(z)

1 − ω(z)
,

where |ω(z)| ≤ |z|. The first inequality in the theorem now follows.
To prove the inequalities for | f ′(z)|, we use a result of Suffridge [14, Theorem 3],

which states that if F is convex and zG′(z) ≺ zF′(z), then G(z) ≺ F(z). Using this result,
we integrate (3.2) to obtain

f ′(z) ≺
1

(1 − z)1+2λ .

The inequalities for | f ′(z)| now follow in the same way.
An application of Lemma 2.5 gives the bounds for | f (z)|. �

3.3. Growth and area estimates. For f ∈ S, z = reiθ ∈ D, let M(r) = max|z|=r | f (z)|,
C(r) be the curve f (|z| = r), L(r) the length of C(r) and A(r) the area enclosed by
C(r). A long-standing problem for functions in K is whether M(r) can be replaced by
√

A(r) in the growth estimate L(r) = O(M(r) log(1/(1 − r))) as r→ 1, a result already
known for functions in S∗. Similarly, replacing M(r) by

√
A(r) in the known estimate

nan = O(M((n + 1)/n)) as n→∞ for functions inK remains an open question [15, 16].
Since the definition of Ozaki close-to-convex functions does not include an

independent starlike function, it is relatively easy to show that both these growth
estimates can be improved when f ∈ FO(λ), as follows.
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Theorem 3.5. Let f ∈ FO(λ) be given by (1.1), with M(r), L(r) and A(r) defined as
above. Then

L(r) = O

(√
A(r) log

1
1 − r

)
as r→ 1

and

nan = O
(√

A((n + 1)/n)
)

as n→∞.

Proof. For z = reiθ,

L(r) =

∫ 2π

0
|z f ′(z)| dθ ≤

∫ r

0

∫ 2π

0
|z f ′′(z) + f ′(z)| dθ dρ,

where now z = ρeiθ. Thus, from (3.2),

L(r) ≤
(1
2

+ λ
) ∫ r

0

∫ 2π

0
| f ′(z)p(z)| dθ dρ +

(
λ −

1
2

) ∫ r

0

∫ 2π

0
| f ′(z)| dθ dρ

=

(1
2

+ λ
)
I1(r) +

(
λ −

1
2

)
I2(r), say.

We first deal with I1(r). The Cauchy–Schwarz inequality gives

I1(r) ≤
( ∫ r

0

∫ 2π

0
| f ′(z)|2 dθ dρ

)1/2( ∫ r

0

∫ 2π

0
|p(z)|2 dθ dρ

)1/2

= O

(√
A(r) log

1
1 − r

)
as r→ 1,

since the first integral is
√

A(r) and since
∫ 2π

0 |p(z)|2 dθ ≤ 2π(1 + 3r2)/(1 − r2) when
p ∈ P (see, for example, [10]). Applying the Cauchy–Schwarz inequality to I2(r) gives
√

A(r), which therefore establishes the first estimate in Theorem 3.4.
For the second estimate, we use Cauchy’s theorem to write, with z = reiθ,

n2an =
1

2πrn

∫ 2π

0
z(z f ′(z))′e−inθ dθ

and so

n2|an| ≤
1 + 2λ
4πrn−1

∫ 2π

0
| f ′(z)p(z)| dθ +

2λ − 1
4πrn−1

∫ 2π

0
| f ′(z)| dθ

=
1 + 2λ
4πrn−1 J1(r) +

2λ − 1
4πrn−1 J2(r), say.
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For J1(r), the Cauchy–Schwarz inequality and Parseval’s theorem give

J1(r) ≤
(∫ 2π

0
| f ′(z)|2 dθ

)1/2(∫ 2π

0
|p(z)|2 dθ

)1/2

=

(
2π

∞∑
k=1

k2|ak|
2r2k−2

)1/2( ∫ 2π

0
|p(z)|2 dθ

)1/2

≤

(
2π

∞∑
k=1

k|ak|
2rk(max krk−2)

)1/2(∫ 2π

0
|p(z)|2 dθ

)1/2

≤ 2π
( A(

√
r)

er2(1 − r)

)1/2(1 + 3r2

1 − r2

)1/2
,

since krk−2 ≤ 1/(er2(1 − r)), again using
∫ 2π

0 |p(z)|2 dθ ≤ 2π(1 + 3r2)/(1 − r2).

Finally, we note that

J2(r) =

∫ 2π

0
| f ′(z)| dθ ≤

√
2π

(∫ 2π

0
| f ′(z)|2 dθ

)1/2
,

which is the first expression above. Noting that A(
√

r) = O(A(r)) as r → 1, and
choosing r = (n + 1)/n in the estimates for J1(r) and J2(r), the second estimate in
Theorem 3.4 follows. �

4. The initial coefficients of functions in FO(λ, α)

From (1.4), we can write

1 +
z f ′′(z)
f ′(z)

=

(1
2

+ λ
)
p(z)β +

1
2
− λ

and so, by equating coefficients,

a2 =
β

4
(1 + 2λ)p1,

a3 =
β

12
(1 + 2λ)

(
p2 −

1
2

(1 − 2β − 2βλ)p2
1

)
,

a4 =
β

24
(1 + 2λ)

(
p3 −

1
4

(4 − 7β − 6βλ)p1 p2

+
1
24

(8 − 21β + 16β2 − 18βλ + 30β2λ + 12β2λ2)p3
1

)
.

(4.1)

We now obtain sharp bounds for the coefficients a2, a3 and a4.
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Theorem 4.1. Let f ∈ FO(λ, β) and suppose that f is given by (1.1) for z ∈ D. Then

|a2| ≤
β

2
(1 + 2λ), |a3| ≤


β

6
(1 + 2λ), 0 < β ≤

1
2(1 + λ)

,

β2

3
(1 + λ)(1 + 2λ),

1
2(1 + λ)

≤ β ≤ 1,

|a4| ≤


β

12
(1 + 2λ), 0 < β ≤

√
2

8 + 15λ + 6λ2 ,

β

36
(1 + 2λ)(1 + 8β2 + 15β2λ + 6β2λ2),

√
2

8 + 15λ + 6λ2 ≤ β ≤ 1.

All the inequalities are sharp.

Proof. The inequality for |a2| is trivial, since |p1| ≤ 2, and is sharp when p1 = 2.
For a3, we note that since 0 ≤ 1 − 2β − 2βλ ≤ 2 when 0 < β ≤ 1/(2(1 + λ)), and

1 − 2β − 2βλ < 0 when 1/(2(1 + λ)) < β ≤ 1, the inequalities for |a3| follow on applying
Lemma 2.1. The first inequality for a3 is sharp when p1 = 0 and p2 = 2, and the second
is sharp when p1 = 2 and p2 = 2.

For a4, we will use Lemma 2.2. In the expression for a4 in (4.1), let

B = (4 − 7β − 6βλ)/8 and D = (8 − 21β + 16β2 − 18βλ + 30β2λ + 12β2λ2)/24,

so that 0 ≤ B ≤ 1 and B(2B − 1) ≤ D ≤ B when 0 < β ≤
√

2/(8 + 15λ + 6λ2). Thus,
applying Lemma 2.2 gives the first inequality for |a4|. Next, write

a4 = 1
24β(1 + 2λ)[p3 − 2Bp1 p2 + Bp3

1 + (D − B)p3
1]

and note that D − B ≥ 0 when
√

2/(8 + 15λ + 6λ2) ≤ β ≤ 4/(7 + 6λ). Thus, applying
Lemma 2.2 in the case D = B gives the second bound for |a4|, provided√

2/(8 + 15λ + 6λ2) ≤ β ≤ 4/(7 + 6λ). Finally, noting that the coefficients of p1 p2 and
p3

1 in the expression for a4 in (4.1) are positive when 4/(7 + 6λ) ≤ β ≤ 1, and using
the inequalities |pn| ≤ 2 for n = 1, 2 and 3, gives the second inequality for |a4| in this
interval. The first inequality for a4 is sharp when p1 = 0, and the second is sharp when
p1 = p2 = p3 = 2. �

5. Inverse coefficients of functions in FO(λ, β)

For any univalent function f , there exists an inverse function f −1 defined on some
disc |ω| < r0( f ) with Taylor expansion

f −1(ω) = ω + A2ω
2 + A3ω

3 + A4ω
4 + · · · . (5.1)

Since FO(λ, β) ⊂ S, inverse coefficients exist for functions f ∈ FO(λ, β). It is an easy
exercise to show from (5.1) that

A2 = −a2,

A3 = 2a2
2 − a3,

A4 = −5a2
3 + 5a2a3 − a4,
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which, on substituting from (4.1), produces

A2 = −
β

4
(1 + 2λ)p1,

A3 = −
β

12
(1 + 2λ)

(
p2 −

1
2

(1 + β + 4βλ)p2
1

)
,

A4 = −
β

24
(1 + 2λ)

(
p3 −

1
4

(4 + 3β + 14βλ)p1 p2

+
1
24

(8 + 9β + β2 + 42βλ + 30β2λ + 72β2λ2)p3
1

)
.

(5.2)

We can now prove the following result.

Theorem 5.1. Let f ∈ FO(λ, β), with inverse function f −1 given by (5.1). Then

|A2| ≤
β

2
(1 + 2λ), |A3| ≤


β

6
(1 + 2λ), 0 < β ≤

1
1 + 4λ

,

β2

6
(1 + 2λ)(1 + 4λ),

1
1 + 4λ

≤ β ≤ 1,

|A4| ≤


β

12
(1 + 2λ), 0 < β ≤ 2

√
1

1 + 30λ + 72λ2 ,

β

72
(1 + 2λ)(2 + β2 + 30β2λ + 72β2λ2), 2

√
1

1 + 30λ + 72λ2 ≤ β ≤ 1.

All the inequalities are sharp.

Proof. The inequality for |A2| is obvious and is sharp when p1 = 2.
For A3,

|A3| ≤
β

12
(1 + 2λ)

∣∣∣∣∣p2 −
1
2

(1 + β + 4βλ)p2
1

∣∣∣∣∣
and an application of Lemma 2.1 easily gives the inequalities for |A3|, the first of which
is sharp when p1 = 0 and p2 = 2, and the second when p1 = 2 and p2 = 2.

For A4, from (5.2),

A4 = −
β

24
(1 + 2λ)

[
p3 −

1
4

(4 + 3β + 14βλ)p1 p2

+
1
24

(8 + 9β + β2 + 42βλ + 30β2λ + 72β2λ2)p3
1

]
.

We will use Lemma 2.2 with

B = 1
8 (4 + 3β + 14βλ) and D = 1

24 (8 + 9β + β2 + 42βλ + 30β2λ + 72β2λ2).

Thus, 0 ≤ B ≤ 1 when either

0 < β ≤
4

17
and

1
2
≤ λ ≤ 1, or

4
17

< β ≤
2
5

and
1
2
≤ λ ≤

4 − 3β
14β

.
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Since 1/2 ≤ λ ≤ (4 − 3β)/(14β) when 1/2 ≤ λ ≤ 1 and 4/17 ≤ β ≤ 4/(3 + 14λ), it
follows that 0 ≤ B ≤ 1 is satisfied when 0 < β ≤ 4/(3 + 14λ). Also, B(2B − 1) ≤ D ≤ B
when 1/2 ≤ λ ≤ 1 and 0 < β ≤ 2

√
1/(1 + 30λ + 72λ2). Since

2
√

1/(1 + 30λ + 72λ2) ≤ 4/(3 + 14λ) when 1/2 ≤ λ ≤ 1,

we can apply Lemma 2.2 to obtain the first inequality in Theorem 5.1 over the range
0 < β ≤ 2

√
1/(1 + 30λ + 72λ2).

We next consider the interval 2
√

1/(1 + 30λ + 72λ2) ≤ β ≤ 4/(3 + 14λ). Write

A4 = −
β

24
(1 + 2λ)[p3 − 2Bp1 p2 + Bp3

1 + (D − B)p3
1]. (5.3)

Note that D − B ≥ 0 when 2
√

1/(1 + 30λ + 72λ2) ≤ β ≤ 1. Since 0 ≤ B ≤ 1 is satisfied
when 0 < β ≤ 4/(3 + 14λ), applying Lemma 2.2 to (5.3) in the case B = D gives the
second inequality in Theorem 5.1 when 2

√
1/(1 + 30λ + 72λ2) ≤ β ≤ 4/(3 + 14λ).

Thus, we are left with the interval 4/(3 + 14λ) < β ≤ 1. We use Lemma 2.3 with
µ = β(3 + 14λ)/4, so that

A4 = −
β

24
(1 + 2λ)

[
p3 − (µ + 1)p1 p2 + µp3

1

+
1

24
(8 − 9β + α2 − 42βλ + 30β2λ + 72β2λ2)p3

1

]
.

Note that 8 − 9β + β2 − 42βλ + 30β2λ + 72β2λ2 ≥ 0, when 1/2 ≤ λ ≤ 1 and 0 < β ≤ 1.
Also µ > 1 when 4/(3 + 14λ) < β ≤ 1, and 2µ − 1 ≥ 0 when 2/(3 + 14λ) ≤ β ≤ 1 (which
contains the interval 4/(3 + 14λ) < β ≤ 1). So applying Lemma 2.3 gives the second
inequality for |A4| when 4/(3 + 14λ) < β ≤ 1.

The first inequality for A4 is sharp when p1 = 0, and the second is sharp when
p1 = 2, p2 = 2 and p3 = 2. �
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