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Abstract

Let f be analyticinD = {z € C: |z] < 1} and given by f(z) =z + X, a,2". We give sharp bounds for the
initial coefficients of the Taylor expansion of such functions in the class of strongly Ozaki close-to-convex
functions, and of the initial coefficients of the inverse function, together with some growth estimates.
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1. Introduction and definitions

Let A denote the class of functions f analytic in the unit disc D := {7 € C : || < 1} with
Taylor series

fQ=2+) a2 (1.1)
n=2

Let S be the subclass of A consisting of univalent (that is, one-to-one) functions.
A function f € A is called starlike (with respect to the origin) if f(D) is starlike
with respect to the origin and convex if f(DD) is convex. Let S*(a) and C(a) denote
respectively the classes of starlike and convex functions of order a forO < @ < 1in S. It
is well known that a function f € A belongs to S*() if and only if Re (zf"(2)/ f(2)) > «
for z € D, and f € C(«a) if and only if Re(1 + zf”'(2)/f’(z)) > a. Similarly, a function
f € A belongs to K, the class of close-to-convex functions, if and only if there
exists g € S* such that Re [¢(zf(2)/g(z))] > 0 for z € D and 7 € (—x/2,7/2). Thus,
Cc 8 cK cS. When 1 =0, the resulting subclass of close-to-convex functions is
denoted by Kp.

Although the class K was first formally introduced by Kaplan [5] in 1952, already
in 1941 Ozaki [9] considered functions in A satisfying the condition

2f" (@) 1
o )>-3 e (1.2)

It follows from the original definition of Kaplan [5] that functions satisfying (1.2) are
close-to-convex and therefore members of S.

Re(l +
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Kargar and Ebadian [6] considered the following generalisation to (1.2).

Dermnition 1.1. Let f € A be locally univalent for z € D and let —1/2 < A < 1. Then
f € F() if and only if
zf" (@) _ 1
Re(1+ o J>3-1 e (13)
Clearly, when —1/2 < A < 1/2, functions defined by (1.3) provide a subset of C,
with ¥ (1/2) = C, and, since 1/2 — 1 > —1/2 when A < 1, functions in ¥ (1) are close-
to-convex when 1/2 < A < 1. We shall call members of f € ¥(1) when 1/2<4<1
Ozaki close-to-convex functions and denote this class by Fp(A).
For 0 < B8 < 1, the classes S**( ) of strongly starlike functions and C**(8) of strongly
convex functions are defined for f € A and z € D, respectively, by
'@ _pr
f@ 2

z f”(z))‘ b
1@ 27

Functions in $**(8) and C**(8) are more difficult to deal with than those in S* and C,
and relatively few exact coeflicient bounds are known. Sharp bounds are known only
for functionals involving the coefficients a;, az and a4 (see [1-3] and [17]).

Even more elusive are sharp bounds for the class K**(8) of strongly close-to-convex
functions, defined for f € A and z € D, by
'@ _pr

8(2) 2’
where 0 <8< 1and g € S*. Itis arelatively simple exercise to obtain sharp bounds for
the coefficients |a,| and |as3| when f € K**(5), but finding sharp bounds for |a4| appears
to be a more difficult problem.

We note that in contrast to the definition of K, the definition of ¥ (1) does not
involve an independent starlike function g, but, as was shown in [11], members of
(1) have coefficients which grow at the same rate as those in K, that is, O(n) as
n— oo,

We make the following definition, which extends (1.3), the special case with 8 = 1.

Derimnition 1.2. Let f e AforzeD, withO<g8<1and 1/2 <A< 1. Then f is called
strongly Ozaki close-to-convex if and only if
24-1 2 i

+ (1 + G ))
21+1  224+1 (@
We denote this class of functions by Fo(4, 8).

‘arg

and

arg(l +

arg

<

%’T (zeD). (1.4)

arg(

The primary object of this paper is to obtain sharp bounds for the coeflicients |a|,
|as| and |a4|, and the corresponding inverse coeflicients, for strongly Ozaki close-to-
convex functions, thus providing sharp inequalities for the fourth coefficient of a class
of strongly close-to-convex functions. We also give some distortion theorems.
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2. Lemmas

We will use the following lemmas (see, for example, [1]) for functions p € P, the
class of functions with positive real part in D, given by

p@) =1+ i Pn?".

n=1
LemmA 2.1. If p € P, then |p,| <2 forn > 1 and

(2, 0<u<2,
<max{2,2lu - 1|} = {2"1 —1|, elsewhere.

P2 - EP%
2
Also,
Ip2 = 311 <2 = 5pil.
Lemva 2.2, Letp e P. If0 < B<1and B2B - 1) < D < B, then
lps — 2Bpip> + Dpil < 2.
Levmma 2.3. If p € P, then

O<u<l,

2
_ 3 _p=d=
|p3 (/‘l+1)p1p2+#pllsmax{272|2ﬂ ll} {2|2ﬂ_1|, elseWhere.

We will also use the following result from the theory of differential subordination
(see [8)).

Lemma 2.4. Let Q ¢ C and suppose that the function W : C> x D — C satisfies
W(ix,y;2) ¢ Qforall x eR, y < —n(1 + x*)/2 and z € D. If p is analytic in D, p(0) = 1
and Y(p(2),zp’(2); z) € Q for all z € D, then Re p(z) > 0 for z € D.

The following result (see [12] and [4, page 67]) is often useful and we will need it
in Theorem 3.4.

Lemma 2.5. Suppose that f € S and that 7 = re® € D. If
m'(r) < |f" (2l < M'(r),

where m'(r) and M’ (r) are real-valued functions of r in [0, 1), then

frm’(t)dts If(2)| < fr M’ (r)dt.
0 0

Although functions in ¥ (A) are close-to-convex when 1/2 < A < 1, Ponnusamy
et al. [11] gave an example to show that when A = 1, they are not necessarily starlike.
On the other hand, we will show in this paper that when the second coefficient of the
Taylor expansion for f(z) is zero, functions in # (1) are starlike of order 1/2, that is,
Re(zf"(2)/f(2)) > 1/2.

In the next section, we consider the class ¥ (A1), that is, when —1/2 < A < 1. The
following sections will be concerned with Ozaki close-to-convex functions, that is,
when 1/2 <A< 1.
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3. The class (1)
THeoREM 3.1. Let A, be the set of functions in A given by
@ =2+ @™ + apnd -

If feFQ) for -1/2<1<1,0<a<1, neN and A = A(a, n) = min{A.(a, n), 1},
where

Lgenlze 1
A(a.n) = 2 a 2’
1 n 101 1
2 YTy Ty T
then A, N F (1) C S*(a).

Proor. First note that —1/2 < A<1. Next, let f € A, N F (’/l\) and consider the function

1 [z2f"()
@) = m[ @ “]’
which is analytic in D with p(0) = 1. For this function, with
Y(r, s) = (ls—(loz—;r(?a +(1-a)r+a and Q= {w:Rew> % —//i},
we have y
Y(p(2),2p'() =1+ d g (zeD).
1@

Therefore, in view of Lemma 2.4, in order to prove that f € S*() it is enough to show
that ¥(ix, y; z) ¢ Q, that is,

. ya(l —a) 1 —~
R V)= st a< - =1
eyiny;2) (1 -a)*x% +a? T 2
or, equivalently,
1 — 1-
ys(——A—ax—ﬁ—+ “-ﬁ) 3.1
2 -« a

forall x € R, y < —n(1 + x*)/2 and z € D. This happens only when

1 —~ 1-
—g(1+x2)s(§—/l—a)(lfa+ aa/-xz),

that is, when

(1 1 )af +n+[(1 1 )1—a+n]2>0
2 N-a™2 Vo T2t T

(1 A ) + 250
R SR
and . .
— - n
S-A-af—24220
(2 ¢ 2
Finally, it easy to verify that 1 satisfies the two inequalities above. O
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By specifying values of @ and n in Theorem 3.1, we deduce the following results.

COROLLARY 3.2.
1 C= T(ILZ) cS§” (since’/l;: A0,1) =1/2);
i) A, NFQAcS*(1/2) forAd=min{n/2,1};
(i) C=F(1/2)cS*(1/2) (takingn = 11n (ii));
@iv) A, NnF(1)cS*(1/2) (taking n = 2 in (ii)).
We note that (iii) is the well-known Marx—Strohhédcker theorem [13] and that (iv)
corresponds to [8, Theorem 2.6i, page 68].

3.1. Coefficients. In [11], Ponnusamy et al. gave sharp coefficient bounds and some
distortion theorems for f € ¥ (1). It was also shown that every partial sum (or section)
sn(@) =2+ 25 a;7* of a function f € F(1) given by (1.1) belongs to C in the disc
|z] < 1/6 and that this radius is the best possible. We extend the coefficient result by
finding sharp bounds for the coefficients of the Ozaki close-to-convex functions F(1).

Tueorem 3.3. Let f € Fo(A) be given by (1.1). Then, forn > 2,
1 n
lanl < — B(k +21-1).

The inequality is sharp when f(z) = fi(z) = (1/20)((1/(1 = 2)*Y) = 1).
Proor. Write

zf"(2)
1'(@)

1+

-1+ chz" = h(z)
n=1
and let
()—L[h()—lm]—ui n
PO=7T " 274 = nzlp”z'

Then Re p(z) >0 for zeD, Reh(z) >1/2—- A and |p,| <2 for n > 1 and, since
cn=01/2+ D)p,, wehave |c,| <1+ 24 forn > 1.

For each integer n, the coeflicients a, are polynomials with positive coefficients in
Cn» SO |a,| will be less than or equal to the result of replacing |c,| by 1 + 24. Thus, by
the principle of majorisation (see, for example, [7]),

i 1+24
1+zf(z)<< il

@ -z
and
f()<<1( ! —1)-— +id”
A7 AT S AR
Therefore,
1 n
lanl < dy = — ]_[(k+u— D),
k=2
which is (3.1). O
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3.2. Distortion theorems. We next give distortion results for functions f € Fo(A).
Turorem 3.4. Let f € Fo(A). Then, for z = re® € D,

zf"(2)
f@

, 1
m <@l < m,

;_A(ﬁ - 1)<l < ;—ﬂ(ﬁ -1).

Proor. From (1.3),

_ 20

)

1-r

'@ _(1 1
1+ 7@ = (2 + /1)[)(1) + > A. (3.2)
Thus,
z2f"(2) - 1+21z
/'@ 1-z
and so
zf" (z) - (I+2A)z
f'(@ -z
Hence,

zf"(@) _ (1 +2)w(2)
f'() 1-w() ’
where |w(z)| < |z]. The first inequality in the theorem now follows.
To prove the inequalities for |f’(z)|, we use a result of Suffridge [14, Theorem 3],

which states that if F' is convex and zG’(z) < zF'(z), then G(z) < F(z). Using this result,
we integrate (3.2) to obtain

, 1
f(Z)<m.

The inequalities for |f’(z)| now follow in the same way.
An application of Lemma 2.5 gives the bounds for |f(z)|. m]

3.3. Growth and area estimates. For f € S, z = re’? € D, let M(r) = max, |f(2)|,
C(r) be the curve f(|z] = r), L(r) the length of C(r) and A(r) the area enclosed by
C(r). A long-standing problem for functions in K is whether M(r) can be replaced by
VA(r) in the growth estimate L(r) = O(M(r)log(1/(1 — r))) as r — 1, a result already
known for functions in S*. Similarly, replacing M(r) by VA(r) in the known estimate
na, = O(M((n + 1)/n)) as n — oo for functions in K remains an open question [15, 16].

Since the definition of Ozaki close-to-convex functions does not include an
independent starlike function, it is relatively easy to show that both these growth
estimates can be improved when f € F(A), as follows.
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THeOREM 3.5. Let f € Fo(A) be given by (1.1), with M(r), L(r) and A(r) defined as
above. Then

1
L(r) = O(\/A(r) log —

) asr — 1
’

and

na, = O(\/A((n + 1)/n)) asn — oo,

Proor. For z = re,

21 r 21
L(V)=f0 IZf’(Z)IdQSfoj(; lzf"(2) + f'(2)| d6 dp,

where now z = pe'. Thus, from (3.2),

1 7 27 , 1 r 27 )
L) < (5+4) fo fo [ @pldodp+(1-3) fo fo @)l dodp

- (% + /1)11 (r) + (/l - %)Iz(”), say.

We first deal with 7;(r). The Cauchy—Schwarz inequality gives

r 27 1/2 r 2 1/2
o= fo fo P dodp) fo fo PP dodp)

= O(\/A(r) log 7 i

) asr — 1,
P

since the first integral is VA(r) and since fozn Ip(2)? dé < 2x(1 + 3r%)/(1 — r*) when
p € P (see, for example, [10]). Applying the Cauchy—Schwarz inequality to I»(r) gives
VA(r), which therefore establishes the first estimate in Theorem 3.4.

For the second estimate, we use Cauchy’s theorem to write, with z = re®,

1 2 )
n2an — f Z(Zf/(z))/e—mé 4o
2" Jo

and so

21 2-1 (7
n*la,) < 4+ f If(z)p(z)lda+4 nlf |f'(z)| d6
0 0

1+24
= dnr

1
—Ji(r) + /l ———Ja(r), say.
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For J(r), the Cauchy—Schwarz inequality and Parseval’s theorem give

no < fo TP de)”z( fo T por d@)”2
(2n i k2|ak|2r2’<-2)1/2( fo g de)l/z

1
12, r2n 12
Klay r* (max kr’”)) ( f PGP de)
1 0

<5 ( A(NrP) )1/2(1+3r2)1/2’

er’(1-r) 1-72

>~
I

s

< (27r

~
Il

since k7= < 1/(er*(1 — r)), again using foz" Ip(2)1> do < 2r(1 + 3r2)/(1 = r?).
Finally, we note that
2

271 27 1/
Jr(r) = fo If (2) d6 < «/ﬂ( fo |f’<z)|2de) ,

which is the first expression above. Noting that A(\/r) = O(A(r)) as r — 1, and
choosing r = (n + 1)/n in the estimates for Ji(r) and J,(r), the second estimate in
Theorem 3.4 follows. O

4. The initial coefficients of functions in (4, @)

From (1.4), we can write

2”@ _
@

1 1
LI W
+ 5+ p(z)'g+2

and so, by equating coefficients,

a, = g(l +20)p1,
B 1
as = E(l + 2/1)([72 - 5(1 - Zﬂ_ Zﬂ/l)p%),

“.1)

1
s = 2’34(1 + 2/1)(173 — 7@ =T78-68)p1p2

1
+ 578 =218+ 165° — 1882+ 3084 + 12/3212)1)?).

We now obtain sharp bounds for the coefficients a;, a3 and ay.
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THeEOREM 4.1. Let f € Fo(A,B) and suppose that f is given by (1.1) for z € D. Then

B 1
5 6(1+2/l), O<,8§2(1+/1),
las| < 5(1 +240), lasl <9 .
?(1 + (1 +24), m <p<l,

B 2
—(1+22), 0 < A
2 <PENgr1r60

lag| <

B 2 2 232 2
1+ 15820+ 6822), {|———— <p<1.
36U FIVAHEEHIAT OB e s e SPS

All the inequalities are sharp.

Proor. The inequality for |a,| is trivial, since |p;| < 2, and is sharp when p; = 2.

For a3, we note that since 0 < 1 -2 —-281<2 when 0 < < 1/(2(1 + 1)), and
1 -28-284<0when 1/(2(1 + 1)) <8 < 1, the inequalities for |as| follow on applying
Lemma 2.1. The first inequality for a3 is sharp when p; = 0 and p, = 2, and the second
is sharp when p; =2 and p, = 2.

For a4, we will use Lemma 2.2. In the expression for a4 in (4.1), let

B=(4-78-6B81)/8 and D =(8-218+ 168> — 1881+ 308°1 + 128°1%)/24,

sothat 0 < B<1 and BB - 1)< D < B when 0 <8 < /2/(8 + 151 + 642). Thus,
applying Lemma 2.2 gives the first inequality for |a4|. Next, write

as = 5B(1 + 2)[p3 — 2Bp1p> + Bp; + (D — B)p}]

and note that D — B > 0 when /2/(8 + 151 + 642) <8 < 4/(7 + 6.). Thus, applying
Lemma 2.2 in the case D = B gives the second bound for |as|, provided
\/2/ (8 + 151 + 64%) < B < 4/(7 + 6.4). Finally, noting that the coeflicients of p; p, and
pf in the expression for a4 in (4.1) are positive when 4/(7 + 61) <8 < 1, and using
the inequalities |p,| <2 for n = 1,2 and 3, gives the second inequality for |a4| in this
interval. The first inequality for a4 is sharp when p; = 0, and the second is sharp when
pr=p2=p3=2. m

5. Inverse coefficients of functions in ¥ (4, )

For any univalent function f, there exists an inverse function f~! defined on some
disc |wl| < ro(f) with Taylor expansion

Flw) = w+A0% + A30° + Ay* + -+ . (5.1

Since Fo(4,B) C S, inverse coeflicients exist for functions f € Fp(4,8). It is an easy
exercise to show from (5.1) that

Ay = —ay,
Az =2ay” - as,
Ay = —5a23 + 5a2a3 — ay,
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which, on substituting from (4.1), produces

=L+ 20p,

1
Ay = _%(1 + 2/1)(172 —5(+p+ 4ﬂ/l)Pf)’

1
Ay = _%(1 + 2,1)(193 - 1(4 + 36+ 14B80)p1 p2

I
+ 578+ 9B+ + 4280 + 3062 + 72/32/12);93).

(5.2)

We can now prove the following result.
Turorem 5.1. Let f € Fo(A, B), with inverse function f~' given by (5.1). Then

B, 0<p<

1440
ol <51+ 20, s <10,

1
(1 +20)(1+4), ——<p<1
(I +20(0+4), T <p=l,

B / 1
—(1+2 <2\|—
12( +24), 0<p=< 1 +304+722%°
ﬁ 2 2 212 1

—(1+20)(2 A+726°2 2\ ————=<pB<1
72( TN+ I0FA+ T, V1 +301+ 7222 <h=

All the inequalities are sharp.

|A4| <

Proor. The inequality for |A;| is obvious and is sharp when p; = 2.
For Aj,

B
Az < —(1+22
|3|_12(+ )

1
pr= 51+ + 4Byt

and an application of Lemma 2.1 easily gives the inequalities for |A3|, the first of which
is sharp when p; = 0 and p, = 2, and the second when p; = 2 and p, = 2.
For A4, from (5.2),

__B
Y

1
+ 578+ 98+ B2+ 4284+ 30824 + 7287 A% p3 |-

1
A (1+ zz)[pg - 74436+ 14801 ps

We will use Lemma 2.2 with
B=1(4+38+1480) and D= 3%(8+98+B +4281+308°1+ 725°2%).

Thus, 0 < B < 1 when either

4

— <

7

N =
—_
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Since 1/2 <A< (@4 -38)/(14B) when 1/2 <A <1 and 4/17 <B<4/(3 + 144), it
follows that 0 < B < 1 is satisfied when 0 < 8 <4/(3 + 141). Also, B2B-1)<D<B
when 1/2 <A< 1and0<f<2+/1/(1 +304 +7222). Since

21/(1 +300+722) <4/(3 + 14) when1/2< <1,

we can apply Lemma 2.2 to obtain the first inequality in Theorem 5.1 over the range
0 <B<2+41/(1 +301+7222).
We next consider the interval 2 \/ 1/(1 + 304 +724%) < B <4/(3 + 142). Write

Ay = —2%(1 +2)[ps — 2Bpip2 + Bp; + (D - B)p3]. (5:3)

Note that D — B > 0 when 2 \/1/(1 + 304 +724%2) < B < 1. Since 0 < B < 1 is satisfied
when 0 < 5 <4/(3 + 144), applying Lemma 2.2 to (5.3) in the case B = D gives the
second inequality in Theorem 5.1 when 2 \/ 1/(1 +301+724%) < B <4/(3 + 142).

Thus, we are left with the interval 4/(3 + 141) <8 < 1. We use Lemma 2.3 with
u=pB03 +142)/4, so that

A== 20[ps = G+ Dpipa + 4!

. 2—14(8 — 98+ a® — 4281 + 30821 + 72/3242);7?].

Note that 8 — 98 + 8> — 4281 + 30821 + 723%°A> >0, when 1/2<A1<1land0 < B < 1.
Alsou > 1when4/(3+144) <B<1,and2u—1>0when2/(3 + 141) <8 < 1 (which
contains the interval 4/(3 + 141) < 8 < 1). So applying Lemma 2.3 gives the second
inequality for |A4] when 4/(3 + 140) < < 1.

The first inequality for A4 is sharp when p; = 0, and the second is sharp when
p1=2,pp=2and p3 =2. |
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