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UNIFORMITY FOR WEAK ORDER CONVERGENCE OF
RIESZ SPACE-VALUED MEASURES

JUN KAWABE

The purpose of the paper is to show that weak order convergence of a net of Dedekind
complete Riesz space-valued cr-measures is uniform over uniformly bounded, uni-
formly equicontinuous classes of functions. The paper ends with generalizing Ulam's
theorem for tightness of positive, finite Borel measures to Riesz space-valued a-
measures.

1. INTRODUCTION

Let 5 be a completely regular space. Recall that a net {7nQ}Q6r of positive finite
Borel measures on 5 is said to weakly converge to a positive finite Borel measure m on

5 if / fdma ->• / fdm for every bounded, continuous, real-valued function / on S.
Js Js
The fact, giving several conditions equivalent to this weak convergence, has been

called the Portmanteau Theorem and is among most powerful theorems in the theory of
weak convergence of measures; see Tops0e [14, Theorem II.8.1]. Further, it is known that
weak convergence of a sequence of positive finite measures on a separable metric space
S is uniform over uniformly bounded, equicontinuous classes of functions on 5; see Rang
Rao [11, Theorem 3.1].

The definition of weak order convergence of Riesz space-valued cr-measures can
be introduced naturally. A net {/ia}oer of Dedekind complete Riesz space-valued
cr-measures on S is said to weakly converge in order to such a cr-measure /n on 5 if

/ fd(i,a converges to / fdn in order for every bounded, continuous real-valued function
Js Js
/ on 5. In [8, Theorem 7] it has been proved that a version of the Portmanteau The-
orem remains valid for a net of Dedekind complete Riesz space-valued a-measures on a
completely regular space; see also Boccuto and Sambucini [4].

The purpose of the paper is to show that weak order convergence of a net of Dedekind
complete Riesz space-valued cr-measures on a uniform space S is uniform over uniformly
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bounded, uniformly equicontinuous classes of functions on S. The paper ends with gen-
eralising Ulam's theorem for tightness of positive, finite Borel measures to Riesz space-
valued cr-measures.

2. NOTATION AND PRELIMINARIES

All the topological spaces in this paper are supposed to be Hausdorff. Denote by K
and N the set of all real numbers and the set of all natural numbers respectively.

In this section, we recall some basic facts on Riesz spaces and Riesz space-valued
cr-measures.

2.1. RIESZ SPACES. A Riesz space is said to be Dedekind complete if every non-empty
subset that is bounded above has a least upper bound. Every Dedekind complete Riesz
space is Archimedean; see Zaanen [20, Theorem 12.3].

Let V be a Riesz space. Given a net {ua}aer in V we write ua \. u to mean that it
is decreasing and inf ua = u. The meaning of ua t u is analogous. A net {ua}aer in V is

said to converqe in order to an element u in V and write ua —>• uo t t i = lim ua if there
aer

exists a net {pa}aer in V with pa I 0 such that |« - ua\ ^ po for all a € F.
In Zaanen [20, Lemma 10.1 and Theorem 10.2] some properties of order convergence

are formulated and proved for sequences in a Riesz space, but the analogous properties
are also valid for nets and their proofs are all elementary. We collect them in the following
proposition for the readers' convenience.

PROPOSITION 1. Let V be a Riesz space. Let {uQ}o6r and {t;Q}o6r be nets in
V.

(i) Ifua I u, then for any a0 G F the subnet {ua}a^ao is also decreasing and
inf ua = u. The assertion holds for an increasing net.

a^ao

(ii) If ua I u, va I v and if a ^ 0, b ^ 0 are reai numbers, tien aua + bva
I au + bv, ua V va 4- u V v and ua A vQ 4- u A v. The assertion holds for

increasing nets.

(iii) If ua t w> then ua -^-> u. Conversely, if {ua}aer is an increasing and
order bounded net and ua —> u, then ua t w- The assertions hold for a

decreasing net.

(iv) If ua ——> u, va —> v and if a, b are real numbers, then aua + bva

-^-> au + bv, ua V va -?-* u V v and ua A va - ^ u Av.

In this paper, we need the notions of the limes superior and the limes inferior of a
net in a Riesz space. Let {ua}aer be an order bounded net in a Dedekind complete Riesz
space V. Then xp := supuQ exists in V for each /3 € F, and a net {x^}^er is decreasing

and bounded below. By the Dedekind completeness of V, there is an element x € V
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such that Xff I x and we write x := lim sup u a . Similarly, we write y := liminf ua, where

Up :— inf ua for all 0 € F and y$ f V-

The proof of the following proposition is also elementary.

PROPOSITION 2 . Let {ua}aer and {va}a€r be order bounded nets in a Dedekind
complete Riesz space V. Then liminf ua and lim sup ua exist and the following properties
hold.

(i) liminf ua ^ lim sup uQ.

(ii) ua -^-> u it and only ifu = liminf ua = lim sup uQ.

(iii) liminf (-uQ) — - l imsupu Q and l imsup(-u t t ) = — liminfua.

(iv) lim inf ua + lim inf va ^ lim inf (ua +va) and lim sup (ua + va) ^ limsup ua

+ lim sup va.

(v) If ua ^ va for all a € F, then lim inf ua ^ lim inf va and lim sup ua

^ lim sup vQ.

(vi) Ifua —> u, then liminf (ua + va) = u + liminfua and limsup(uQ+fQ) =u
+ lim sup va.

Propositions 1 and 2 are used frequently in this paper without mentioning explicitly.
See Aliprantis and Burkinshaw [1], Vulikh [16] and [20] for further information on Riesz
spaces and properties of order convergence.

2.2. RIESZ SPACE-VALUED CT-MEASURES. Let V be a Dedekind complete Riesz space.
Let (fi, A) be a measurable space, that is, A is a cr-field of subsets of the non-empty
set fl Let p : A —> V be a finitely additive set function. We say that n is positive if
fi(A) ^ 0 for all A € A. Every finitely additive, positive set function is monotone and
finitely subadditive.

In this paper, we need the following notion of the countable additivity that is de-
fined by using only the order structure on the Riesz space; see Wright [18]: A finitely
additive, positive set function ft : A —* V is called a a-measure if it is <r-additive
in the sense that whenever {An}n6N is a sequence of pairwise disjoint sets in A then

Ml U ^n) — SUP Yl M-Afc)- We emphasise that only measures taking positive values
Sl=l ' neNfc=l

are considered in this note. As in the scalar case, every cr-measure has the monotone
sequential continuity from below and from above, in other words whenever {.An}nSN is an

Coo ,.

U An) — sup/i(>ln)
(respectively \i{ (~) An) — inf n{An)).

\ n = l / n€N

In Wright [17, 19] a V-valued integral with respect to a a-measure n is constructed
and successful analogues of the monotone convergence theorem and the Lebesgue con-
vergence theorem are obtained. We shall use those results freely in this paper.
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3. UNIFORMITY FOR WEAK ORDER CONVERGENCE

Let 5 be a topological space and V a Dedekind complete Riesz space. Denote by
B(S) the a-field of all Borel subsets of 5, that is, the cr-field generated by the open subsets
of 5. A a-measure fj, : B(S) —> V is called a V-valued a-measure on S. The following
regularity notions for Riesz space-valued a-measures on a topological space are needed
in this paper.

DEFINITION 3: Let fibe & V-valued a-measure on 5.

(i) /i is said to be r-smooth if fi(G) = sup/j,(Gp) whenever {Gp)fe\ is an
06A

increasing net of open subsets of 5 with G = (J Gp.
/9€A

(ii) n is said to be tight if there exist a net {p̂ }̂ gA with pp | 0 and a net
{K0}/}€\ of compact subsets of S such that fi(S - Kp) ^ pp for all /3 e A.

Every V-valued a-measure fi on a topological space 5 with countable basis (in par-
ticular, on a separable metric space) is r-smooth. This follows from the fact that the
union of an arbitrary family of open subsets of 5 coincides with the union of its countable
subfamily by the countability of basis of 5. As to the tightness see Theorem 12 at the
end of the paper.

Let us denote by C(S) the space of all bounded, continuous, real-valued functions
on 5. The following is a natural generalisation of the usual notion of weak convergence
of positive, finite, real-valued measures on S; see [14, page 40].

DEFINITION 4: We say that a net {/uQ}Qer of F-valued a-measures on 5 weakly
converges in order to a V-valued a-measure fi on S, and write (ia -^> (j,, if for each

/ e C(S) we have f fdfia - ^ / fdfi.
Js Js

DEFINITION 5: (Lipecki [9]) A F-valued (j-measure fioa S satisfies the countable
chain condition if every family V of pairwise disjoint sets in B(S) such that p(D) ^ 0
for all D € V, is countable.

If V is super Dedekind complete, in other words it is Dedekind complete and ev-
ery set in V possessing a supremum contains an at most countable subset having the
same supremum, then every V-valued cr-measure on 5 satisfies countable chain condition.
A V-valued cr-measure fj. on S is said to be dominated if there exists a finitely additive,
positive set function m : B(S) —> R such that (i(A) = 0 whenever A e B(S) and
771(̂ 4) = 0. Every dominated ^-valued a measure on 5 also satisfies countable chain
condition.

For any subset A of 5, A denotes the closure of A, A° its interior, and dA the
boundary of A, that is, dA := A — A". For a K-valued a-measure n on S, a Borel subset
A of S is called a ^-continuity set if (i(dA) = 0.

The following is a version of the Portmanteau Theorem and was first proved in [4]
for a sequence of Dedekind complete Riesz space-valued means on a normal space. For
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the proof of Theorem 6 see [8, Theorem 7].

THEOREM 6 . (The Por tmanteau Theorem) Let S be a completely regular space

and V a Dedekind complete Riesz space. Let {£tQ}tter be a net of V-valued cr-measures
on 5 which is uniformly order bounded, that is, there is an element u € V such that
/xQ(S) ^ u for all a € F. Let \i be a V-valued <7-measure on 5. Assume that \i is
r-smooth. Then the following conditions (a)-(c) are equivalent.

(a) na - ^ fj,.

(b) n(G) ^ liminf ^Q(G) for every open subset G ofS and na{S) -̂ -> n{S).
(c) limsup/ia(F) ^ fJ,(F) for every closed subset F ofS and /j,a(S) -% fi{S).

Each of the above conditions implies the condition

(d) Ha(A) - ^ p{A) for every ^-continuity Borel subset A ofS.

Further, if fi satisGes countable chain condition, then all four conditions given above
are equivalent.

If S is a uniform space, then we can add the following condition equivalent to con-
ditions (a)-(c).

(e) / fdfxa —% / fdfi for every bounded, uniformly continuous, real-valued
Js Js
function f on S.

REMARK 7. If 5 is a metric space, then the assumption that H is r-smooth is not
necessary in Theorem 6; see [15, Theorem 1.3.5].

Denote by U(S) the Banach space of all bounded, uniformly continuous real-valued
functions on a uniform space S with norm ||/|| := sup|/(s)|. We now state and prove

ses
our main result.

THEOREM 8. Let S be a uniform space with the uniformity U. Let V be a
Dedekind complete Riesz space. Let {/iQ}aer be a uniformly order bounded net of V-
valued a-measures on S. Let fibea V-valued o-measure on S. Assume that n is tight. Let
T be any uniformly bounded, uniformly equicontinuous family of real-valued functions
on S. If Ha -^ H, then fia - ^ A* uniformly on T, in other words

sup(| f fdfia - ffdfi :feA-^0.

P R O O F : By the tightness of \i, there are a net {pp}^\ with p$ \. 0 and a net

of compact subsets of 5 such tha t

(1)

for all 0 € A.
Fix e > 0 and 0 G A. We first claim that there is an open set D € U such that

(2) sup | /C*)-S(*) |<3e
s&Ke(D)
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holds for all f,g G T satisfying

(3) sup|/(s)-</(s)| <e ,

where KB(D) :— {s G 5 : (s,t) G D for some t G Kp}. In fact, there is an open set
D £U such that sup|/(s) - f(t)\ < e whenever (s,t) G D. Take functions /, o G T such

that (3) holds. Let s G KB(D) and take t G KB with (s,t) G D. Then

|/(5) - ff(s)| ^ |/(5) - f(t)\ + |/(«) - 5 ( 0 | + |ff(0 - g(s)\ < 3e,

which implies (2).
Next we claim that

(4) . limsnp na(S-KB{D))^Pg.
aer

Indeed, since Kp(D) is an open subset containing the compact set Kg, there exists
g G U(S) vanishing on KB such that 0 ^ g ^ 1 and g = 1 on S - KB(D)
(adapt the proof of [7, Proposition 11.5]). The positive a-measures fj,a and JJ. satisfy

fj,a(S — Kg(D)) ^ / gdfia and / gdfi ̂  /j.(S- KB). It follows from /iQ ^ > \i applied to

r r
g G U(S) that / gd(j,a -% / gdfj,. Hence, limsupMafS1 - Kg(D)) < /i(5 - Kg) ^ p^,

ys Js aer
which establishes (4).

Now, the set of functions T restricted to KB is uniformly bounded and uniformly
equicontinuous in U(KB), so that it is a relatively compact subset of U(Kg) by the
Arzela-Ascoli theorem. In other words, there is a finite subset To of T such that for
any / G T there is a function f0 G To with sup|/(s) - fo{s)\ < e, and we have

sup \f(s)-fo(s)\^3eby(2). seK<>
s€K0(D)

Let / G T and take f0 G To as above. Then
(5) I / /dA*« - f fdfi ^ f \ f - fo\dfia + sup I f hduia - f hdn + f | /o - f\dfi.

Us Js Js hefo'Js Js Js

Further, if we put M := sup{||/| | : / G T}, then

(6) / 1 / - foWa ^ f \f-fo\di**+[ \f-fo\dita
JS JS-Kg(D) JKB(D)

S - KB{D))

and

(7) / |/o - f\d(i < 2M/i(5 - KB)
Js

^ 2MpB + en{S).
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It follows from (5)-(7) that

(8) supl f fdfia - [ fdn £ 2Mtia{S - Kfi(D)) + 3efia(S)
fer'Js Js

+ 2Mpp + eii{S) + sup I / hdfj.a - / hdfi .
heFo'Js Js

Now an appeal to fia -^> fj, gives i*a{S) -^+ M ( 5 ) and

sup / hdfj,a — /
'is Js

0,

and hence by (4) and (8) we have

limsupjsupl / fd^a - / fdfi\\ < 2M\imsupfia(S - K0(D))
aer ^ferUs Js IJ aer

Since pg 4- 0, letting £ —>• 0, the proof is complete. D

When V is a normed Riesz space, we can introduce another notion of weak conver-
gence of vector measures by using the norm topology of V. Recall that a net {/iQ}Q€r
of V-valued vector measures on a topological space 5 weakly converges in norm to a V-

valued vector measure fj, on S if the net \ / /d/xa \ converges to / fdu, in the norm
U s Joer 7s

topology of V for every / G C(S); see Dekiert [5, Chapter IV]. Then, it follows from [8,
Example 9] that Theorem 8 does not necessarily hold for weak norm convergence even in
the case of positive vector measures.

Some conditions equivalent to weak norm convergence of vector measures are given
in [5, 13] for Banach space-valued vector measures or certain Banach lattice-valued
positive vector measures. In Marz and Shortt [10] the Portmanteau Theorem for Banach
lattice-valued positive vector measures is shown with respect to a weaker type of weak
convergence that is defined by using the weak topology on the Banach lattice.

We end this paper by showing that every weakly a-distributive and Dedekind com-
plete Riesz space-valued cr-measure is tight on any complete separable metric space;
see [3, Theorem 1.4] for the corresponding result in the case of probability measures,
which is called Ulam's theorem. For the proof we need the following supplementary
notion. Denote by 6 the set of all mappings from N into N.

DEFINITION 9: Let V be a Riesz space. A double sequence {uj} in V is called a

regulator if it is order bounded and rtj | 0 for each i € N, that is, rifj ^ nj+i for each

i, j € N and inf r{j = 0 for each i € N.

The following lemma gives a way to control a sequence of regulators; see Fremlin [6,

Lemma 1C], and Riecan and Neubrunn [12, Proposition 3.2.4] for the proof.
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LEMMA 1 0 . (Fremlin's Lemma) Let V be a Dedekind complete Riesz space.
Let {r"j} (n = 1,2,.. .) be a sequence of regulators in V. Then for each fixed element
e G V with e > 0 there is a regulator { r ^} in V such that, for any 9 G 0 one has

e A YlsuPr",e(i+n) < supri > 9 ( i + n ) .
€N ieNn=l t € N i e N

DEFINITION 11: A Dedekind complete Riesz space V is said to be weakly
a-distributive if whenever { r^} is a regulator in V then inf sup Ueu) = 0.

see <6N

The condition of weak a-distributivity is satisfied for many concrete Dedekind com-
plete Riesz spaces, for instance, the function spaces V(Q.,A,m) (0 < p ^ oo), where
(Q,A, m) is any cr-finite measure space, the spaces F(X) (respectively B(X)) of all real
functions (respectively bounded real functions) on an arbitrary non-empty set X, and
the corresponding sequence spaces. See [18] and a recent paper [2] for more information
on weakly a-distributive Riesz spaces.

We are now ready to give a Riesz space version of Ulam's theorem.

THEOREM 1 2 . Let S be a complete separable metric space. Let V be a Dedekind
complete Riesz space. Assume that V is weakly a-distributive. Then every V-valued
a -measure / t o n S is tight.

P R O O F : Let {s/J/teN be a countable dense subset of S- For each k,n eN, B(s/t, 1/n)
denotes the closed ball with center s* and radius 1/n.

Fix n G N for a moment. Put p] := fJ.(S- (J S(sfc, 1/n)) for each j G N. It follows

from 5 = 0 B(sk,l/n) that p? | 0. Put q^ := p] for each i,j,n € N. Then {gfj}neN

is a sequence of regulators in V, so that it follows from Fremlin's lemma that there is a
regulator {riv7} in V such that, for any 6 € 6 one has

(9) MS) A

Fix 6 G 0 and put jo(n) := minieN8(i + n) for each n G N. Then for each n G N

(10) PMn) < supp£(i+n).

oo jo(")
Put Kg := Pi U B(sk,l/n). Then Kg is a compact subset of 5. We first show

n=l *=1

that

(11)
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Indeed, for each m 6 N, it follows from (9) and (10) that

m >o(n) m jo(n)

>-{jB(sk,l/n)))
n=l *=1 n=l

A / /Pjgfn)
n=l

n=l i 6 N

so that (11) holds by the monotone sequential continuity of pt.

Put pg := sup7-jfl(i) for each 9 € 0 . It follows from the weak cr-distributivity of V

that inf pg — 0. Since 0 is ordered and directed upwards by pointwise partial ordering,
flee

{pejese is a decreasing net in V with pg 4- 0. Thus, the tightness of fi follows from (11). D
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