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Abstract
Let k be an algebraically closed field of prime characteristic p. Let 𝑘𝐺𝑒 be a block of a group algebra of a finite
group G, with normal defect group P and abelian 𝑝′ inertial quotient L. Then we show that 𝑘𝐺𝑒 is a matrix algebra
over a quantised version of the group algebra of a semidirect product of P with a certain subgroup of L. To do this,
we first examine the associated graded algebra, using a Jennings–Quillen style theorem.

As an example, we calculate the associated graded of the basic algebra of the nonprincipal block in the case of a
semidirect product of an extraspecial p-group P of exponent p and order 𝑝3 with a quaternion group of order eight
with the centre acting trivially. In the case of 𝑝 = 3, we give explicit generators and relations for the basic algebra
as a quantised version of 𝑘𝑃. As a second example, we give explicit generators and relations in the case of a group
of shape 21+4 : 31+2 in characteristic two.

1. Introduction

Throughout this paper, p is a prime and k is an algebraically closed field of characteristic p. The study of
blocks with normal defect groups has a long history, starting with the work of Brauer [6] and continuing
with Reynolds [15], Dade [7] and Külshammer [13]. In the case of abelian normal defect, abelian inertial
quotient and one simple module, explicit descriptions of the basic algebra were given by Benson and
Green [3], and Holloway and Kessar [8]. Dropping the hypothesis of one simple module led to our paper
[4]. The main structural feature of the basic algebras calculated in these papers is that they appear to be
quantised versions of the group algebras of semidirect products of a defect group and a subgroup of the
inertial quotient.

The purpose of this paper is to generalise the results from [4] to blocks of group algebras over k
of finite groups that have a normal defect group P which is no longer necessarily abelian, but still
with abelian 𝑝′ inertial quotient L. By a theorem of Külshammer [13], any such block is isomorphic
to a matrix algebra over a twisted group algebra 𝑘𝛼 (𝑃 � 𝐿) of the semidirect product 𝑃 � 𝐿, for some
𝛼 ∈ 𝐻2(𝐿, 𝑘×), inflated to 𝑃 � 𝐿. So there is a central 𝑝′-extension

1 → 𝑍 → 𝐻 → 𝐿 → 1

and an idempotent e in 𝑘𝑍 , such that 𝑘𝛼 (𝑃 � 𝐿) � 𝑘𝐺𝑒, where 𝐺 = 𝑃 � 𝐻.
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Theorem 1.1. With the notation and hypotheses above, let �̃� be a basic algebra of the twisted group
algebra 𝑘𝛼 (𝑃 � 𝐿). Then 𝑘𝛼 (𝑃 � 𝐿) is a matrix algebra over �̃�, and �̃� has an explicit presentation as
a quantised version of the group algebra 𝑘 (𝑃 � 𝑍 (𝐻)/𝑍).

For the precise presentation and the proof, see Section 4. There are several new ingredients required
to extend the results from [4] to nonabelian defect groups. We first consider the associated graded
gr∗(𝑘𝐺𝑒) =

⊕
𝑛�0 𝐽𝑛 (𝑘𝐺𝑒)/𝐽𝑛+1(𝑘𝐺𝑒) of 𝑘𝐺𝑒, briefly reviewed in the next section, and make use

of the Jennings–Quillen theorem [12, 14] and Semmen [16]. We show that gr∗(𝑘𝐺𝑒) is isomorphic to
a matrix algebra over a quantised version of the associated graded of the group algebra of the group
𝑃 � (𝑍 (𝐻)/𝑍). Specialising to the case 𝛼 = 0, we get a presentation of gr∗(𝑘 (𝑃 � 𝐿)), which we have
not seen before in the literature (see Remark 3.12). The exact relations are stated in Theorem 3.8; see
also Theorems 3.11 and 3.14 and Corollary 3.15. We then show that this may be ungraded to exhibit
the basic algebra of 𝑘𝐺𝑒 as a quantised version of the group algebra of 𝑃 � (𝑍 (𝐻)/𝑍) (see Section 4).

In Section 5, in order to illustrate the main results, we explicitly calculate the following examples of
blocks with a normal extraspecial defect group of order 𝑝3 and exponent p having a single isomorphism
class of simple modules.

Theorem 1.2. Suppose that p is odd. Let P be an extraspecial group of order 𝑝3 and exponent p, let H
be a quaternion group of order 8 acting on P with 𝑍 (𝐻) acting trivially, and with the two generators of
H inverting the two generators of P. Set 𝐺 = 𝑃�𝐻. The basic algebra of the associated graded gr∗(𝑘𝑃)
of 𝑘𝑃 is given by generators x, y, z, subject to the relations

𝑥𝑝 = 0, 𝑦𝑝 = 0, 𝑥𝑦 − 𝑦𝑥 = 𝑧, 𝑥𝑧 − 𝑧𝑥 = 0, 𝑦𝑧 − 𝑧𝑦 = 0

(these imply 𝑧𝑝 = 0), while the basic algebra of the associated graded gr∗(𝑘𝐺𝑒) of the nonprincipal
block e of 𝑘𝐺 is given by generators x, y, z, subject to the relations

x𝑝 = 0, y𝑝 = 0, xy + yx = z, xz + zx = 0, yz + zy = 0

(these imply z𝑝 = 0).

In the case 𝑝 = 3, we can be more precise and explicitly describe the algebra 𝑘𝑃 and a basic algebra
of 𝑘𝐺𝑒 by ‘ungrading’ the previous Theorem.

Theorem 1.3. With the notation of the previous theorem, assume that 𝑝 = 3. The algebra 𝑘𝑃 is given
by generators 𝑥, �̃�, 𝑧, subject to the relations

𝑥3 = 0, �̃�3 = 0, 𝑥 �̃� − �̃�𝑥 = 𝑧, 𝑥𝑧 − 𝑧𝑥 = 𝑧�̃�𝑧, �̃�𝑧 − 𝑧�̃� = −𝑧𝑥𝑧

(these imply 𝑧3 = 0), while a basic algebra of 𝑘𝐺𝑒 is given by generators x̃, ỹ, z̃, subject to the relations

x̃3 = 0, ỹ3 = 0, x̃ỹ + ỹx̃ = z̃, x̃z̃ + z̃x̃ = −z̃ỹz̃, ỹz̃ + z̃ỹ = −z̃x̃z̃

(these imply z̃3 = 0).

In Section 6, we give an example in characteristic two, with P an extraspecial group of order 21+4

and H an extraspecial group of order 31+2.
Finally, the appendix contains some corrections to the calculations in [4].

Notation. The bracket [−,−] is used in three different ways, depending on the context: as commutator
[𝑔, ℎ] = 𝑔ℎ𝑔−1ℎ−1 for elements g, h in a multiplicatively written group, as Lie bracket in a Lie algebra,
and as additive commutator [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎 for elements a, b in an associative algebra.
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2. The associated graded

We denote by 𝐽 (𝐴) the Jacobson radical of a finite-dimensional k-algebra A, and by 𝐽𝑛 (𝐴) the powers
of this ideal; we adopt the convention that 𝐽0 (𝐴) = 𝐴. The associated graded of A is the graded algebra

gr∗(𝐴) =
⊕
𝑛�0

𝐽𝑛 (𝐴)/𝐽𝑛+1(𝐴),

with the summands 𝐽𝑛 (𝐴)/𝐽𝑛+1(𝐴) in degree n. The image in 𝐴/𝐽 (𝐴) of a block idempotent of A is
a block idempotent of gr∗(𝐴), and this induces a bijection between the blocks of A and the blocks of
gr∗(𝐴). Similarly, the image in 𝐴/𝐽 (𝐴) of a primitive idempotent of A is a primitive idempotent in
gr∗(𝐴). It follows that A and gr∗(𝐴) have the same quiver.

Let P be a finite p-group, let L be an abelian 𝑝′-subgroup of Aut(𝑃) and let 𝛼 ∈ 𝐻2(𝐿, 𝑘×). Since
k is algebraically closed, the canonical group homomorphism 𝑍2 (𝐿, 𝑘×) → 𝐻2(𝐿, 𝑘×) splits (see, for
example, Theorem 11.15 of Isaacs [10]). Thus, we may represent 𝛼 by a 2-cocycle having the same
order in 𝑍2 (𝐿, 𝑘×) as its image in 𝐻2(𝐿, 𝑘×), still denoted by 𝛼. Such a choice of 𝛼 yields a central
𝑝′-extension

1 → 𝑍 → 𝐻 → 𝐿 → 1

and a faithful character 𝜒 : 𝑍 → 𝑘×, such that 𝑍 = [𝐻, 𝐻] and such that, for some choice of inverse
images 𝑥 in H for all x, we have

𝛼(𝑥, 𝑦) = 𝜒(𝑥�̂�𝑥𝑦−1
)

for all x, 𝑦 ∈ 𝐿. Moreover, |𝑍 | is equal to the order of 𝛼 in 𝐻2 (𝐿, 𝑘×); that is, the subgroup of 𝑘×

generated by the values of 𝛼 is equal to 𝜒(𝑍).
Set 𝐺 = 𝑃 � 𝐻, where H acts on P via the canonical map 𝐻 → 𝐿, so that 𝑍 = 𝐶𝐻 (𝑃) � 𝑍 (𝐻), and

hence 𝑍 � 𝑍 (𝐺). Thus, the idempotent

𝑒 =
1
|𝑍 |

∑
𝑧∈𝑍

𝜒(𝑧−1)𝑧

is a nonprincipal block of 𝑘𝐺, and the canonical surjection 𝐺 → 𝑃� 𝐿 with kernel Z induces an algebra
isomorphism

𝑘𝐺𝑒
�
−→ 𝑘𝛼 (𝑃 � 𝐿),

where 𝛼 is inflated to 𝑃 � 𝐿 via the canonical surjection 𝑃 � 𝐿 → 𝐿.
We wish to describe 𝑘𝐺𝑒. This being difficult, we tackle first the associated graded algebra

gr∗(𝑘𝐺𝑒) =
⊕
𝑛�0

𝐽𝑛 (𝑘𝐺𝑒)/𝐽𝑛+1(𝑘𝐺𝑒).

Our goal is to give an explicit presentation of this as a quantum deformation of the corresponding
associated graded for the (untwisted) group algebra 𝑘 (𝑃 � 𝑍 (𝐻)/𝑍).

First, we recall the Jennings–Quillen theorem [12, 14] for the associated graded of 𝑘𝑃. Our treatment
follows Section 3.14 of [2]. For 𝑟 � 1, we have dimension subgroups

𝐹𝑟 (𝑃) = {𝑔 ∈ 𝑃 | 𝑔 − 1 ∈ 𝐽𝑟 (𝑘𝑃)}.

Thus, 𝐹1 (𝑃) = 𝑃, 𝐹2 (𝑃) = Φ(𝑃), [𝐹𝑟 (𝑃), 𝐹𝑠 (𝑃)] ⊆ 𝐹𝑟+𝑠 (𝑃) and if 𝑔 ∈ 𝐹𝑟 (𝑃), then 𝑔𝑝 ∈ 𝐹𝑝𝑟 (𝑃).
Furthermore, 𝐹𝑟 (𝑃) is the most rapidly descending central series with these properties. Define
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Jen∗(𝑃) =
⊕
𝑟�1

𝑘 ⊗F𝑝 𝐹𝑟 (𝑃)/𝐹𝑟+1(𝑃).

Then Jen∗(𝑃) is a p-restricted Lie algebra with Lie bracket induced by taking commutators in P and pth
power map coming from taking pth powers in P. As a restricted Lie algebra, Jen∗(𝑃) is generated by
its degree one elements because the subgroups 𝐹𝑟 (𝑃) form the lowest central series with the properties
mentioned above. Let UJen∗(𝑃) be the restricted universal enveloping algebra of Jen∗(𝑃) over k. As an
associative algebra, UJen∗(𝑃) is generated by its degree one elements. The commutator [𝑔, ℎ] of two
elements g, ℎ ∈ 𝑃 becomes the Lie bracket of the images of g, h in Jen∗(𝑃), and the image of that Lie
bracket in UJen∗(𝑃) is in turn equal to the additive commutator of the images of g, h in the associative
algebra UJen∗(𝑃).

The Jennings–Quillen theorem states that there is a k-algebra isomorphism

UJen∗(𝑃) → gr∗(𝑘𝑃)

which, for any r and any 𝑔 ∈ 𝐹𝑟 (𝑃), sends the image of 𝑔 in 𝐹𝑟 (𝑃)/𝐹𝑟+1(𝑃) to the image of 𝑔 − 1 in
gr∗(𝑘𝑃).

The group action of H on P induces an action of H on Jen∗(𝑃) as a restricted Lie algebra because
the Lie bracket in Jen∗(𝑃) is induced by taking commutators in P, and the p-power map in Jen∗(𝑃)
is induced by taking p-th powers in P. The Jennings–Quillen map is equivariant with respect to H and
therefore extends to an isomorphism

UJen∗(𝑃) � 𝐻
�
−−→ gr∗(𝑘𝑃) � 𝐻

�
−−→ gr∗(𝑘𝐺),

where the second isomorphism uses the fact that 𝐽 (𝑘𝐺) = 𝐽 (𝑘𝑃)𝑘𝐺 = 𝑘𝐺𝐽 (𝑘𝑃) since H is a 𝑝′-group
(cf. [16, Theorem 4]). Since we have a canonical bijection between the blocks of 𝑘𝐺 and the blocks of
gr∗(𝑘𝐺) as described at the beginning of this section, it follows that the blocks of both 𝑘𝐺 and gr∗(𝑘𝐺)

are the idempotents in 𝑘𝑍 .

Remark 2.1. If e is an idempotent in 𝑘𝐻, then the restriction of the projective module 𝑘𝐺𝑒 to P is a
direct sum of dim𝑘 (𝑘𝐻𝑒) copies of 𝑘𝑃. Furthermore, the radical layers of 𝑘𝐺𝑒 as a 𝑘𝐺-module are the
same as the radical layers as a 𝑘𝑃-module. So we have∑

𝑖�0
dim𝑘 𝐽𝑖 (𝑘𝐺𝑒)/𝐽𝑖+1(𝑘𝐺𝑒) = dim𝑘 (𝑘𝐻𝑒).

∑
𝑖�0

dim𝑘 𝐽𝑖 (𝑘𝑃)/𝐽𝑖+1(𝑘𝑃)

= dim𝑘 (𝑘𝐻𝑒).
∏
𝑟

(
1 − 𝑡 𝑝𝑟

1 − 𝑡𝑟

)dim𝑘 Jen𝑟 (𝑃)

.

It can also be seen by restriction to P that if e is a central idempotent in 𝑘𝐻, then the associated graded
gr∗(𝑘𝐺𝑒) of the algebra 𝑘𝐺𝑒 is generated by its degree zero and degree one elements.

Remark 2.2. The algebra UJen∗(𝑃) is a finite dimensional cocommutative Hopf algebra, which defines
a connected unipotent finite group scheme P whose group algebra is 𝑘P � UJen∗(𝑃). The finite group
H acts as automorphism on P , so we may form the semidirect product G = P � 𝐻, which is again a
finite group scheme.

3. The quantum relations

In this section, we define an algebra 𝔄, which will turn out to be a basic algebra for gr∗(𝑘𝐺𝑒). The
quantum commutation rules for 𝔄 are given in Theorem 3.8, and the fact that 𝔄 is indeed a basic algebra
is shown in Corollary 3.15.

Recall that 𝑍 = [𝐻, 𝐻], so that the irreducible characters Irr(𝐻/𝑍) form an abelian group. By [4,
Proposition 3.1], we have a bijection
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Irr(𝑍 (𝐻) |𝜒)
�
−→ Irr(𝐻 |𝜒), 𝜙 ↦→ 𝜏𝜙

between one-dimensional characters of 𝑍 (𝐻) lying over 𝜒 and irreducible characters of H lying over 𝜒,
such that 𝜏𝜙 lies over 𝜙. The characters 𝜏𝜙 are fully ramified with respect to 𝐻/𝑍 (𝐻); see, for example,
[9, Theorem 2.7]. The central idempotent corresponding to 𝜏𝜙 is

𝑒𝜙 =
1

|𝑍 (𝐻) |

∑
ℎ∈𝑍 (𝐻 )

𝜙(ℎ−1)ℎ.

Then 𝑒 =
∑

𝜙∈Irr(𝑍 (𝐻 ) |𝜒)

𝑒𝜙 , and hence

𝑘𝐻𝑒 =
∏

𝜙∈Irr(𝑍 (𝐻 ) |𝜒)

𝑘𝐻𝑒𝜙 .

The factors 𝑘𝐻𝑒𝜙 are matrix algebras, corresponding to 𝜏𝜙, all of the same dimension. An element 𝜉
of Hom(𝐻/𝑍, 𝑘×) induces an algebra automorphism of 𝑘𝐻𝑒 sending ℎ𝑒 to 𝜉 (ℎ)−1ℎ𝑒. This yields an
action of Hom(𝐻/𝑍, 𝑘×) on 𝑘𝐻𝑒 by algebra automorphisms which in turn induces a permutation action
of Hom(𝐻/𝑍, 𝑘×) on the set of factors 𝑘𝐻𝑒𝜙 . The stabiliser of any factor is the subgroup Irr(𝐻/𝑍 (𝐻))

of Irr(𝐻/𝑍), and elements of Irr(𝐻/𝑍 (𝐻)) act as inner automorphisms on each factor.
Choose 𝜙0 ∈ Irr(𝑍 (𝐻) |𝜒), and set 𝜏 = 𝜏𝜙0 . For each 𝜙 ∈ Irr(𝑍 (𝐻) |𝜒), choose a one-dimensional

representation 𝜉𝜙 ∈ Irr(𝐻/𝑍) inflated to H whose restriction to 𝑍 (𝐻) is 𝜙𝜙−1
0 , and so that 𝜉𝜙0 = 1. The

𝜉𝜙 form a set of coset representatives of Irr(𝐻/𝑍 (𝐻)) in Irr(𝐻/𝑍). The algebra automorphism induced
by 𝜉𝜙 sends 𝑒𝜙0 to 𝑒𝜙, and hence restricts to an algebra isomorphism

𝑘𝐻𝑒𝜙0 � 𝑘𝐻𝑒𝜙

sending ℎ𝑒𝜙0 to 𝜉𝜙 (ℎ)
−1𝑒𝑒𝜙. Taking the product over all 𝜙 yields a unital injective algebra homomor-

phism

𝑘𝐻𝑒𝜙0 → 𝑘𝐻𝑒

sending ℎ𝑒𝜙0 to
∑

𝜙∈Irr(𝑍 (𝐻 ) |𝜒) 𝜉𝜙 (ℎ)
−1ℎ𝑒𝜙 . By the above, this homomorphism depends on the choice

of the 𝜉𝜙, but only up to inner automorphisms of 𝑘𝐻𝑒. We write 𝔐 for the image in 𝑘𝐻𝑒 of the matrix
algebra 𝑘𝐻𝑒𝜙0 under this algebra homomorphism. This is a unital matrix subalgebra in 𝑘𝐻𝑒.

We have a canonical homomorphism 𝜌 : 𝐻 → Hom(𝐻, 𝑘×) sending g to 𝜌(𝑔) : ℎ ↦→ 𝜒([ℎ, 𝑔]). The
kernel of this homomorphism is 𝑍 (𝐻), and its image is Hom(𝐻/𝑍 (𝐻), 𝑘×). For each 𝜓 ∈ Irr(𝐻/𝑍) and
each 𝜙 ∈ Irr(𝑍 (𝐻) |𝜒), we write for simplicity 𝜙𝜓 instead of 𝜙 (𝜓 |𝑍 (𝐻 ) ). Then, 𝜉𝜙𝜓𝜉−1

𝜙 𝜓−1 is trivial on
𝑍 (𝐻). So there exists an element 𝑔𝜓,𝜙 ∈ 𝐻 such that

𝜌(𝑔𝜓,𝜙) = 𝜉𝜙𝜓𝜉−1
𝜙 𝜓−1,

or equivalently, such that

𝜒([ℎ, 𝑔𝜓,𝜙]) = 𝜉𝜙𝜓 (ℎ)𝜉𝜙 (ℎ)
−1𝜓(ℎ)−1

for all ℎ ∈ 𝐻. We choose such elements 𝑔𝜓,𝜙, one for each 𝜓 and 𝜙. Note that these elements are unique
up to multiplication by elements in 𝑍 (𝐻).

For any 𝜓, 𝜂 ∈ Irr(𝐻/𝑍) and any 𝜙 ∈ Irr(𝑍 (𝐻) |𝜒), we have

𝜌(𝑔𝜂,𝜙𝜓𝑔𝜓,𝜙) = 𝜌(𝑔𝜂,𝜙𝜓)𝜌(𝑔𝜓,𝜙) = 𝜉𝜙𝜓𝜂𝜉−1
𝜙 𝜂−1𝜓−1 = 𝜌(𝑔𝜂𝜓,𝜙).
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Lemma 3.1. Let 𝜓𝑖 , 𝜂 𝑗 ∈ Irr(𝐻/𝑍), 𝜙𝑖 , 𝜁 𝑗 ∈ Irr(𝑍 (𝐻) |𝜒), 1 � 𝑖 � 𝑚, 1 � 𝑗 � 𝑛. Suppose that
𝜙𝑖 = 𝜙𝑖−1𝜓𝑖−1 for all 2 � 𝑖 � 𝑚. Then

(i) 𝑔𝜓𝑚 ,𝜙𝑚 . . . 𝑔𝜓1 ,𝜙1 = 𝑔𝜓𝑚 · · ·𝜓1 ,𝜙1 𝑧 for some 𝑧 ∈ 𝑍 (𝐻).
(ii) Suppose further that 𝜁 𝑗 = 𝜁 𝑗−1𝜓 𝑗−1 for all 2 � 𝑗 � 𝑛, 𝜙1 = 𝜁1 and 𝜓𝑚 . . . 𝜓1 = 𝜂𝑛 . . . 𝜂1. Then

𝑔𝜓𝑚 ,𝜙𝑚 . . . 𝑔𝜓1 ,𝜙1 = 𝑔𝜂𝑛 ,𝜁𝑛 . . . 𝑔𝜂1 ,𝜁1 𝑧′ for some 𝑧′ ∈ 𝑍 (𝐻).

Proof. Since 𝑍 = Ker(𝜌), (i) follows by repeated application of the equation displayed above the lemma.
Part (ii) follows from (i) applied to both 𝑔𝜓𝑚 ,𝜙𝑚 . . . 𝑔𝜓1 ,𝜙1 and 𝑔𝜂𝑛 ,𝜁𝑛 . . . 𝑔𝜂1 ,𝜁1 . �

3.2. Since k is algebraically closed, we may choose a k-basis 𝑤1, . . . , 𝑤𝑚 of Jen∗(𝑃), where 𝑝𝑚 = |𝑃 |,
consisting of homogeneous eigenvectors of the action of H. We arrange the indices in such a way that
if 𝑖 � 𝑗 , then deg(𝑤𝑖) � deg(𝑤 𝑗 ). Then for each 𝑤𝑖 , there is a character 𝜓𝑖 of L, inflated to H, such that

𝑔𝑤𝑖 = 𝜓𝑖 (𝑔)𝑤𝑖

for 𝑔 ∈ 𝐻. Define structure constants 𝑐𝑖, 𝑗 ,𝑘 and 𝑑𝑖,𝑘 for Jen∗(𝑃) via

[𝑤𝑖 , 𝑤 𝑗 ] =
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘𝑤𝑘 , 𝑤 [𝑝]
𝑖 =

∑
𝑘

𝑑𝑖,𝑘𝑤𝑘 .

Here, [𝑤𝑖 , 𝑤 𝑗 ] denotes the Lie bracket and 𝑤 [𝑝]
𝑖 the p-restriction map in Jen∗(𝑃). We have

𝑔 [𝑤𝑖 , 𝑤 𝑗 ] = [𝑔𝑤𝑖 ,
𝑔𝑤 𝑗 ] = 𝜓𝑖 (𝑔)𝜓 𝑗 (𝑔) [𝑤𝑖 , 𝑤 𝑗 ],

𝑔 (𝑤 [𝑝]
𝑖 ) = (𝑔𝑤𝑖)

[𝑝] = (𝜓𝑖 (𝑔)𝑤𝑖)
[𝑝] = 𝜓𝑖 (𝑔)

𝑝𝑤 [𝑝]
𝑖 .

It follows that if 𝑐𝑖, 𝑗 ,𝑘 ≠ 0, then 𝜓𝑖𝜓 𝑗 = 𝜓𝑘 , and if 𝑑𝑖,𝑘 ≠ 0, then 𝜓𝑝
𝑖 = 𝜓𝑘 .

By the Poincaré–Birkhoff–Witt (PBW) theorem for restricted Lie algebras (Jacobson [11], page 190),
the algebra UJen∗(𝑃) � gr∗(𝑘𝑃) has a basis B consisting of words 𝑤𝑖1 . . . 𝑤𝑖𝑟 , where 𝑖1 � · · · � 𝑖𝑟 ,
and each index is repeated at most 𝑝 − 1 times (so we are writing 𝑤𝑎

𝑖 as 𝑤𝑖 . . . 𝑤𝑖). We follow the
convention that the empty word denotes the identity element in degree zero. The element 𝑤𝑖1 . . . 𝑤𝑖𝑟 is
an eigenvector for the conjugation action of H, with character 𝜓𝑖1 . . . 𝜓𝑖𝑟 .

In what follows, we identify Jen∗(𝑃) with its image in UJen∗(𝑃) � 𝐻. The calculations that follow
are similar to those in Section 4 of [4] (with the corrections described in Section 7 below). For any
𝜙 ∈ Irr(𝑍 (𝐻) |𝜒), 𝑤𝑖 a basis element of Jen∗(𝑃), with associated linear characters 𝜓𝑖 , we write 𝑔𝑖,𝜙 for
the element 𝑔𝜓𝑖 ,𝜙 .

Lemma 3.3. With the notation above, the following equations in (UJen∗(𝑃) � 𝐻)𝑒 hold for all ℎ ∈

𝐻, all basis elements 𝑤𝑖 of Jen∗(𝑃), the associated linear characters 𝜓𝑖 ∈ Hom(𝐻, 𝑘×) and all
𝜙 ∈ Irr(𝑍 (𝐻) |𝜒).

(i) 𝑤𝑖𝑒𝜙 = 𝑒𝜙𝜓𝑖𝑤𝑖 .
(ii) (𝑔𝑖,𝜙𝑤𝑖) (𝜉𝜙 (ℎ)

−1𝑒𝜙 ℎ) = (𝜉𝜙𝜓𝑖 (ℎ)
−1𝑒𝜙𝜓𝑖 ℎ) (𝑔𝑖,𝜙𝑤𝑖).

(iii) 𝑔𝑖,𝜙𝑤𝑖𝑒𝜙 = 𝑒𝜙𝜓𝑖𝑔𝑖,𝜙𝑤𝑖 commutes with 𝔐.

Proof. We have ℎ𝑤𝑖ℎ
−1 = 𝜓𝑖 (ℎ)𝑤𝑖 , hence 𝑤𝑖ℎ = 𝜓𝑖 (ℎ)

−1ℎ𝑤𝑖 . Thus, if ℎ ∈ 𝑍 (𝐻), then
𝜙(ℎ)−1𝑤𝑖ℎ = 𝜙(ℎ)−1𝜓𝑖 (ℎ)

−1ℎ𝑤𝑖 . Taking the sum over all ℎ ∈ 𝑍 (𝐻) and dividing by |𝑍 (𝐻) | shows
(i). Note that [𝑔, ℎ]𝑒 = 𝜒([𝑔, ℎ])𝑒 for all g, ℎ ∈ 𝐻. Thus 𝑔𝑖,𝜙ℎ𝑒 = 𝜒([ℎ, 𝑔𝑖,𝜙])

−1ℎ𝑔𝑖,𝜙𝑒. It follows that

𝜉𝜙 (ℎ)
−1𝑔𝑖𝜙𝑤𝑖ℎ𝑒𝜙 = 𝜉𝜙 (ℎ)

−1𝜓𝑖 (ℎ)
−1𝑔𝑖,𝜙ℎ𝑤𝑖𝑒𝜙 = 𝜉𝜙 (ℎ)

−1𝜓𝑖 (ℎ)
−1 𝜒([ℎ, 𝑔𝑖,𝜙])

−1ℎ𝑔𝑖,𝜙𝑒𝜙𝜓𝑖𝑤𝑖 ,

where we have used (i). Note that 𝑒𝜙𝜓𝑖 is central in 𝑘𝐻. Using the definition of 𝜌, the scalar in the
last expression is 𝜉𝜙𝜓𝑖 (ℎ)

−1. This shows (ii). The equality in (iii) is the special case of (ii) applied with
ℎ = 1. For the commutation with 𝔐, we need to check that the elements in the statement commute with
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expressions of the form
∑

𝜙′ 𝜉𝜙′ (ℎ)−1ℎ𝑒𝜙′ . This follows easily using (ii) and the fact that the 𝑒𝜙 are
pairwise orthogonal. �

Definition 3.4. We define w𝑖,𝜙 = 𝑔𝑖,𝜙𝑤𝑖𝑒𝜙 and let 𝔄 be the subalgebra of (UJen∗(𝑃) � 𝐻)𝑒 generated
by the elements 𝑒𝜙 and w𝑖,𝜙 .

By Lemma 3.3, the subalgebras 𝔄 and 𝔐 of (UJen∗(𝑃) � 𝐻)𝑒 commute.

Lemma 3.5. The algebra 𝔄 is generated by the elements 𝑒𝜙 and w𝑖,𝜙 for those i such that the element
𝑤𝑖 of Jen∗(𝑃) has degree one.

Proof. Since Jen∗(𝑃) is generated by elements in degree one, there exists a basis V of UJen∗(𝑃)
consisting of a subset of the set of monomials in the degree one 𝑤𝑖’s. Let 𝑤𝑡 be an arbitrary element of
the chosen basis of Jen∗(𝑃) and write

𝑤𝑡 =
∑
𝑣 ∈V

𝛼𝑣𝑣.

If 𝑢, 𝑢′ ∈ UJen∗(𝑃) are eigenvectors for the H action corresponding to characters 𝜓 and 𝜓 ′ respectively,
then 𝑢𝑢′ is an H-eigenvector with corresponding character 𝜓𝜓 ′. From this it follows that if a monomial
𝑣 = 𝑤𝑖𝑚 . . . 𝑤𝑖1 in degree one elements 𝑤𝑖 𝑗 is an element of V such that 𝛼𝑣 ≠ 0, then 𝜓𝑡 = 𝜓𝑖𝑚 . . . 𝜓𝑖1 ,
where for each j, 1 � 𝑗 � 𝑚, 𝜓𝑖 𝑗 ∈ Irr(𝐻/𝑍) is the character of H corresponding to the action on 𝑤𝑖 𝑗 .
Let 𝜁 ∈ Irr(𝑍 (𝐻) |𝜒), and let v be as above. By Lemma 3.1,

𝑔𝜓,𝜁 = 𝑔𝑖𝑚 ,𝜙𝑚 . . . 𝑔𝑖1 ,𝜙1 𝑧

where 𝑧 ∈ 𝑍 (𝐻), 𝜙1 = 𝜁 and 𝜙 𝑗 = 𝜙 𝑗−1𝜓𝑖 𝑗−1 , 2 � 𝑗 � 𝑚. On the other hand 𝑤𝑖 𝑗 is an eigenvector for
the H action,

𝑣𝑔𝑖𝑚 ,𝜙𝑚 . . . 𝑔𝑖1 ,𝜙1 = 𝛽𝑣𝑤𝑖𝑚𝑔𝑖𝑚 ,𝜙𝑚 . . . 𝑤𝑖1 𝑔𝑖1 ,𝜙1

for some 𝛽𝑣 ∈ 𝑘×. Since 𝑧𝑒𝜁 is a nonzero scalar multiple of 𝑒𝜁 , the above equation and Lemma 3.3 (iii)
give that

𝑣𝑔𝜓,𝜁 𝑒𝜁 = 𝑞𝑣w𝑖𝑚 ,𝜙𝑚 . . . w𝑖1 ,𝜙1

for some nonzero scalar 𝑞𝑣 . Since all 𝑤𝑖 𝑗 are in degree one, it follows that

w𝑡 ,𝜁 = 𝑤𝑔𝜓,𝜁 𝑒𝜙 =
∑
𝑣 ∈V

𝛼𝑣𝑣𝑔𝜓,𝜁 𝑒𝜁

is a linear combination of monomials in the w𝑖,𝜙 for those i such that 𝑤𝑖 has degree one. �

Definition 3.6. We define elements 𝑧𝑖, 𝑗 ,𝜙, 𝑧′𝑖, 𝑗 ,𝑘,𝜙 and 𝑧′′𝑖,𝑘,𝜙 in 𝑍 (𝐻) as follows. By Lemma 3.1 we have

𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙 = 𝑔𝑖,𝜙𝜓𝑗 𝑔 𝑗 ,𝜙𝑧𝑖, 𝑗 ,𝜙

for some 𝑧𝑖, 𝑗 ,𝜙 ∈ 𝑍 (𝐻). If 𝑐𝑖, 𝑗 ,𝑘 ≠ 0, then

𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙 = 𝑔𝑘,𝜙𝑧′𝑖, 𝑗 ,𝑘,𝜙

for some 𝑧′𝑖, 𝑗 ,𝑘,𝜙 ∈ 𝑍 (𝐻). If 𝑑𝑖,𝑘 ≠ 0, then

𝑔
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . 𝑔𝑖,𝜙𝜓𝑖𝑔𝑖,𝜙 = 𝑔𝑘,𝜙𝑧′′𝑖,𝑘,𝜙

for some 𝑧′′𝑖,𝑘,𝜙 ∈ 𝑍 (𝐻).
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Remark 3.7. We have

𝑧𝑖, 𝑗 ,𝜙𝑒𝜙 = 𝜙(𝑧𝑖, 𝑗 ,𝜙)𝑒𝜙, 𝑧′𝑖, 𝑗 ,𝑘,𝜙𝑒𝜙 = 𝜙(𝑧′𝑖, 𝑗 ,𝑘,𝜙)𝑒𝜙, 𝑧′′𝑖,𝑘,𝜙𝑒𝜙 = 𝜙(𝑧′′𝑖,𝑘,𝜙)𝑒𝜙 .

Also, we have 𝑧𝑖, 𝑗 ,𝜙𝑧 𝑗 ,𝑖,𝜙 = 1, and if 𝑐𝑖, 𝑗 ,𝑘 ≠ 0, then 𝑧′𝑖, 𝑗 ,𝑘,𝜙 = 𝑧′𝑗 ,𝑖,𝑘,𝜙𝑧𝑖, 𝑗 ,𝜙.

Theorem 3.8. Defining constants

𝑞𝑖, 𝑗 ,𝜙 = 𝜓𝑖 (𝑔 𝑗 ,𝜙𝑧𝑖, 𝑗 ,𝜙)𝜓 𝑗 (𝑔
−1
𝑖,𝜙𝑧𝑖, 𝑗 ,𝜙)𝜙(𝑧𝑖, 𝑗 ,𝜙),

𝑞′
𝑖, 𝑗 ,𝑘,𝜙 = 𝜓 𝑗 (𝑔𝑖,𝜙)

−1𝜓𝑘 (𝑧
′
𝑖, 𝑗 ,𝑘,𝜙)𝜙(𝑧

′
𝑖, 𝑗 ,𝑘,𝜙),

𝑞′′
𝑖,𝑘,𝜙 = 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑝−2

𝑖
)−1 . . . 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑖 )

−𝑝+2𝜓𝑖 (𝑔𝑖,𝜙)
−𝑝+1𝜓𝑘 (𝑧

′′
𝑖,𝑘,𝜙)𝜙(𝑧

′′
𝑖,𝑘,𝜙),

we have

w 𝑗 ,𝜙𝜓𝑖w𝑖,𝜙 − 𝑞𝑖, 𝑗 ,𝜙w𝑖,𝜙𝜓𝑗 w 𝑗 ,𝜙 =
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘𝑞′
𝑖, 𝑗 ,𝑘,𝜙w𝑘,𝜙 (3.9)

w
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . w𝑖,𝜙𝜓𝑖w𝑖,𝜙 =
∑
𝑘

𝑑𝑖,𝑘,𝜙 𝑞′′
𝑖,𝑘,𝜙w𝑘,𝜙 . (3.10)

By changing the choices of 𝑔𝑖,𝜙 by elements of 𝑍 (𝐻), we may ensure that 𝑧𝑖, 𝑗 ,𝜙 ∈ 𝑍 , and then the
formula for the parameters 𝑞𝑖, 𝑗 ,𝜙 simplifies to

𝑞𝑖, 𝑗 ,𝜙 = 𝜓𝑖 (𝑔 𝑗 ,𝜙)𝜓 𝑗 (𝑔
−1
𝑖,𝜙)𝜒(𝑧𝑖, 𝑗 ,𝜙).

Proof. We have

w 𝑗 ,𝜙𝜓𝑖w𝑖,𝜙 = (𝑔 𝑗 ,𝜙𝜓𝑖𝑤 𝑗𝑒𝜙𝜓𝑖 ) (𝑔𝑖,𝜙𝑤𝑖𝑒𝜙)

= 𝑔 𝑗 ,𝜙𝜓𝑖𝑤 𝑗𝑔𝑖,𝜙𝑤𝑖𝑒𝜙

= 𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙𝑤 𝑗𝑤𝑖𝑒𝜙

= 𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙 (𝑤𝑖𝑤 𝑗 + [𝑤𝑖 , 𝑤 𝑗 ])𝑒𝜙

= 𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝑔𝑖,𝜙𝜓𝑗 𝑔 𝑗 ,𝜙𝑧𝑖, 𝑗 ,𝜙𝑤𝑖𝑤 𝑗𝑒𝜙

+ 𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙 [𝑤𝑖 , 𝑤 𝑗 ]𝑒𝜙

= 𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝜓𝑖 (𝑧𝑖, 𝑗 ,𝜙)𝜓 𝑗 (𝑧𝑖, 𝑗 ,𝜙)𝑔𝑖,𝜙𝜓𝑗 𝑔 𝑗 ,𝜙𝑤𝑖𝑤 𝑗 𝑧𝑖, 𝑗 ,𝜙𝑒𝜙

+
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝑔𝑘,𝜙𝑧′𝑖, 𝑗 ,𝑘,𝜙𝑤𝑘𝑒𝜙

= 𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝜓𝑖 (𝑧𝑖, 𝑗 ,𝜙)𝜓 𝑗 (𝑧𝑖, 𝑗 ,𝜙)𝜓𝑖 (𝑔 𝑗 ,𝜙)𝜙(𝑧𝑖, 𝑗 ,𝜙)𝑔𝑖,𝜙𝜓𝑗 𝑤𝑖𝑔 𝑗 ,𝜙𝑤 𝑗𝑒𝜙

+
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝜓𝑘 (𝑧

′
𝑖, 𝑗 ,𝑘,𝜙)𝑔𝑘,𝜙𝑤𝑘 𝑧′𝑖, 𝑗 ,𝑘,𝜙𝑒𝜙

= 𝜓𝑖 (𝑔 𝑗 ,𝜙𝑧𝑖, 𝑗 ,𝜙)𝜓 𝑗 (𝑔
−1
𝑖,𝜙𝑧𝑖, 𝑗 ,𝜙)𝜙(𝑧𝑖, 𝑗 ,𝜙) (𝑔𝑖,𝜙𝜓𝑗 𝑤𝑖𝑒𝜙𝜓𝑗 ) (𝑔 𝑗 ,𝜙𝑤 𝑗𝑒𝜙)

+
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝜓𝑘 (𝑧

′
𝑖, 𝑗 ,𝑘,𝜙)𝜙(𝑧

′
𝑖, 𝑗 ,𝑘,𝜙)𝑔𝑘,𝜙𝑤𝑘𝑒𝜙

= 𝑞𝑖, 𝑗 ,𝜙w𝑖,𝜙𝜓𝑗 w 𝑗 ,𝜙 +
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘𝑞′
𝑖, 𝑗 ,𝑘,𝜙w𝑘,𝜙 .

https://doi.org/10.1017/fms.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.13


Forum of Mathematics, Sigma 9

Similarly,

w
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . w𝑖,𝜙𝜓𝑖w𝑖,𝜙

= (𝑔
𝑖𝜙𝜓

𝑝−1
𝑖

𝑤𝑖𝑒𝜙𝜓
𝑝−1
𝑖

) . . . (𝑔𝑖,𝜙𝜓𝑖𝑤𝑖𝑒𝜙𝜓𝑖 ) (𝑔𝑖,𝜙𝑤𝑖𝑒𝜙)

= 𝑔
𝑖,𝜙𝜓

𝑝−1
𝑖

𝑤𝑖 . . . 𝑔𝑖,𝜙𝜓𝑖𝑤𝑖𝑔𝑖,𝜙𝑤𝑖𝑒𝜙

= 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑝−2
𝑖

)−1 . . . 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑖 )
−𝑝+2𝜓𝑖 (𝑔𝑖,𝜙)

−𝑝+1(𝑔
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . 𝑔𝑖,𝜙𝜓𝑖𝑔𝑖,𝜙)𝑤
𝑝
𝑖 𝑒𝜙

=
∑
𝑘

𝑑𝑖,𝑘𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑝−2
𝑖

)−1 . . . 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑖 )
−𝑝+2𝜓𝑖 (𝑔𝑖,𝜙)

−𝑝+1𝑔𝑘,𝜙𝑧′′𝑖,𝑘,𝜙𝑤𝑘𝑒𝜙

=
∑
𝑘

𝑑𝑖,𝑘𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑝−2
𝑖

)−1 . . . 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑖 )
−𝑝+2𝜓𝑖 (𝑔𝑖,𝜙)

−𝑝+1𝜓𝑘 (𝑧
′′
𝑖,𝑘,𝜙)𝑔𝑘,𝜙𝑤𝑘 𝑧′′𝑖,𝑘,𝜙𝑒𝜙

=
∑
𝑘

𝑑𝑖,𝑘𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑝−2
𝑖

)−1 . . . 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑖 )
−𝑝+2𝜓𝑖 (𝑔𝑖,𝜙)

−𝑝+1𝜓𝑘 (𝑧
′′
𝑖,𝑘,𝜙)𝜙(𝑧

′′
𝑖,𝑘,𝜙)𝑔𝑘,𝜙𝑤𝑘𝑒𝜙

=
∑
𝑘

𝑑𝑖,𝑘𝑞′′
𝑖,𝑘,𝜙w𝑘,𝜙 .

For the final remark, just as in Lemma 4.12 (3) of [4], we may change the choices of 𝑔𝑖,𝜙 by elements
of 𝑍 (𝐻) to ensure that 𝑧𝑖, 𝑗 ,𝜙 ∈ 𝑍 , with the same argument. Then the characters 𝜓𝑖 take value one on
these elements, leading to the given simplifications of the constants. �

Recall that by Lemma 3.5, 𝔄 is generated by the 𝑒𝜙 and the w𝑖,𝜙 for those i such that the element 𝑤𝑖

of Jen∗(𝑃) has degree one.

Theorem 3.11. The algebra 𝔄 is given as a quiver with relations 𝑘𝑄/𝐼, where Q is the quiver with
|𝑍 (𝐻) : 𝑍 | vertices labelled [𝜙] corresponding to the idempotents 𝑒𝜙 ∈ 𝑘𝑍 (𝐻) lying over 𝜒 and
directed edges

[𝜙]
𝑖

−−−−−→ [𝜙𝜓𝑖]

corresponding to the element

w𝑖,𝜙 = 𝑔𝑖,𝜙𝑤𝑖𝑒𝜙 = 𝑒𝜙𝜓𝑖𝑔𝑖,𝜙𝑤𝑖 = 𝑒𝜙𝜓𝑖𝑔𝑖,𝜙𝑤𝑖𝑒𝜙

for those i such that the element 𝑤𝑖 of Jen∗(𝑃) has degree one. The relations are those that follow from
the structure constant relations of Theorem 3.8, where for each k such that 𝑤𝑘 is in degree greater than
or equal to 2, any w𝑘,𝜁 appearing in Theorem 3.8 is replaced by an element in 𝑘𝑄 corresponding via
Lemma 3.5 to an expression for w𝑘,𝜁 in terms of the w𝑖,𝜙 such that 𝑤𝑖 has degree one. There is a PBW
style basis B′ for 𝔄 (described below in the proof), consisting of composable monomials in the w𝑖,𝜙 ,
giving dim(𝑘𝑄/𝐼) = dim(𝔄) = |𝑍 (𝐻) : 𝑍 | · |𝑃 |.

Proof. By Lemma 3.5, 𝔄 is generated by the idempotents 𝑒𝜙 and the elements w𝑖,𝜙 . By Lemma 3.3 and
Theorem 3.8, they satisfy the given relations. Thus, we have a surjective homomorphism from 𝑘𝑄/𝐼 to
𝔄 taking [𝜙] to 𝑒𝜙 and [𝜙]

𝑖
−−−−−→ [𝜙𝜓𝑖] to w𝑖,𝜙 .

The relations holding in 𝑘𝑄/𝐼 allow us to write every element of 𝔄 as a linear combination of
elements of the set B′ consisting of the 𝑒𝜙 and composable monomials in the w𝑖,𝜙 where the indices i
are in order, and each index i is repeated at most 𝑝 − 1 times. The number of such monomials (including
the 𝑒𝜙) is |𝑍 (𝐻) : 𝑍 | · |𝑃 |. Replacing [𝜙] by 𝑒𝜙 , w𝑖,𝜙 by [𝜙]

𝑖
−−−−−→ [𝜙𝜓𝑖] for those 𝑖 such that 𝑤𝑖 has

degree one and w𝑖,𝜙 by their chosen lifts in 𝑘𝑄 for those 𝑖 such that 𝑤𝑖 has degree greater than or equal
to two, we see by the same reasoning that dim𝑘 𝑄/𝐼 is at most |𝑍 (𝐻) : 𝑍 | · |𝑃 |.

If there were a linear relation in 𝔄 between the monomials in B′, then there would be a linear
relation between the ones of maximal length, namely length 𝑚(𝑝 − 1). There is one of these for each
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𝜙, and they are linearly independent elements of the socle of 𝑘𝐺 because they are nonzero elements of
different projective summands 𝑘𝐺𝑒𝜙 . Thus, dim(𝔄) is equal to |𝑍 (𝐻) : 𝑍 | · |𝑃 |, and 𝑘𝑄/𝐼 → 𝔄 is an
isomorphism. �

Remark 3.12. The group algebra of the semidirect product 𝑃 � 𝑍 (𝐻)/𝑍 , with the action given by
restricting the action of 𝐻/𝑍 on P, has only one block. We can perform the computations above for this
group, and the results look similar, except that the factors of 𝜙(𝑧𝑖, 𝑗 ,𝜙), 𝜙(𝑧′𝑖, 𝑗 ,𝑘,𝜙) and 𝜙(𝑧′′𝑖,𝑘,𝜙) in the
definitions of 𝑞𝑖, 𝑗 ,𝜙 , 𝑞′

𝑖, 𝑗 ,𝑘,𝜙 , and 𝑞′′
𝑖,𝑘,𝜙 are missing in Theorem 3.11. So removing these factors, the

relations in Theorem 3.8 are the relations in gr∗(𝑘 (𝑃 � 𝑍 (𝐻)/𝑍)) � UJen∗(𝑃) � 𝑍 (𝐻)/𝑍 . Thus, we
can see 𝔄 as a quantum deformation of the algebra UJen∗(𝑃) � 𝑍 (𝐻)/𝑍 . Also, we note that in the case
that 𝛼 = 0, we have 𝑍 = 1, 𝐻 = 𝐿 and Theorem 3.11 provides an explicit presentation of gr∗(𝑘 (𝑃 � 𝐿)).

As in [4], we now make use of the following lemma (see Chapter 3, Corollary 4.3 in Bass [1]).

Lemma 3.13. Let 𝐴 � 𝐵 be k-algebras with A an Azumaya algebra (that is, a finite-dimensional central
separable k-algebra). Then the map 𝐴 ⊗𝑘 𝐶𝐵 (𝐴) → 𝐵 is an isomorphism.

Theorem 3.14. The multiplication in (UJen∗(𝑃) � 𝐻)𝑒 induces an isomorphism

𝔄 ⊗𝑘 𝔐
�
−−→ (UJen∗(𝑃) � 𝐻)𝑒.

Proof. The proof is similar to that of Theorem 4.15 of [4]. Applying Lemma 3.13 with 𝐴 = 𝔐 and B the
subalgebra generated by 𝔄 and 𝔐, we see that the given map is injective. The dimensions are given by
dim(𝔄) = |𝑍 (𝐻) : 𝑍 | · |𝑃 |, dim(𝔐) = |𝐻 : 𝑍 (𝐻) | and dim((UJen∗(𝑃) �𝐻)𝑒) = dim(𝑘𝐺𝑒) = |𝐺 : 𝑍 |,
so dim((UJen∗(𝑃) � 𝐻)𝑒) = dim(𝔄) · dim(𝔐), and the map is an isomorphism. �

Corollary 3.15. We have

gr∗(𝑘𝐺𝑒) � (UJen∗(𝑃) � 𝐻)𝑒 � Mat𝑚(𝔄),

where 𝑚 =
√
|𝐻 : 𝑍 (𝐻) |. In particular, 𝔄 is a basic algebra of gr∗(𝑘𝐺𝑒).

Corollary 3.16. The algebra 𝔄 is generated by its degree zero and degree one elements.

Proof. This follows from Corollary 3.15 and Remark 2.1. �

4. Ungrading the relations

We saw in the last section that the relations for the basic algebra of gr∗(𝑘𝐺𝑒) are a quantised version of
the relations for gr∗(𝑘𝑃 � (𝑍 (𝐻)/𝑍)). In this section, we show that the same holds without taking the
associated graded.

Since |𝐻 | is coprime to p, the characteristic of k, we can choose invariant complements to 𝐽𝑛+1 (𝑘𝑃)
in 𝐽𝑛 (𝑘𝑃) for each 𝑛 � 0. Let 𝑤1, . . . , 𝑤𝑚 be the basis of Jen∗(𝑃) chosen in Section 3.2, and let B
be the resulting PBW basis of UJen∗(𝑃) � gr∗(𝑘𝑃) described there. Regarding Jen∗(𝑃) as an k-linear
subspace of gr∗(𝑘𝑃), this enables us to choose representatives �̃�𝑖 in 𝑘𝑃 of the 𝑤𝑖 in such a way that

𝑔�̃�𝑖𝑔
−1 = 𝜓𝑖 (𝑔)�̃�𝑖 .

Let B̃ be the corresponding basis of 𝑘𝑃 consisting of monomials in the �̃�𝑖 . That is, if 𝑤𝑖1 . . . 𝑤𝑖𝑟 is an
element of B, then the corresponding element of B̃ is �̃�𝑖1 . . . �̃�𝑖𝑟 . An element �̃�𝑖1 . . . �̃�𝑖𝑟 of B̃ is an
eigenvector for the action of H for the character 𝜓𝑖1 . . . 𝜓𝑖𝑟 .

When we ungrade a relation of the form [𝑤𝑖 , 𝑤 𝑗 ] =
∑

𝑘 𝑐𝑖, 𝑗 ,𝑘𝑤𝑘 , we obtain a relation of the form

[�̃�𝑖 , �̃� 𝑗 ] =
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘 �̃�𝑘 + 𝑦𝑖, 𝑗 (4.1)
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in 𝑘𝑃, where 𝑦𝑖, 𝑗 is a linear combination of elements of B̃ in a higher power of the radical than
deg(𝑤𝑖) + deg(𝑤 𝑗 ). Moreover, each basis monomial �̃�𝑖1 . . . �̃�𝑖𝑟 that occurs in 𝑦𝑖 𝑗 is an eigenvector for
the character 𝜓𝑖𝜓 𝑗 , and consequently

𝜓𝑖1 . . . 𝜓𝑖𝑟 = 𝜓𝑖𝜓 𝑗 . (4.2)

Similarly, when we ungrade a relation of the form 𝑤𝑝
𝑖 =

∑
𝑘 𝑑𝑖,𝑘𝑤𝑘 , we obtain a relation of the form

�̃�𝑝
𝑖 =

∑
𝑘

𝑑𝑖,𝑘 �̃�𝑘 + 𝑦′′𝑖 (4.3)

in 𝑘𝑃, where 𝑦′′𝑖 is a linear combination of monomial basis elements in a higher power of the radical
than 𝑝. deg(𝑤𝑖). Each basis monomial �̃�𝑖1 . . . �̃�𝑖𝑟 that occurs in 𝑦′′𝑖 is an eigenvector for the character
𝜓𝑝
𝑖 and consequently

𝜓𝑖𝑟 . . . 𝜓𝑖1 = 𝜓𝑝
𝑖 . (4.4)

Definition 4.5. As in Definition 3.4, we define w̃𝑖,𝜙 = 𝑔𝑖,𝜙�̃�𝑖𝑒𝜙 . Then w̃𝑖,𝜙 commutes with𝔐. We define
�̃� to be the subalgebra of 𝑘𝐺𝑒 generated by the elements 𝑒𝜙 and w̃𝑖,𝜙 . For an element �̃� = �̃�𝑖1 . . . �̃�𝑖𝑟

of B̃ and a character 𝜙 ∈ Irr(𝑍 (𝐻) |𝜒), set w̃𝜙 = w̃𝑖1 ,𝜙𝜓1...𝜓𝑟 . . . w̃𝑖𝑟−1 ,𝜙𝜓𝑟 w̃𝑖𝑟 ,𝜙 . Denote by B̃′ the subset
of �̃� consisting of the elements 𝑥𝜙 for �̃� in B̃ and 𝜙 ∈ Irr(𝑍 (𝐻) |𝜒). We shall see below in Theorem 4.7
that B̃′ is a basis for �̃�.

Proposition 4.6. The elements w̃𝑖,𝜙 satisfy the following relations.

w̃ 𝑗 ,𝜙𝜓𝑖 w̃𝑖,𝜙 − 𝑞𝑖, 𝑗 ,𝜙w̃𝑖,𝜙w̃ 𝑗 ,𝜙𝜓𝑖 =
∑
𝑘

𝑐𝑖, 𝑗 ,𝑘𝑞′
𝑖, 𝑗 ,𝑘,𝜙w̃𝑘,𝜙 + 𝜓 𝑗 (𝑔𝑖,𝜙)

−1𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙𝑦𝑖, 𝑗𝑒𝜙 .

w̃
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . w̃𝑖,𝜙𝜓𝑖 w̃𝑖,𝜙 =
∑
𝑘

𝑑𝑖,𝑘𝑞′′
𝑖,𝑘,𝜙w̃𝑘,𝜙 + 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑝−2

𝑖
)−1 . . .

. . . 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑖 )
−𝑝+2𝜓𝑖 (𝑔𝑖,𝜙)

−𝑝+1(𝑔
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . 𝑔𝑖,𝜙𝜓𝑖𝑔𝑖,𝜙)𝑦
′′
𝑖 𝑒𝜙 .

Moreover, suppose that 𝑦𝑖, 𝑗 =
∑

�̃� ∈B̃ 𝑐𝑖, 𝑗 ,�̃� �̃� and 𝑦′′𝑖 =
∑

�̃� ∈B̃ 𝑑𝑖,�̃� �̃�. For each �̃� ∈ B̃, there exist
elements 𝑞′

𝑖, 𝑗 ,�̃� ,𝜙 and 𝑞′′
𝑖,�̃� ,𝜙 of 𝑘× such that

𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙𝑦𝑖, 𝑗𝑒𝜙 =
∑
�̃� ∈B̃

𝑞′
𝑖, 𝑗 ,�̃� ,𝜙𝑐𝑖, 𝑗 ,�̃� w̃𝜙 .

(𝑔
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . 𝑔𝑖,𝜙𝜓𝑖𝑔𝑖,𝜙)𝑦
′′
𝑖 𝑒𝜙 =

∑
�̃� ∈B̃

𝑞′′
𝑖,�̃� ,𝜙𝑑𝑖,�̃� w̃𝜙 .

Proof. Following through the proof of relation (3.9), we can replace each w with w until the sixth line,
where we have to use (4.1) for the commutator. At this point, the extra term is

𝜓 𝑗 (𝑔𝑖,𝜙)
−1𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙𝑦𝑖, 𝑗𝑒𝜙 .

Similarly, following through the proof of relation (3.10), we can replace each w with w until the
fourth line, where we have to use (4.3). At this point, the extra term is

𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑝−2
𝑖

)−1 . . . 𝜓𝑖 (𝑔𝑖,𝜙𝜓𝑖 )
−𝑝+2𝜓𝑖 (𝑔𝑖,𝜙)

−𝑝+1(𝑔
𝑖,𝜙𝜓

𝑝−1
𝑖

. . . 𝑔𝑖,𝜙𝜓𝑖𝑔𝑖,𝜙)𝑦
′′
𝑖 𝑒𝜙 .

By Lemma 3.1 and Equation 4.2, for each w = w𝑖𝑟 . . . w𝑖1 ∈ B̃ such that 𝑐𝑖, 𝑗 ,�̃� ,𝜙 ≠ 0,

𝑔 𝑗 ,𝜙𝜓𝑖𝑔𝑖,𝜙 = 𝑔𝑖𝑟 ,𝜙𝜓1...𝜓𝑟 . . . 𝑔𝑖2 ,𝜙𝜓1 𝑔𝑖1 ,𝜙𝑧
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for some 𝑧 ∈ 𝑍 (𝐻). The second assertion follows from this by the fact that for any 𝑔 ∈ 𝐻, any 𝑧 ∈ 𝑍 (𝐻),
any �̃�𝑖 and any 𝜁 ∈ Irr(𝑍 (𝐻) |𝜒), 𝑔�̃�𝑖 = 𝜓𝑖 (𝑔)�̃�𝑖𝑔 is a scalar multiple of �̃�𝑖𝑔, 𝑧𝑒𝜁 = 𝜁 (𝑧)𝑒𝜁 is a scalar
multiple of 𝑒𝜁 and 𝑔�̃�𝑖𝑒𝜁 = 𝑒𝜁 𝜓𝑖𝑔�̃�𝑖𝑒𝜙. The last assertion follows in a similar fashion from Lemma 3.1
and Equation 4.4. �

Theorem 4.7. The algebra �̃� is given as a quiver with relations 𝑘𝑄/𝐼, where Q is as in Theorem 3.11,
but with edges corresponding to the lifts w̃𝑖,𝜙 of the w𝑖,𝜙 given there. The relations are those that
follow from the structure constant relations of Proposition 4.6, together with relations saying that every
composite of at least s arrows is zero, where s is the radical length of 𝑘𝑃.

The set B̃′ is a PBW style basis of �̃�, giving dim �̃� = |𝑍 (𝐻) : 𝐻 |. There is a natural isomorphism
gr∗(�̃�) � 𝔄, sending each w̃𝑖,𝜙 to w𝑖,𝜙 .

Proof. It follows from the relations in Proposition 4.6 that the linear span of B̃′ is closed under
multiplication modulo a large enough power of the arrow ideal. The zero relations for composites of
s arrows then show that this ideal is zero, and therefore that B̃′ linearly spans �̃�. The image of an
element w̃𝑖,𝜙 in gr∗(𝑘𝐺𝑒) is equal to w𝑖,𝜙, which lies in 𝔄. Since the elements w𝑖,𝜙 of B′ are linearly
independent, it follows that the elements w̃𝑖,𝜙 of B̃′ are linearly independent, and therefore form a basis
for �̃�. This therefore induces a natural isomorphism gr∗(�̃�) � 𝔄. Since 𝔄 is generated by its degree
one elements, �̃� has the same quiver, with the lifts of the relations. �

Theorem 4.8. The multiplication in 𝑘𝐺𝑒 induces an isomorphism �̃� ⊗𝑘 𝔐 → 𝑘𝐺𝑒.

Proof. By Theorem 4.7, we have dim(�̃�) = |𝑍 (𝐻) : 𝑍 | · |𝑃 |. So this is now proved in the same way as
Theorem 3.14. �

Corollary 4.9. We have 𝑘𝐺𝑒 � Mat𝑚(�̃�), where 𝑚 =
√
|𝐻 : 𝑍 (𝐻) |, so that �̃� is the basic algebra of

𝑘𝐺𝑒.

Remark 4.10. As in Remark 3.12, if we perform the computations of this section with the group algebra
of the semidirect product 𝑃 � 𝑍 (𝐻)/𝑍 instead of 𝑘𝐺𝑒, the results look similar except with different
scalars. So we can see �̃� as a quantum deformation of the algebra 𝑘 (𝑃 � 𝑍 (𝐻)/𝑍). This observation,
together with Theorems 4.7 and 4.8, complete the proof of Theorem 1.1.

We shall see some explicit examples of the ungrading of the relations in Section 5.

5. Example: P extraspecial of order 𝑝3 and exponent p

Let k have characteristic p, an odd prime, and P be an extraspecial p-group of order 𝑝3 and exponent p,
with presentation

𝑃 = 〈𝑔, ℎ, 𝑐 | 𝑔𝑝 = ℎ𝑝 = 𝑐𝑝 = 1, [𝑔, ℎ] = 𝑐, [𝑔, 𝑐] = [ℎ, 𝑐] = 1〉.

We denote by H the quaternion group of order 8, given by a presentation

𝐻 = 〈𝑠, 𝑡 | 𝑠4 = 1, 𝑠2 = 𝑡2, 𝑡𝑠 = 𝑠−1𝑡〉 � 𝑄8.

Set 𝑍 = 〈𝑠2〉; this is the centre of H. We consider the following action of H on P and set 𝐺 = 𝑃 � 𝐻.

𝑔𝑠 = 𝑔−1, 𝑔𝑡 = 𝑔, ℎ𝑠 = ℎ, ℎ𝑡 = ℎ−1

It follows that 𝑐𝑠 = 𝑐𝑡 = 𝑐−1, and Z acts trivially on P. This action lifts the action of 𝐶2 × 𝐶2 on
𝐶𝑝 × 𝐶𝑝 � 𝑃/〈𝑐〉, where here the nontrivial element of each copy of 𝐶2 acts as inversion on the
corresponding copy 𝐶𝑝 . The group algebra 𝑘𝐺 has two blocks, namely the principal block 𝑒0 = 1

2 (1+𝑠2)

and the nonprincipal block 𝑒 = 1
2 (1 − 𝑠2) corresponding to the faithful central character 𝜒 : 𝑍 → 𝑘×

given by 𝜒(𝑠2) = −1. We shall be interested in 𝑘𝐺𝑒.
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Remark 5.1. Let 𝑥 = 𝑔 − 1, 𝑦 = ℎ − 1, 𝑧 = 𝑐 − 1 in 𝑘𝑃. Then

𝑧 = (𝑥𝑦 − 𝑦𝑥) (1 + 𝑥)−1 (1 + 𝑦)−1 (5.2)

and a presentation for 𝑘𝑃 is given by generators x and y, and relations saying that 𝑥𝑝 = 0, 𝑦𝑝 = 0 and the
element z defined by (5.2) is central with pth power equal to zero. Note that the element (1+𝑥)−1 (1+𝑦)−1

is congruent to 1 modulo 𝐽 (𝑘𝑃), and so in the associated graded gr∗(𝑘𝑃), this term in (5.2) may be
ignored. This is used in the proof of Theorem 1.2 that follows.

Proof of Theorem 1.2. Denote by x, y, z the images of g, h, c in Jen∗(𝑃), respectively. (These elements
are mapped to the images of 𝑔−1, ℎ−1, 𝑐−1 in gr∗(𝑘𝑃) under the canonical map Jen∗(𝑃) → gr∗(𝑘𝑃)).
The three dimensional p-restricted Lie algebra Jen∗(𝑃) is spanned by the elements x, y in degree one
together with 𝑧 = [𝑥, 𝑦] (by the previous Remark) in degree two, satisfying [𝑥, 𝑦] = [𝑦, 𝑧] = 0. The
p-restriction map given by 𝑥 [𝑝] = 𝑦 [𝑝] = 𝑧 [𝑝] = 0. Its 𝑝3 dimensional universal enveloping algebra
UJen∗(𝑃) is isomorphic to gr∗(𝑘𝑃). This shows the first part of Theorem 1.2.

The action of H on Jen∗(𝑃) is given by

𝑥𝑠 = −𝑥, 𝑥𝑡 = 𝑥, 𝑦𝑠 = 𝑦, 𝑦𝑡 = −𝑦, 𝑧𝑠 = −𝑧, 𝑧𝑡 = −𝑧.

The elements x, y and z are eigenvectors for H on Jen∗(𝑃). So we set 𝑤1 = 𝑥, 𝑤2 = 𝑦, 𝑤3 = 𝑧. The
characters 𝜓𝑖 of H satisfying 𝑔𝑤𝑖𝑔

−1 = 𝜓𝑖 (𝑔)𝑤𝑖 for 𝑔 ∈ 𝐻 are given as follows.

𝜓1 (𝑠) = −1, 𝜓1 (𝑡) = 1, 𝜓2(𝑠) = 1, 𝜓2(𝑡) = −1, 𝜓3 (𝑠) = −1, 𝜓3 (𝑡) = −1.

Note that the relation [𝑥, 𝑦] = 𝑧 in Jen∗(𝑃) implies 𝜓1𝜓2 = 𝜓3.
Denoting as above by 𝑒 = 1

2 (1 − 𝑠2) the nonprincipal block of 𝑘𝐺, the block algebra 𝑘𝐺𝑒 has a
unique isomorphism class of simple modules. Indeed, e corresponds to the unique 2-dimensional simple
𝑘𝐻-module, and hence the semisimple quotient of 𝑘𝐺𝑒 is the matrix algebra 𝔐 = 𝑘𝐻𝑒 � Mat2 (𝑘).

Since 𝑍 = 𝑍 (𝐻), there is only one central character of 𝑍 (𝐻) lying above 𝜒, namely 𝜙 = 𝜒, and
𝜉𝜙 = 1. The map 𝜌 : 𝐻/𝑍 (𝐻) → Hom(𝐻/𝑍 (𝐻), 𝑘×) takes s to 𝜙2, t to 𝜙1 and 𝑠𝑡 to 𝜙3. Thus, 𝑔1,𝜙 = 𝑡,
𝑔2,𝜙 = 𝑠 and 𝑔3,𝜙 = 𝑠𝑡; these are only well defined up to multiplication by 𝑍 (𝐻).

The block algebra gr∗(𝑘𝐺𝑒) of gr∗(𝑘𝐺) also has one isomorphism class of simple modules, namely
the same 2-dimensional simple 𝑘𝐻-module as above, and by Theorem 3.14 and Corollary 3.15, we have

gr∗(𝑘𝐺𝑒) � 𝔄 ⊗𝑘 𝔐 � Mat2(𝔄),

where 𝔐 = 𝑘𝐻𝑒 � Mat2(𝑘) and 𝔄 = (gr∗(𝑘𝐺𝑒))𝐻 . The algebra 𝔄 contains elements 𝑔1,𝜙𝑤1𝑒 = 𝑡𝑥𝑒,
𝑔2,𝜙𝑤2𝑒 = 𝑠𝑦𝑒 and 𝑔3,𝜙𝑤3𝑒 = 𝑠𝑡𝑧𝑒. The constants are given by 𝑞1,2,𝜙 = −1 and 𝑞′

1,2,3,𝜙 = −1, so these
satisfy the following relation:

(𝑡𝑥𝑒) (𝑠𝑦𝑒) + (𝑠𝑦𝑒) (𝑡𝑥𝑒) = −𝑡𝑠𝑥𝑦𝑒 − 𝑠𝑡𝑦𝑥𝑒 = 𝑠𝑡 (𝑥𝑦 − 𝑦𝑥)𝑒 = 𝑠𝑡𝑧𝑒

Similar computations give

(𝑡𝑥𝑒) (𝑠𝑡𝑧𝑒) + (𝑠𝑡𝑧𝑒) (𝑡𝑥𝑒) = 0, (𝑠𝑦𝑒) (𝑠𝑡𝑧𝑒) + (𝑠𝑡𝑧𝑒) (𝑠𝑦𝑒) = 0.

Writing x = 𝑡𝑥𝑒, y = 𝑠𝑦𝑒 and z = 𝑠𝑡𝑧𝑒, we therefore have

xy + yx = z, xz + zx = 0, yz + zy = 0, x𝑝 = 0, y𝑝 = 0, z𝑝 = 0.

This is a presentation for the basic algebra 𝔄 of gr∗(𝑘𝐺𝑒), with generators x and y, and with z defined
as xy + yx. This proves Theorem 1.2. �
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Remark 5.3. The first part of the above proof shows that Jen∗(𝑃) is isomorphic to the p-restricted Lie
algebra of 3 × 3 matrices of the form

( 0 ∗ ∗
0 0 ∗
0 0 0

)
.

In order to prove Theorem 1.3, ungrading the algebra is our next task. The problem is that the
generators 𝑔 − 1 and ℎ − 1 of 𝑘𝑃 are not well suited to dealing with automorphisms. We have an action
of F×𝑝 × F×𝑝 on P where (𝑖, 𝑗) sends g to 𝑔𝑖 and h to ℎ 𝑗 . The commutator 𝑐 = [𝑔, ℎ] is sent to 𝑐𝑖 𝑗 . Set

𝑥 = −

𝑝−1∑
𝑖=1

𝑔𝑖/𝑖, �̃� = −

𝑝−1∑
𝑗=1

ℎ 𝑗/ 𝑗 .

Lemma 5.4. We have 𝑥 ≡ 𝑔 − 1(mod 𝐽2(𝑘𝑃)) and �̃� ≡ ℎ − 1(mod 𝐽2 (𝑘𝑃)).

Proof. Since 𝑝 is odd,
∑𝑝−1

𝑖=1 1/𝑖 =
∑𝑝−1

𝑖=1 𝑖 = 0 in k whence 𝑥 = −
∑𝑝−1

𝑖=1 (𝑔𝑖 − 1)/𝑖. Now the assertion for
𝑥 follows since (𝑔𝑖 − 1)/𝑖 ≡ 𝑔 − 1(mod 𝐽2(𝑘𝑃)) for any i, 1 � 𝑖 � 𝑝 − 1. The proof for �̃� is similar. �

Note that 𝑥 an eigenvector in the (1, 0) eigenspace and �̃� an eigenvector in the (0, 1) eigenspace of
F
×
𝑝 × F

×
𝑝 . Then we set 𝑧 = [𝑥, �̃�] = 𝑥�̃� − �̃�𝑥, an eigenvector in the (1, 1) eigenspace. By Lemma 5.4 and

the proof of Theorem 1.2, 𝑘𝑃 has a PBW basis consisting of monomials in the 𝑥, �̃� and 𝑧. Moreover, a
PBW basis element 𝑥𝑖 �̃� 𝑗 𝑧𝑘 of 𝑘𝑃 with 0 � 𝑖, 𝑗 , 𝑘 < 𝑝 is an eigenvector in the (𝑖 + 𝑘, 𝑗 + 𝑘) eigenspace,
where 𝑖 + 𝑘 and 𝑗 + 𝑘 are read modulo 𝑝 − 1.

Lemma 5.5. We have 𝑧𝑝 = 0.

Proof. The element 𝑧𝑝 is an eigenvector in the (1, 1) eigenspace. Further, 𝑧𝑝 has image 𝑧𝑝 = 0 ∈

gr2𝑝 (𝑘𝑃), hence 𝑧𝑝 is in 𝐽2𝑝+1(𝑘𝑃). The PBW basis elements in this eigenspace have 𝑖 + 𝑘 and 𝑗 + 𝑘
congruent to one modulo 𝑝 − 1 and at most 2𝑝 − 2, and hence at most p, but then 𝑖 + 𝑗 + 2𝑘 � 2𝑝, so
the basis element is not in 𝐽2𝑝+1(𝑘𝑃). It follows that the (1, 1) eigenspace in 𝐽2𝑝 (𝑘𝑃 + 1) is zero and
so 𝑧𝑝 = 0. �

Lemma 5.6. The element [𝑥, 𝑧] is a linear combination of the elements 𝑧�̃�𝑝−2𝑧 ∈ 𝐽 𝑝+2(𝑘𝑃) and
𝑥𝑖 �̃�2𝑖−1𝑥𝑖𝑧𝑝+1−2𝑖 ∈ 𝐽2𝑝+1(𝑘𝑃) with 1 � 𝑖 � (𝑝 − 1)/2. Similarly, [ �̃�, 𝑧] is a linear combination of the
elements 𝑧𝑥𝑝−2𝑧 ∈ 𝐽 𝑝+2(𝑘𝑃) and �̃�𝑖𝑥2𝑖−1 �̃�𝑖𝑧𝑝+1−2𝑖 ∈ 𝐽2𝑝+1(𝑘𝑃) with 1 � 𝑖 � (𝑝 − 1)/2.

Proof. We prove the first statement. The proof of the second is identical, with the roles of 𝑥 and �̃�
reversed.

The element [𝑥, 𝑧] has image [𝑥, 𝑧] = 0 in gr3(𝑘𝑃) and hence lies in 𝐽4 (𝑘𝑃). It is in the (2, 1)
eigenspace, so we start by identifying the PBW basis elements of 𝐽4 (𝑘𝑃) in this eigenspace. These are
�̃�𝑝−2𝑧2 and 𝑥�̃�𝑝−1𝑧 ∈ 𝐽 𝑝+2(𝑘𝑃) and 𝑥𝑖+1 �̃�𝑖𝑧𝑝−𝑖 ∈ 𝐽2𝑝+1(𝑘𝑃) with 1 � 𝑖 � 𝑝 − 2.

However, we also need to make use of symmetry. Let 𝜎 be the composition of the automorphism
of 𝑘𝑃 which inverts g and h (and hence fixes c) with the antiautomorphism of 𝑘𝑃 which inverts all
elements of P. Then 𝜎 fixes 𝑥 and �̃�, reverses multiplication in 𝑘𝑃 and negates 𝑧. The point is that
[𝑥, 𝑧] = 𝑥2 �̃�−2𝑥�̃�𝑥+ �̃�𝑥2 is fixed by 𝜎, whereas 𝜎 does not fix all elements of the (2, 1) eigenspace. With
this in mind, we modify the PBW basis of this eigenspace so that the action of 𝜎 is more transparent.

The element �̃�𝑝−2𝑧2, for example, is not fixed by 𝜎, even though it is fixed modulo 𝐽 𝑝+3(𝑘𝑃). So
instead, we use the element 𝑧�̃�𝑝−2𝑧, which is equivalent to it modulo 𝐽 𝑝+3(𝑘𝑃), and therefore just as good
as part of a PBW basis of 𝑘𝑃, but is fixed by 𝜎. Since 𝜎(𝑥�̃�𝑝−1𝑧) ≡ −𝑥�̃�𝑝−1𝑧− �̃�𝑝−2𝑧2(mod 𝐽 𝑝+3(𝑘𝑃)),
the element 𝑥�̃�𝑝−1𝑧 is not involved in the expression for [𝑥, 𝑧]. So [𝑥, 𝑧] is congruent to a multiple of
𝑧�̃�𝑝−2𝑧 modulo 𝐽2𝑝+1(𝑘𝑃).

For the linear span of the elements 𝑥𝑖+1 �̃�𝑖𝑧𝑝−𝑖 , since there are no (2, 1) eigenvectors lower in the
radical series, reordering the terms in a monomial has the same effect as inUJen∗(𝑘𝑃). So we can choose
a basis consisting of the elements 𝑥𝑖 �̃�2𝑖−1𝑥𝑖𝑧𝑝+1−2𝑖 (1 � 𝑖 � (𝑝 − 1)/2) and the elements �̃�𝑖𝑥2𝑖+1 �̃�𝑖𝑧𝑝−2𝑖

(1 � 𝑖 � (𝑝 − 3)/2). The former are +1 eigenvectors of 𝜎, while the latter are −1 eigenvectors. So the
expression for [𝑥, 𝑧] only involves the former. �
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By Lemma 5.6, we can write

[𝑥, 𝑧] = 𝑎0𝑧�̃�𝑝−2𝑧 + 𝑎1𝑥�̃�𝑥𝑧𝑝−1 + 𝑎2𝑥2 �̃�3𝑥2𝑧𝑝−3 + · · · + 𝑎 (𝑝−1)/2𝑥
𝑝−1

2 �̃�𝑝−2𝑥
𝑝−1

2 𝑧2, (5.7)

[ �̃�, 𝑧] = −𝑎0𝑧𝑥𝑝−2𝑧 − 𝑎1 �̃�𝑥 �̃�𝑧𝑝−1 − 𝑎2 �̃�2𝑥3 �̃�2𝑧𝑝−3 − · · · − 𝑎 (𝑝−1)/2𝑥
𝑝−1

2 �̃�𝑝−2𝑥
𝑝−1

2 𝑧2. (5.8)

Here, we have used the symmetry of 𝑘𝑃, which swaps 𝑥 and �̃� and negates 𝑧, to compare the coefficients
in (5.7) and those in (5.8).

Remark 5.9. With the aid of the computer algebra system Magma [5], we have determined the relation
(5.7) for small p as follows:

𝑝 = 3 : [𝑥, 𝑧] = 𝑧�̃�𝑧,

𝑝 = 5 : [𝑥, 𝑧] = 𝑧�̃�3𝑧 + 2𝑥�̃�𝑥𝑧4,

𝑝 = 7 : [𝑥, 𝑧] = 𝑧�̃�5𝑧 + 4𝑥�̃�𝑥𝑧6 + 2𝑥2 �̃�3𝑥2𝑧4.

One might surmise that 𝑎0 = 1 and 𝑎 (𝑝−1)/2 = 0, but we have not proved that, nor have we spotted the
general pattern of the coefficients.

Theorem 5.10. A presentation for 𝑘𝑃 is given by generators 𝑥, �̃�, 𝑧 with the relations (5.7) and (5.8)
together with

𝑥𝑝 = �̃�𝑝 = 𝑧𝑝 = 0, [𝑥, �̃�] = 𝑧,

and relations saying that all words of length at least 4𝑝 − 3 in 𝑥 and �̃� are equal to zero.

Proof. These relations hold in 𝑘𝑃 by Lemmas 5.5 and 5.6 and the fact that 𝐽4𝑝−3(𝑘𝑃) = 0. Let A be the
algebra defined by these generators and relations. Then we have a surjective map A → 𝑘𝑃 taking 𝑥, �̃�
and 𝑧 to the elements with the same names. This induces a map gr∗A → gr∗𝑘𝑃. The relations (5.7) and
(5.8) imply that the images x, y and z in gr∗A of 𝑥, �̃� and 𝑧 in A satisfy [𝑥, 𝑧] = 0 and [𝑦, 𝑧] = 0. Thus,
all the relations in UJen∗(𝑃) hold in gr∗A, and gr∗A → gr∗𝑘𝑃 is an isomorphism. Since the radical of
A is nilpotent, this implies that A → 𝑘𝑃 is an isomorphism. �

Recall from the proof of Theorem 1.2 that setting x = 𝑡𝑥𝑒, y = 𝑠𝑦𝑒 and z = 𝑠𝑡𝑧𝑒 in gr∗(𝑘𝐺𝑒), we have
that the algebra 𝔄 is generated by x, y and z centralises 𝔐 in UJen∗(𝑃) � 𝑘𝐻. Further, these elements
satisfy the relations

x𝑝 = 0, y𝑝 = 0, xy + yx = z, xz + zx = 0, yz + zy = 0

(and these imply that z𝑝 = 0).
In 𝑘𝐺𝑒, we set x̃ = 𝑡𝑥𝑒, ỹ = 𝑠�̃�𝑒 and z̃ = 𝑠𝑡𝑧𝑒. The algebra �̃� generated by x̃, ỹ and z̃ centralises 𝔐

in 𝑘𝐺𝑒. These elements satisfy the relations

x̃𝑝 = ỹ𝑝 = z̃𝑝 = 0, x̃ỹ + ỹx̃ = z̃

together with the following quantised versions of (5.7) and (5.8)

x̃z̃ + z̃x̃ = (−1)
𝑝−1

2
(
𝑎0z̃ỹ𝑝−2z̃ − 𝑎1x̃ỹx̃z̃𝑝−1 − 𝑎2x̃2ỹ3x̃2z̃𝑝−3 − · · · − 𝑎 (𝑝−1)/2x̃

𝑝−1
2 ỹ𝑝−2x̃

𝑝−1
2 z̃2) ,

ỹz̃ + z̃ỹ = (−1)
𝑝−1

2
(
𝑎0z̃x̃𝑝−2z̃ − 𝑎1ỹx̃ỹz̃𝑝−1 − 𝑎2ỹ2x̃3ỹ2z̃𝑝−3 − · · · − 𝑎 (𝑝−1)/2ỹ

𝑝−1
2 x̃𝑝−2ỹ

𝑝−1
2 z̃2) ,

together with relations saying that all words of length at least 4𝑝 − 3 in x̃ and ỹ are equal to zero.
Using Magma [5], in the case 𝑝 = 3, we have succeeded in finding a short presentation for 𝑘𝑃 in

terms of the generators 𝑥 and �̃�. In this case, we have 𝑥 = 𝑔−1 − 𝑔 and �̃� = ℎ−1 − ℎ. Defining 𝑧 = [𝑥, �̃�],
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the following relations hold in 𝑘𝑃.

𝑥3 =0, �̃�3 = 0, [𝑥, �̃�] = 𝑧, [𝑥, 𝑧] = 𝑧�̃�𝑧, [ �̃�, 𝑧] = −𝑧𝑥𝑧. (5.11)

It follows from these relations that 𝑧3 = 0, so it is not necessary to include this in the relations, and hence
the algebra defined by these relations has dimension 27 and is isomorphic to 𝑘𝑃. This is the content of
the next theorem. Note, however, that the proof is difficult, so for some purposes it is better to adjoin
𝑧3 = 0 to the above presentation. We restate and prove the first part of Theorem 1.3.

Theorem 5.12. Suppose that 𝑝 = 3. The generators 𝑥, �̃� and 𝑧 and the relations (5.11) give a presentation
for 𝑘𝑃.

Proof. Since the given elements of 𝑘𝑃 satisfy these relations, it suffices to prove that the algebra defined
by the relations has dimension at most 27. The crucial point is to prove that 𝑧3 = 0.

It is more convenient to extend the field so that it has a square root of −1, which we denote i . Then
we set 𝑎 = 𝑥 + i �̃�, 𝑏 = 𝑥 − i �̃�, 𝑐 = i 𝑧, and the presentation becomes

𝑎3 = [𝑏, 𝑐] = 𝑐𝑏𝑐, 𝑏3 = −[𝑎, 𝑐] = 𝑐𝑎𝑐, [𝑎, 𝑏] = 𝑐,

and we must show that 𝑐3 = 0.
We have

(1 + 𝑐)𝑎(1 − 𝑐) = 𝑎,

(1 − 𝑐)𝑏(1 + 𝑐) = 𝑏,

and so

(1 + 𝑐)𝑎𝑏 = (1 + 𝑐)𝑎(1 − 𝑐)𝑏(1 + 𝑐) = 𝑎𝑏(1 + 𝑐).

Therefore c commutes with 𝑎𝑏 and with 𝑏𝑎.
Next,

𝑐𝑎𝑏 = 𝑎𝑐𝑏 + 𝑐𝑎𝑐𝑏 = 𝑎𝑏𝑐 − 𝑎𝑐𝑏𝑐 + 𝑐𝑎𝑐𝑏,

and since 𝑐𝑎𝑏 = 𝑎𝑏𝑐, it follows that c commutes with 𝑎𝑐𝑏. Thus, we have

𝑐𝑏𝑐𝑎 = 𝑎4 = 𝑎𝑐𝑏𝑐 = 𝑐𝑎𝑐𝑏 = 𝑏4 = 𝑏𝑐𝑎𝑐. (5.13)

Since we are in characteristic three, we also have

[𝑎, [𝑎, 𝑐]] = −[𝑎, 𝑐𝑎𝑐] = −[𝑎, 𝑐]𝑎𝑐 − 𝑐[𝑎, 𝑎]𝑐 − 𝑐𝑎[𝑎, 𝑐] = 𝑐𝑎𝑐𝑎𝑐 + 𝑐𝑎𝑐𝑎𝑐 = −𝑐𝑎𝑐𝑎𝑐

and so

[𝑎3, 𝑐] = [𝑎, [𝑎, [𝑎, 𝑐]]] = −[𝑎, 𝑐𝑎𝑐𝑎𝑐] = −[𝑎, 𝑐]𝑎𝑐𝑎𝑐 − 𝑐𝑎[𝑎, 𝑐]𝑎𝑐 − 𝑐𝑎𝑐𝑎[𝑎, 𝑐] = −3𝑐𝑎𝑐𝑎𝑐𝑎𝑐 = 0.

Thus c also commutes with 𝑎3:

𝑎3𝑐 = 𝑐𝑎3. (5.14)

Next, using (5.13) we have

𝑐3 = 𝑐𝑎𝑏𝑐 − 𝑐𝑏𝑎𝑐 = 𝑎𝑐𝑏𝑐 + 𝑐𝑎𝑐𝑏𝑐 − 𝑐𝑏𝑐𝑎 + 𝑐𝑏𝑐𝑎𝑐 = 𝑎4 + 𝑏4𝑐 − 𝑏4 + 𝑎4𝑐 (5.15)
= −𝑎4𝑐 = −𝑏4𝑐 = −𝑐𝑎𝑐𝑏𝑐 = −𝑐𝑏𝑐𝑎𝑐 = −𝑐𝑎4 = −𝑐𝑏4.
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Using (5.14) and (5.15), we have

𝑎4𝑐 = 𝑐𝑎4 = 𝑎3𝑐𝑎 = 𝑎4𝑐 + 𝑎3𝑐𝑎𝑐 = 𝑎4𝑐 + 𝑐𝑎4𝑐 = 𝑎4𝑐 − 𝑐4

and so 𝑐4 = 0.
The fact that 𝑐4 = 0 enables us to write

𝑐𝑎 = 𝑎𝑐 + 𝑐𝑎𝑐 = 𝑎𝑐 + 𝑎𝑐2 + 𝑐𝑎𝑐2 = 𝑎𝑐 + 𝑎𝑐2 + 𝑎𝑐3 + 𝑐𝑎𝑐3 = 𝑎(𝑐 + 𝑐2 + 𝑐3) (5.16)

𝑐𝑏 = 𝑏𝑐 − 𝑐𝑏𝑐 = 𝑏𝑐 − 𝑏𝑐2 + 𝑐𝑏𝑐2 = 𝑏𝑐 − 𝑏𝑐2 + 𝑏𝑐3 − 𝑐𝑏𝑐3 = 𝑏(𝑐 − 𝑐2 + 𝑐3). (5.17)

We can use these to move copies of c to the end of expressions, at the expense of accumulating higher
powers of c. Applying this to 𝑎6 = 𝑐𝑏𝑐2𝑏𝑐, we get 𝑏2 (𝑐4 + higher powers of 𝑐), so we get 𝑎6 = 0.
Similarly, we get 𝑏6 = 0. Then when we do the same with (𝑎𝑏)9, moving b past a using 𝑏𝑎 = 𝑎𝑏 − 𝑐,
we get

𝑎9𝑏9 + 𝑎8𝑏8𝑐 𝑓1(𝑐) + 𝑎7𝑏7𝑐2 𝑓2(𝑐) + 𝑎6𝑏6𝑐3 𝑓3(𝑐) + 𝑎5𝑏5𝑐4 𝑓4(𝑐) + . . .

for suitable polynomials 𝑓𝑖 (𝑐). Since 𝑎6 = 𝑏6 = 𝑐4 = 0, every term here is zero, and so (𝑎𝑏)9 = 0.
Now using (5.15) and the same method, we have

𝑐3 = −𝑐𝑎𝑐𝑏𝑐 = −𝑐𝑎𝑏(𝑐 − 𝑐2 + 𝑐3)𝑐 = −𝑎𝑏𝑐(𝑐 − 𝑐2 + 𝑐3)𝑐 = −𝑎𝑏𝑐3,

and so (1 + 𝑎𝑏)𝑐3 = 0. Since 𝑎𝑏 is nilpotent, (1 + 𝑎𝑏) is invertible, so this implies that 𝑐3 = 0.
The original relations together with (5.16), (5.17) and 𝑐3 = 0 allow us to rewrite every element as a

linear combination of the elements 𝑎𝑖𝑏 𝑗𝑐𝑘 with 0 � 𝑖, 𝑗 , 𝑘 < 3, so the algebra has dimension at most
27, and we are done. �

Proof of Theorem 1.3. The relations for 𝑘𝑃 are proved in Theorem 5.12. As above, using 𝑥 = 𝑔−1 − 𝑔,
�̃� = ℎ−1 − ℎ and 𝑧 = [𝑥, �̃�] to obtain generators for the basic algebra for 𝑘𝐺𝑒, we set x̃ = 𝑡𝑥𝑒 and ỹ = 𝑠�̃�𝑒,
z̃ = 𝑠𝑡𝑧𝑒. These satisfy

x̃3 = 0, ỹ3 = 0, x̃ỹ + ỹx̃ = z̃, x̃z̃ + z̃x̃ = −z̃ỹz̃, ỹz̃ + z̃ỹ = −z̃x̃z̃.

Furthermore, the algebra defined by these relations again has dimension 27 and is hence isomorphic to
the basic algebra of 𝑘𝐺𝑒. �

Remark 5.18. The above relations for 𝑘𝐺𝑒 are a quantised version of the relations for 𝑘𝑃. These
relations imply that z̃3 = 0, and adjoining this relation makes the presentation easier to work with if
desired.

These presentations can be lifted to give integral presentations. The algebra O𝑃 has a presentation
with corresponding generators 𝑥, �̂� and 𝑧 subject to

𝑥3 + 3𝑥 = 0, �̂�3 + 3�̂� = 0, [𝑥, �̂�] = 𝑧, 2[𝑥, 𝑧] = −𝑧�̂�𝑧, 2[ �̂�, 𝑧] = 𝑧𝑥𝑧,

while O𝐺𝑒 is generated by x̂, ŷ and ẑ subject to

x̂3 = 3x̂, ŷ3 = 3ŷ, x̂ŷ + ŷx̂ = ẑ, 2x̂ẑ + 2ẑx̂ = ẑŷẑ, 2ŷẑ + 2ẑŷ = ẑx̂ẑ.

The expressions for 𝑧3 in O𝑃 and for ẑ3 in O𝐺𝑒, lifting the fact that they cube to zero modulo three,
are ugly even though they follow from the presentations above.
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6. Example: 21+4: 31+2 in characteristic two

The examples in the last section were at odd primes for extraspecial groups of order 𝑝3. In this section
we give an example in characteristic two with an extraspecial group of order 25.

Let P be an extraspecial group 21+4 which is a central product of two copies of the quaternion group
of order eight, and let H be an extraspecial group 31+2 of exponent three. We let the centre 𝑍 � Z/3 of H
act trivially on P, we let the elementary abelian quotient act as the automorphisms of order three on the
two quaternion central factors of P and we set 𝐺 = 𝑃�𝐻. Thus, the quotient 𝐺/𝑍 � 𝑆𝐿(2, 3) ◦𝑆𝐿(2, 3)
is a central product of two copies of the group 𝑆𝐿(2, 3) of order 24.

More precisely, we let

𝑃 = 〈𝑔1, 𝑔2, ℎ1, ℎ2, 𝑐 | 𝑔2
1 = ℎ2

1 = [𝑔1, ℎ1] = 𝑔2
2 = ℎ2

2 = [𝑔2, ℎ2] = 𝑐,

[𝑔1, 𝑐] = [𝑔2, 𝑐] = [ℎ1, 𝑐] = [ℎ2, 𝑐] = [𝑔1, 𝑔2] = [𝑔1, ℎ2] = [ℎ1, 𝑔2] = [ℎ1, ℎ2] = 𝑐2 = 1〉,
𝐻 = 〈𝑠1, 𝑠2, 𝑡 | 𝑠3

1 = 𝑠3
2 = 1, [𝑠1, 𝑠2] = 𝑡, [𝑠1, 𝑡] = [𝑠2, 𝑡] = 𝑡3 = 1〉.

Let H act on P with 𝑍 = 〈𝑡〉 acting trivially, and

𝑠1𝑔1𝑠−1
1 = ℎ1, 𝑠1ℎ1𝑠−1

1 = 𝑔1ℎ1, 𝑠1𝑔2𝑠−1
1 = 𝑔2, 𝑠1ℎ2𝑠−1

1 = ℎ2, 𝑠1𝑐𝑠−1
1 = 𝑐,

𝑠2𝑔1𝑠−1
2 = 𝑔1, 𝑠2ℎ1𝑠−1

2 = ℎ1, 𝑠2𝑔2𝑠−1
2 = ℎ2, 𝑠2ℎ2𝑠−1

2 = 𝑔2ℎ2, 𝑠2𝑐𝑠−1
2 = 𝑐.

Let k be a field of characteristic two containing F4 = {0, 1, 𝜔, �̄�}. A basis of eigenvectors in gr1 (𝑘𝑃) is
given by

𝑥𝑖 = �̄�(𝑔𝑖 − 1) + 𝜔(ℎ𝑖 − 1), 𝑦𝑖 = 𝜔(𝑔𝑖 − 1) + �̄�(ℎ𝑖 − 1) (𝑖 = 1, 2).

These give the following presentation for gr∗(𝑘𝑃).

𝑥2
𝑖 = 0, 𝑦2

𝑖 = 0, [𝑥1, 𝑥2] = [𝑦1, 𝑦2] = [𝑥1, 𝑦2] = [𝑥2, 𝑦1] = 0, [𝑥1, 𝑦1] = [𝑥2, 𝑦2] .

A lift of 𝑥𝑖 and 𝑦𝑖 to eigenvectors complementing 𝐽2 (𝑘𝑃) in 𝐽 (𝑘𝑃) is given by the elements

𝑥𝑖 = 𝜔𝑔𝑖 + �̄�ℎ𝑖 + 𝑔𝑖ℎ𝑖 , �̃�𝑖 = �̄�𝑔𝑖 + 𝜔ℎ𝑖 + 𝑔𝑖ℎ𝑖 (𝑖 = 1, 2).

The relations lift to

𝑥2
𝑖 = �̃�𝑖𝑥𝑖 �̃�𝑖 , �̃�2

𝑖 = 𝑥𝑖 �̃�𝑖𝑥𝑖 , 𝑥4
𝑖 = 0 (𝑖 = 1, 2),

[𝑥1, 𝑥2] = [ �̃�1, �̃�2] = [𝑥1, �̃�2] = [𝑥2, �̃�1] = 0, [𝑥1, �̃�1] + 𝑥3
1 = [𝑥2, �̃�2] + 𝑥3

2

(both sides in the last relation are equal to (1 + 𝑐)). Using the radical filtration, it is not hard to check
that these relations define a k-algebra of dimension at most 32, which is therefore isomorphic to 𝑘𝑃.

The action of H on 𝑘𝑃 with respect to these generators is given by

𝑔𝑥𝑖𝑔
−1 = 𝜓𝑖 (𝑔)

−1𝑥𝑖 , 𝑔�̃�𝑖𝑔
−1 = 𝜓𝑖 (𝑔) �̃�𝑖 (𝑔 ∈ 𝐻)

where 𝜓1 (𝑠1) = 𝜓2(𝑠2) = 𝜔, 𝜓1 (𝑠2) = 𝜓2 (𝑠1) = 1.
Set

𝑒0 = 1 + 𝑡 + 𝑡2, 𝑒 = 1 + �̄�𝑡 + 𝜔𝑡2, 𝑒 = 1 + 𝜔𝑡 + �̄�𝑡2.

Then 𝑘𝐺 has three blocks: the principal block 𝑘𝐺𝑒0 and two nonprincipal blocks 𝑘𝐺𝑒 and 𝑘𝐺𝑒. We
examine the nonprincipal block 𝑘𝐺𝑒; the other is similar.
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We have 𝑠1𝑠2𝑒 = 𝜔𝑠2𝑠1𝑒. We set

x̃1 = 𝑠2𝑥1𝑒, x̃2 = 𝑠−1
1 𝑥2𝑒, ỹ1 = 𝑠−1

2 �̃�1𝑒, ỹ2 = 𝑠1 �̃�2𝑒.

These commute with 𝔐 = 𝑘𝐻𝑒 and generate the subalgebra 𝔄, so that 𝑘𝐺𝑒 � Mat3 (𝔄). They satisfy
the relations:

x̃2
𝑖 = ỹ𝑖 x̃𝑖 ỹ𝑖 , ỹ2

𝑖 = x̃𝑖 ỹ𝑖 x̃𝑖 , x̃4
𝑖 = 0 (𝑖 = 1, 2),

x̃1x̃2 = �̄�x̃2x̃1, x̃1ỹ2 = 𝜔ỹ2x̃1,

ỹ1x̃2 = 𝜔x̃2ỹ1, ỹ1ỹ2 = �̄�ỹ2ỹ1,

[x̃1, ỹ1] + x̃3
1 = [x̃2, ỹ2] + x̃3

2

(both sides in the last relation are equal to (1 + 𝑐)𝑒). These are identical to the relations for 𝑘𝑃 apart
from the commutation relations, which have been quantised by the introduction of factors 𝜔 and �̄�.

7. Appendix: Errata

The present paper supersedes most of our previous paper [4]. In that paper, there are a number of minor
errors, mostly in the calculations in Section 4, which have been corrected in the present work. We give
a list of those errors in [4].

In the statements of Theorem 1.2 and Corollary 1.3, it should read ‘. . .quantised version of
𝑘 (𝑃 � 𝑍 (𝐻)/𝑍)’, not ‘. . .of 𝑘 (𝑃 � 𝐿)’.

In the third line of the proof of Proposition 3.1, insert the word ‘abelian’ between ‘maximal’ and
‘subgroup’ (as is done correctly in line 2 and line 4 of that proof).

On page 1441, in the third line from the bottom, insert faithful:

‘. . . and a faithful linear character 𝜒 : 𝑍 → 𝑘×. . . ’

On page 1443, in the first line, 𝜌(𝑔) : ℎ ↦→ 𝜒([ℎ, 𝑔]). The display on the third line should read

�̄� : 𝐻/𝑍 (𝐻) → Hom(𝐻/𝑍 (𝐻), 𝑘×)

On page 1444, line four should begin ‘where 𝜌(𝑔𝑖,𝜙) (ℎ) = 𝜒([ℎ, 𝑔𝑖,𝜙])’. The third line of the proof
of Lemma 4.8 should begin with ‘𝑒𝑔𝑖,𝜙ℎ = 𝑒𝜒([ℎ, 𝑔𝑖,𝜙])

−1ℎ𝑔𝑖,𝜙’. The displayed equation on the fourth
line of the proof of Lemma 4.8 should read

𝜉𝜙 (ℎ)
−1(𝑔𝑖,𝜙𝑤𝑖) (𝑒𝜙 · ℎ) = 𝜉𝜙 (ℎ)

−1𝜓𝑖 (ℎ)
−1 𝜒([ℎ, 𝑔𝑖,𝜙])

−1(𝑒𝜙𝜓𝑖 ℎ) (𝑔𝑖,𝜙𝑤𝑖).

In Definition 4.9 and the four lines following, 𝑘𝐻𝑒 should be 𝑘�̃�𝑒 four times. The dimension of 𝔄
should be given as |𝑃 | · |𝑍 (𝐻) : 𝑍 | and not |𝑃 | · |𝐻 : 𝑍 (𝐻) |.

On page 1445, in Lemma 4.12 (2), in the displayed equation, the last 𝑤𝑖 should be 𝑤 𝑗 . The scalar
𝑞𝑖, 𝑗 ,𝜙 should equal 𝜓𝑖 (𝑔 𝑗 ,𝜙𝑧𝑖, 𝑗 ,𝜙)𝜓 𝑗 (𝑔

−1
𝑖,𝜙𝑧𝑖, 𝑗 ,𝜙)𝜙(𝑧𝑖, 𝑗 ,𝜙) rather than 𝜙(𝑧𝑖, 𝑗 ,𝜙). Similarly, in Lemma

4.12 (3), the scalar 𝑞𝑖, 𝑗 ,𝜙 should equal 𝜓𝑖 (𝑔 𝑗 ,𝜙)𝜓 𝑗 (𝑔
−1
𝑖,𝜙)𝜒(𝑧𝑖, 𝑗 ,𝜙) rather than 𝜒(𝑧𝑖, 𝑗 ,𝜙). In the second

line of the proof of Lemma 4.12 (1), 𝑔 𝑗 ,𝜙𝜙𝑖 should be 𝑔 𝑗 ,𝜙𝜓𝑖 . The computation that was suppressed in
the proof of Lemma 4.12 (2) uses (1) and equation (4.7). It is similar to the computation in Theorem 3.8
above, which we have spelled out in detail. There is a missing Z in the third to last line of the proof of
Lemma 4.12 (3), and 𝑔 𝑗𝑖 should be 𝑔𝑖 in the second to last line.

On page 1447, in Theorem 4.15 and Corollary 4.16, 𝑘𝐺𝑒 should be 𝑘�̃�𝑒 five times.
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