ALMOST CONVERGENCE AND WELL-DISTRIBUTED SEQUENCES

ALAN ZAME

1. Introduction. A sequence (x_n) of real numbers is said to be welldistributed modulo 1 (abbreviated w.d.) if for each subinterval I = [a, b] of [0, 1] we have that

$$\lim_{n\to\infty}\left(\frac{1}{n}\right)_{k+1}^{k+n}\chi_I(x_m)=b-a\quad\text{uniformly in }k=0,\,1,\,2,\ldots,$$

where χ_I is the characteristic function of I modulo 1. A sequence (r_n) of positive numbers is lacunary if

$$\liminf_{n\to\infty}(r_{n+1}/r_n)>1.$$

It is a consequence of a general theorem due to Koksma (1) that if (r_n) is a lacunary sequence, then for almost all x (in the sense of Lebesgue measure) the sequence $(r_n x)$ is uniformly distributed modulo 1. In contrast to this result, it is shown in (3) and (4) that if (r_n) is lacunary, then for almost all x the sequence $(r_n x)$ is not w.d. It is easy to extend this result to sequences which contain lacunary subsequences of positive density (in a certain sense). My aim in this note is to show that this result holds under more general conditions, thereby answering a question raised in (3).

2. Main results. Let (n_i) be a strictly increasing sequence of positive integers. We say that (n_i) has lower density 0 if for each $\epsilon > 0$ there exists an integer N such that for all $n \ge N$ and for $k = 0, 1, 2, \ldots$,

$$\left(\frac{1}{n}\right)\sum_{k+1}^{k+n}\phi(m) < \epsilon,$$

where $\phi(m) = 1$ if $m \in \{n_i\}$ and $\phi(m) = 0$ otherwise, that is, the sequence (n_i) has lower density 0 if the sequence $(\phi(m))$ is almost convergent to 0 in the sense of Petersen (2).

If there are a $\delta > 0$ and strictly increasing sequences of positive integers (k_i) and (p_i) such that

$$\left(\frac{1}{p_i}\right)\sum_{k_i+1}^{k_i+p_i}\phi(m) \ge \delta$$

(i.e., if (n_i) does not have lower density 0), then we shall write dens $(n_i) \ge \delta$.

Received March 3, 1967.

Then we have the following.

THEOREM 1. Suppose that (r_n) is a sequence of positive numbers such that there exist r > 1, $\delta > 0$, and a subsequence $(r_{n(1)})$ for which

- (i) $r_{n(i+1)}/r_{n(i)} \ge r$ for all *i* and
- (ii) dens $(n(i)) \ge \delta$.

Then for almost all x, the sequence $(r_n x)$ is not w.d. modulo 1.

For the proof of this theorem we shall need two lemmas, the first of which was proved in (4).

LEMMA 1. Suppose that (r_n) is a sequence of positive numbers such that $r_{n+1}/r_n \ge r \ge 2$ for all n. Let I be a closed subinterval of [0, 1] of length ||I|| such that $r||I|| \ge 2$. Then for almost all x and any positive integer k there exists an integer m = m(x) such that each of the terms $r_m x$, $r_{m+1}x$, ..., $r_{m+n}x$ lies in I modulo 1.

LEMMA 2. Let m, a positive integer, and $\delta > 0$ be given. Then for n sufficiently large (depending only upon m and δ) the following is true: if $A \subset \{1, 2, ..., n\}$ with $|A| \ge \delta n$ (|A| is the number of elements in A) and

$$B = \{x \in A : |A \cap \{x, x + 1, \dots, x + m - 1\}| \ge \delta m/2\},\$$

then $|B| \geq \delta n/2$.

Proof. Let

$$C_i = (A - B) \cap \{im + 1, im + 2, \dots, (i + 1)m\}$$
 $(i = 0, 1, 2, \dots).$

It is clear that $|C_i| < \delta m/2$ so that, in fact, $C_i \leq \langle \delta m/2 \rangle$ (where by $\langle x \rangle$ we mean the largest integer *less than x*). Hence

$$|A - B| \leq [n/m] \langle \delta m/2 \rangle + m \leq \delta n/2$$

for *n* sufficiently large, depending only upon *m* and δ .

Proof of Theorem 1. Let $E = \{n(i)\}$. Then dens $E \ge \delta$. Let R be any positive integer and

$$E(R) = \left\{ n(i) : \left(\frac{1}{R}\right) \sum_{n(i)}^{n(i)+R-1} \phi(m) \ge \delta/2 \right\}$$

(where ϕ is, again, the characteristic function of E). By Lemma 2, dens $E(R) \ge \delta/2$. In particular, E(R) is infinite. Now let

 $F(R) = \{n(i): \text{ there exists } n(p) \in E(R) \text{ with } 0 \leq i - p \leq R\delta/4\}.$

Since $F(R) \supset E(R)$, we have that F(R) is infinite. Label the elements of F(R) so that $F(R) = \{\overline{m}(i)\}$.

Let \mathscr{A} be any fixed arithmetic progression of positive integers of difference a, where a is large enough so that

$$r^a(\delta/(8a)) \ge 2.$$

https://doi.org/10.4153/CJM-1968-116-1 Published online by Cambridge University Press

1212

Let $G(R) = \{\overline{m}(i): i \in \mathscr{A}\}$. Relabel so that $G(R) = \{m(i)\}$. Then, by Lemma 1, for fixed R, almost all x and arbitrary n, there exists an integer k = k(x) such that

(*)
$$r_j x \in I = [0, \delta/(8a)] \pmod{1}$$

for j = m(k), m(k + 1), ..., m(k + n). Hence, the same conclusion holds for all R and n and almost all x. We shall now show that for x for which this is true for all R and n, the sequence $(r_n x)$ is not w.d., thereby proving the theorem.

Accordingly, let x be as above, take R to be large compared to a and let n be large compared to R. Find k such that $r_j x \in I \pmod{1}$ for all

$$j \in S = \{m(k), m(k+1), \ldots, m(k+n)\}.$$

Then S contains a term m(s), with $m(s) + R - 1 \leq m(k + n)$, such that for some integers q and p, with $\overline{m}(q) = m(s)$ and $\overline{m}(p) \in E(R)$ we have that $|p - q| \leq a$, so that from among the terms

$$m(s), m(s) + 1, m(s) + 2, \ldots, m(s) + R - 1,$$

at least $\delta R/4 - a$ belong to F(R), and hence at least $\delta R/(4a) - 2$ belong to G(R). It thus follows that from among the terms

$$r_{m(s)}x, r_{m(s)+1}x, \ldots, r_{m(s)+R-1}x,$$

at least $\delta R/(4a) - 2$ belong to $I = [0, \delta/(8a)] \pmod{1}$, so that

$$\left(\frac{1}{R}\right)\sum_{m(s)}^{m(s)+R-1}\chi_I(r_p x) \ge \delta/(4a) - 2/R > \delta/(5a)$$

for R sufficiently large. But, if $(r_n x)$ were w.d., this fraction would have to uniformly approach $\delta/(8a)$, as R approaches infinity, a contradiction.

3. Further remarks. In a slightly different direction we can prove the following.

THEOREM 2. Let (r_n) be a lacunary sequence and let (s_n) be a re-arrangement of (r_n) . Then for almost all x, the sequence $(s_n x)$ is not well-distributed.

Of course, this result is not true if we only assume that (r_n) contains lacunary subsequences. Again, Koksma's result in (1) shows that for almost all x, the sequence $(s_n x)$ is uniformly distributed.

Proof. The proof follows the lines of the proof for the lacunary case given in (4) therefore we shall only indicate the differences. We first show that the conclusion of Lemma 1 of this paper is valid for the sequence (s_n) under the assumptions of Lemma 1 on (r_n) . In fact, the following more general result is valid.

ALAN ZAME

LEMMA 3. Let $r \ge 2$ and $I \subset [0, 1]$ be such that $r||I|| \ge 2$. Let k be any positive integer and for each positive integer n let S_n be a set of positive numbers, $|S_n| = k$, such that

(i) $\lim \inf_{n\to\infty} \{x: x \in S_n\} = \infty$,

(ii) $x, y \in S_n, x < y$ imply that $y/x \ge r$.

Then for almost all real γ there exists an integer $m = m(\gamma)$ such that

$$x\gamma \in I \pmod{1}$$
 for all $x \in S_m$.

The proof of this lemma is similar to the proof of Lemma 1 given in (4) and will be omitted.

We can then use this lemma to complete the proof of Theorem 2 by passing to an appropriate subsequence of (s_n) much as was done in (4), although here we cannot use an arithmetic progression to define the sequence. Notice, at any rate, that if $\liminf(r_{n+1}/r_n) > 2$, then the theorem follows almost immediately from the lemma.

References

- J. F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung mod Eins, Compositio Math. 2 (1935), 250–258.
- G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math. Oxford Ser. 7 (1956), 188–191.
- 3. On the structure of well-distributed sequences. V, Indag. Math. 29 (1967), 229–233.
- 4. A. Zame, The measure of well-distributed sequences, Proc. Amer. Math. Soc. 18 (1967), 575–579.

University of Miami, Coral Gables, Florida

1214